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Supporting Information Text 

 
Local drop in oxygen concentration is expected to be proportional to bacterial density.  
 
We model dissolved oxygen concentration 𝑂 with the following dynamics, averaged over the width 
of the channel: 

𝜕𝑡𝑂 = 𝐷𝑂(𝜕𝑥𝑥𝑂 + 𝜕𝑦𝑦𝑂) − 𝑘𝑜

𝑂

𝑂 + 𝐾𝑂

 𝐵(𝑥, 𝑦) 

 
where 𝑥 is the direction of the long channel, 𝑦 is the vertical position in the channel, 𝐵 is bacterial 

density, 𝐷𝑂 is the diffusivity of oxygen in water, 𝑘𝑂 is the maximum consumption rate of oxygen by 

bacteria, and 𝐾𝑂 is the Monod constant of oxygen consumption. Because the channel depth 𝐿 =
100 μm is shallow compared to its width (1.2 mm), we can neglect transfer of oxygen into the 
channel from the side walls.  
 
This PDE is paired with boundary conditions: 
 

𝑂(𝑥, 𝑦 = 0) = 𝑂𝑜𝑢𝑡 . 
 

[𝜕𝑦𝑂(𝑥, 𝑦)]
𝑦=𝐿

= 0 

 
The first boundary condition fixes the oxygen concentration at the water-PDMS interface to 𝑂𝑜𝑢𝑡. 
The second condition reflects the fact that the glass slide is impermeable to oxygen. 
 
Assuming that 𝐾𝑂 is small compared to the minimum oxygen concentration, that variations in cell 
density 𝐵 in the 𝑦 direction are negligible, and that the cells form a quasi-stationary traveling wave 

with moving reference frame 𝑧 = 𝑥 − 𝑐 𝑡, we get: 
 

−𝑐 𝜕𝑧𝑂 = 𝐷𝑂(𝜕𝑧𝑧𝑂 + 𝜕𝑦𝑦𝑂) − 𝑘𝑜 𝐵(𝑧). 

 
Since the wave is much wider than the depth of the channel, variations in oxygen along the 𝑦-

direction are much larger than those in the 𝑧-direction: 
 

𝜕𝑦𝑦𝑂 −
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) = 0 

 
Integrating once: 
 

𝜕𝑦𝑂 −
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) 𝑦 + 𝑎1 = 0 

 
Applying the boundary condition at 𝑦 = 𝐿: 
 

−
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) 𝐿 + 𝑎1 = 0 

𝑎1 =
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) 𝐿  

𝜕𝑦𝑂 −
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) (𝑦 − 𝐿) = 0 

Integrating again: 
 

𝑂(𝑧, 𝑦) −
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) (
𝑦2

2
− 𝐿 𝑦) + 𝑎2 = 0 
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Applying the boundary condition at 𝑦 = 0: 
 

𝑂𝑜𝑢𝑡 + 𝑎2 = 0 
 

𝑎2 = −𝑂𝑜𝑢𝑡 . 
 

Together: 

𝑂(𝑧, 𝑦) −
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) 𝑦 (
𝑦

2
− 𝐿) − 𝑂𝑜𝑢𝑡 = 0 

 

𝑂𝑜𝑢𝑡 − 𝑂(𝑧, 𝑦) =
𝑘𝑜

𝐷𝑂

 𝐵(𝑧) 𝑦 (𝐿 −
𝑦

2
). 

 
Averaging the drop in oxygen over the channel depth: 
 

⟨Δ𝑂⟩𝑦(𝑧) = ⟨𝑂𝑜𝑢𝑡 − 𝑂(𝑧, 𝑦)⟩𝑦 =
1

𝐿
∫

𝑘𝑜

𝐷𝑂

 𝐵(𝑧) 𝑦 (𝐿 −
𝑦

2
) 𝑑𝑦

𝐿

0

 

 

=
1

𝐿

𝑘𝑜

𝐷𝑂

𝐵(𝑧) (𝐿
𝐿2

2
−

𝐿3

6
) 

 

=
𝐿2

3

𝑘𝑜

𝐷𝑂

𝐵(𝑧). 

 
Thus, we expect that the local drop in oxygen concentration at position 𝑧 in the wave scales like 

the channel depth squared, 𝐿2, and is proportional to the local cell density 𝐵(𝑧). 
 
