Our lab combines mathematical modeling and quantitative experiments to understand the biological computations that enable organisms to sense and navigate their chemical environments. Chemical navigation involves many non-trivial computations and therefore provides a quantitative framework for discovering how biological systems compute, and how computations are implemented in molecular and cellular mechanisms. As model systems, we use the well characterized bacterial chemotaxis and fly olfaction systems. The dual perspective of microbiology and neuroscience helps reveal general principles while fostering innovation by cross-pollinating ideas.

We focus on the following three area:

  1. Sensing and processing chemical signals: We investigate how cells and groups of cells detect the intensity and identity of chemical signals and the role of fluctuations in this process.
  2. Integrating sensation and behavior to navigate: We investigate how organisms integrate new information captured by their sensors with past evidences to make decisions and navigate the world. Central to this problem is the realization that past decisions influence the stimuli experienced next.
  3. From individuals to emerging group composition, structure and function: In biology, functions are typically carried by groups of cells that express similar genes, yet exhibit phenotypic diversity. A central focus of our lab is to discover basic rules by which phenotypic diversity modulates isogenic populations’ performance, and how function and spatial organization at the scale of the group (microbial population, developing tissue) emerges from interactions and coordinated behavior of individual cells

We address these questions at the molecular, cellular, and behavioral levels by combining molecular and biophysical experimental methods with predictions from theory and simulations. Our lab is interdisciplinary. We have open positions for postdocs, graduate and undergraduate students with training/interests in microbiology, neuroscience, molecular biology, physics, mathematics and engineering.

The Emonet Lab is gratefull for funding from: The National Institute of General Medical Sciences, the Paul G. Allen Family Foundation, The Whitehall Foundation,  The James S. McDonnell Foundation, The National Science Foundation, The National Academies Keck Futures Initiative, and The Alfred P. Sloan Foundation.


June 21, 2023
Check out our latest paper using optogenetics to examine how flies use both the frequency and duration of encouters with odor in their navigational strategy! In the wild,...
April 5, 2023
We’re very excited to announce Lam won an NIH F31 fellowship to fund his graduate studies! Lam is interested in using traditional microbiology, microfluidics and...
November 11, 2022
Yale News has a nice article about our paper on odor motion detection in today’s issue. See also the cool video.