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Supplementary Information 
 

Mapping of the 2D and 3D problem onto 1 dimension: scaling of drift velocity and 
rotational diffusion 

Assume the cell swims along the direction r


, where r


is a unit vector in d = 2 or 3 dimensions. 
Define ( ) coss   , where θ is the angle between the direction of motion and the direction of 

the gradient. Due to rotational diffusion [1], the directional of motion slowly drift away from the 

original direction during a run. The correlation function is   ( 1)( ) rd D t
icos t r t r e    

 
, 

where ir


 is the direction of motion at the beginning of the run. The survival probability 

distribution of a run along the direction r


 becomes, 

 
   

0

, ,
( 1)

t

R i i

r

F u s F du
d D t

R t e e





 


      (S1) 

where    / / /
0 0

0

, , ( )
t

t t u
i i i iF t s F F F F e e e s f u du        and cosi is   is the cosine of the 

angle between the direction of the signal gradient and the direction of the cell motion at the 
beginning of the run. In calculating the change in the free energy we neglected the higher order 
deviations in the angle of motion. The main effect of rotational diffusion is encapsulated in the 

first factor, ( 1) rd D te  . 

At steady state, we linearize Eq. (S1) around the mean free energy Fm, which is on average lower 
than the resting free energy F0.  

        1 ' 2

0

, 1 u, ,r Rm

t
d D t

R i i Rm i it s F e F s F du O F     
     

 
       (S2)  

     ,
1

Tmt Rm
T i i

r Rm

t s F e O F
d D

 


  
 

       (S3) 

where mF F F   . Integrating over time between 0 and infinity we get the expect run and 

tumble duration along the direction si 
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Inserting Eqs. (S4) and (S5) in Eq. (1) the drift velocity is  
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where   2iP s  in 3D and 2 1 (1 )is  in 2D. We are interested in the first order solution. 

Therefore only the zeroth order is needed for the denominator:  
1

1

1 /
 

( 1)
Rm Tm

i i
r Rm

P s ds
d D

 
 


   . 

For the numerator we have to first order in F  and noticing that only the terms that are function 
of si are not zero: 
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The variation in f(t) depends on the direction of motion 

      ln[(1 / ) / (1 / )]x i af t v N L K L K     

The above relation shows that as long as  
0

t u

due f u increases slower than 
 1 1

Rm t
e
  

 (the ligand 

gradient is not steeper than 
1 /x vRmee

 

), the numerator becomes  
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Thus, for Ki << L <<Ka and exponential gradients  f v N g  constant, the drift velocity in 2D/3D 

is  
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which is the same as Eq. (3) in the main text (after the subscript 0 has been replaced by m). 
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Nonlinear solution  

All analytical curves in the paper (lines in Figures 2-5) use the linear approximation around F0 
and Fm as described in the main text and Materials and Methods. Here we describe how to solve 
Eqs. (1)-(3) keeping the nonlinearity of the rates λR(F) and λT(F). Eq. (S16) can be integrated 
numerically to calculate the stopping time (red and green circles) of the red and green trajectories 
in Figure 2B. All other analytical curves in the paper (lines in Figures 2-6) use the linear 
approximation around F0 and Fm as described in Materials and Methods. 

In the 1D representation, the equation for the free energy difference F can be integrated to get 
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0, , 1 t t

i iF t s F e F sf Fe       where s = ±1 when the cell runs up or down the 

gradient and s = 0 during tumbles. Fi is the initial value.   f v N g  is the constant “force” 

exerted by the gradient. 

Inverting we also get the time duration as a function of the free energy:  
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At steady state the conditional probability densities of the duration t of runs and tumbles are  
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where  s = ±1 and the first two probability densities correspond to runs that terminate into a 
tumble and into a run of opposite direction, respectively. FiR and FiT are the values of F at the 

beginning of a run and a tumble, respectively. Noting that  
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The probability density to have free energy Fe at the end of a run and tumble cycle is then 
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At steady state we must have      e e iR iR iRP F P F F P F dF




   equal to  iRP F , which given 

 e iRP F F   defines  iRP F . The average run and tumble durations are then 
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We obtain the drift velocity 
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Effect of asymmetric methylation/demethylation rates  

Experimental data shows the methylation/demethylation rates for receptor adaptation are 
asymmetric [2]. The rate of change of methylation catalyzed by CheR and CheB is usually 
described as 
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where VR  and VB(a) are the rates of methylation and demethylation; and KR  and KB  are the 
constants for each reactions. Experimentally, people found that the asymmetry of 
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methylation/demethylation rates is not significant until a>aB , where 0.78Ba    measured in [2]. 

VB(a) is a piece-wise linear function:   ,0 (1 ( ) )
1
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B B B B
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, where ( )x is a 

unit step function ( ( ) 1x  only if x>0 ).  

For most of the dynamic range of CheY-P level we are interested in ( )Ba a  will be zero and 

VB will be approximately constant. Thus variations in the rate of demethylation should not affect 
much drift velocity and optimal CheY-P level. To verify this, we implemented Eq. (S19) into our 
stochastic simulations of individual cells, with KR=0.43, KB=0.3 and kB=2.7 [2]. To vary the 
adapted CheY-P level we varied VR and VB,0 since their ratio determines the adapted CheY-P level. 
Given these definitions the effective adaptation time scale τeff  obtained by linearizing equation 

(S19) reads 
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 , where a0 is the adapted activity of the 

receptor (corresponding to adapted CheY-P level Y0 in this case) . As shown in Fig. S1, the 
optimal CheY-P level in shallow gradient remains at the same position with respect to the motor 
response curve as in Fig. 2A. While the cells drifts in the steep gradient with slow methylation 
and demethylation rates, the behavior feedback will still push the system to a bifurcation (Fig. S2).  

Adapted motor response curve 

The motor adaptation is considered in this study by assuming that the number of FliM molecules 
in the motor changes as a function of the CW bias of the motor. At steady state, where dn/dt = 0, 
the relation between CW bias and number of FliM, n, is given by 
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Eq. (S20) together with the CW bias response function, 32 ( ,
3

)) 1 (1, )( mY
m

GCW Y e    and the 

linear relation between free energy ε3 and the number of FliM n:  3 3,1 0 3,0n n     , gives ε3 

as a function of Ym. The adapted motor response curve 3, )( mCW Y   is calculated then to fit the 

experimental data [3] with parameters n  and 3,1 .  

Note that for Figures 4 and 5 of the main text, kon was chosen as 0.0063 s-1, so that the CW bias 
that the motor adapts to is 0.2, which is the average CW bias measured experimentally in wild 
type population of E. coli selected for swimming on agar plates [4]. We also examined what 
would happen if we changed the CW bias that the motor adapts to. For kon = koff =0.025 s-1

 the 
effect of motor adaptation on the drift velocity curve is most visible for Ym between 2.5 and 3.5 
µM (Fig. S3) whereas it is between 2 and 3 µM when kon = 0.0063 s-1

 (Fig. 4A). We also 
simulated the case where the CW bias that the motor adapts to is 0.05 (here kon = 0.0013 s-1) 
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which results in a flat region of the drift velocity curve as a function of Ym around the optimal 
operational CheY-P level (~2 µM) (Fig. S4). In this case, because kon is so small the adaptation 
time of the motor is very long and the motor does not reach steady state during the simulation. 
This explains the slight discrepancy with the analytical solution, which assumes steady state of 
the motor. 
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