 
Conversion of fluorescence intensities to aspartate concentration and bacterial density. 
 
The main challenge in performing the calibrations of OD and Asp concentration in each experiment 
is that the depths of the microfluidic devices vary by about +/-10% across devices, and they also 
vary with position within one device. But we have enough information to correct for these variations 
in each experiment. 

 
First, we model GFP and RFP intensity as: 

 

𝐺𝐹𝑃(𝑥) = 𝐼(𝐴𝑠𝑝(𝑥)) 𝐻(𝑥) + 𝐷𝐶 

 
𝑅𝐹𝑃(𝑥) = 𝑘𝑅𝐹𝑃  𝑂𝐷(𝑥) 𝐻(𝑥) + 𝐷𝐶, 

 
where 𝐷𝐶 is the camera dark current intensity, 𝐻(𝑥) the is spatially-varying device depth, 𝑘𝑅𝐹𝑃 is 

the linear transformation from OD of cells to RFP intensity, and 𝐼(𝐴𝑠𝑝) is the sensor emission 
intensity per unit device depth at an aspartate concentration 𝐴𝑠𝑝. We also need a model for the 
sensor calibration curve. This is the data shown in Fig. 1B: 

 
𝐺𝐹𝑃(𝐴𝑠𝑝) = 𝐼(𝐴𝑠𝑝) 𝐻 + 𝐷𝐶, 

 
which depends on the depth of the device used for calibration, 𝐻. After shifting and normalizing 
GFP intensity: 

 
𝐺𝐹𝑃(𝐴𝑠𝑝) − 𝐺𝐹𝑃(0 𝜇𝑀)

𝐺𝐹𝑃(100 𝜇𝑀) − 𝐺𝐹𝑃(0 𝜇𝑀)
=

𝐼(𝐴𝑠𝑝) − 𝐼(0 𝜇𝑀)

𝐼(100 𝜇𝑀) − 𝐼(0 𝜇𝑀)
≡ 𝐹(𝐴𝑠𝑝). 
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Normalizing this way eliminates differences in height between the experimental devices and the 
device used for calibration, and it removes the DC intensity.  

 
The first image of each experiment has uniform aspartate at known concentration, 100 uM, with 
intensity 𝐺𝐹𝑃(100 𝜇𝑀, 𝑥) = 𝐼(100 𝜇𝑀) 𝐻(𝑥) + 𝐷𝐶. Also, the last image of each experiment has no 

aspartate, just sensor, with intensity 𝐺𝐹𝑃(0 𝜇𝑀, 𝑥) = 𝐼(0 𝜇𝑀) 𝐻(𝑥) + 𝐷𝐶. We thus compute the 
aspartate concentration as a function of position and time in each experiment using: 

 

𝐴𝑠𝑝(𝑥, 𝑡) = 𝐹−1 (
𝐺𝐹𝑃(𝑥, 𝑡) − 𝐺𝐹𝑃(0 𝜇𝑀, 𝑥)

𝐺𝐹𝑃(100 𝜇𝑀, 𝑥) − 𝐺𝐹𝑃(0 𝜇𝑀, 𝑥)
). 

 
We can use a similar approach for converting RFP intensity to concentration of bacteria in units of 
OD. Again, we use the first aspartate image to correct for height variations within the experimental 
device: 

 

𝑂𝐷(𝑥, 𝑡) =
𝑅𝐹𝑃(𝑥, 𝑡) − 𝐷𝐶

𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝, 𝑥, 𝑡0) − 𝐺𝐹𝑃(0 𝜇𝑀, 𝑥, 𝑡𝑁)

⟨𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝) − 𝐺𝐹𝑃(0 𝑢𝑀 𝐴𝑠𝑝)⟩

⟨𝑅𝐹𝑃/𝑂𝐷⟩
, 

 

but there is another factor to convert to OD, 
⟨𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝)⟩−𝐷𝐶

⟨𝑅𝐹𝑃/𝑂𝐷⟩
. The numerator of this factor is the 

GFP intensity of the sensor with 100 µM aspartate, averaged over many devices and positions with 
the devices: 

 

⟨𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝) − 𝐺𝐹𝑃(0 𝑢𝑀 𝐴𝑠𝑝)⟩ = (𝐼(100 𝜇𝑀) − 𝐼(0 𝜇𝑀)) ⟨𝐻⟩, 

 
where ⟨𝐻⟩ is the (unknown) average depth over positions and devices. The denominator ⟨𝑅𝐹𝑃/𝑂𝐷⟩ 
is the RFP intensity per unit OD averaged over devices and positions in devices. Specifically, we 
measured the RFP intensity of OD6 bacterial suspension in multiple devices: 

 
⟨𝑅𝐹𝑃(𝑂𝐷6)⟩ = 𝑘𝑅𝐹𝑃 ∗ 6 ∗ ⟨𝐻⟩ + 𝐷𝐶, 

 
then subtract the DC intensity and divide by 6 OD: 

 

⟨
𝑅𝐹𝑃

𝑂𝐷
⟩ =

1

6
 (⟨𝑅𝐹𝑃(𝑂𝐷6)⟩ − 𝐷𝐶) = 𝑘𝑅𝐹𝑃  ⟨𝐻⟩. 

 
Figure S5 shows that RFP intensity is proportional to bacterial density. Using averages over 
devices ensures that the average height ⟨𝐻⟩ cancels out in the numerator and denominator: 

 

⟨𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝) − 𝐺𝐹𝑃(0 𝑢𝑀 𝐴𝑠𝑝)⟩

⟨𝑅𝐹𝑃/𝑂𝐷⟩
=

(𝐼(100 𝜇𝑀) − 𝐼(0 𝜇𝑀)) ⟨𝐻⟩

𝑘𝑅𝐹𝑃  ⟨𝐻⟩
=

𝐼(100 𝜇𝑀) − 𝐼(0 𝜇𝑀)

𝑘𝑅𝐹𝑃

. 

 
Thus, 

 
𝑅𝐹𝑃(𝑥, 𝑡) − 𝐷𝐶

𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝, 𝑥, 𝑡0) − 𝐺𝐹𝑃(0 𝜇𝑀, 𝑥, 𝑡𝑁)

⟨𝐺𝐹𝑃(100 𝑢𝑀 𝐴𝑠𝑝) − 𝐺𝐹𝑃(0 𝑢𝑀 𝐴𝑠𝑝)⟩

⟨𝑅𝐹𝑃/𝑂𝐷⟩
 

 

=
𝑘𝑅𝐹𝑃  𝑂𝐷(𝑥, 𝑡) 𝐻(𝑥)

(𝐼(100 𝜇𝑀) − 𝐼(0 𝜇𝑀)) 𝐻(𝑥)

𝐼(100 𝜇𝑀) − 𝐼(0 𝜇𝑀)

𝑘𝑅𝐹𝑃

 

 
= 𝑂𝐷(𝑥, 𝑡). 
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Error analysis and fitting. 
 
To quantify the goodness of fit between the left-hand side (LHS) and right-hand side (RHS) of each 
equation, we compute the mean squared error (MSE) between them. The MSE is defined as: 
 

𝑀𝑆𝐸 =
1

𝑁𝑧

∑
(𝐿𝐻𝑆(𝑧𝑖) − 𝑅𝐻𝑆(𝑧𝑖))

2

𝜎2(𝑧𝑖)
𝑖

, 

 
where 𝑧𝑖 is the 𝑖th position at which the LHS and RHS were measured; 𝑁𝑧 is the total number 

positions; 𝐿𝐻𝑆(𝑧𝑖) and 𝑅𝐻𝑆(𝑧𝑖) are the averages over replicates of the LHS and RHS of each 
equation; and the uncertainty of each point is 
 

𝜎2(𝑧𝑖) = 𝜎𝐿𝐻𝑆
2 (𝑧𝑖) + 𝜎𝑅𝐻𝑆

2 (𝑧𝑖). 
 

To get the uncertainties, we need to clarify that terms with derivatives were computed by fitting 
splines to each replicate and then computing the derivative of the spline. Since the spline fits are 
estimates of the mean of their corresponding terms, we can get the uncertainty of the mean by 
computing the standard deviation of the spline over replicates at each point. For terms that did not 
use splines, we compute the standard error over the replicates at each point.  
 
Eqn. 3 has derivatives only on the LHS. Denote the spline fit of 𝐴 in experiment 𝑗 as 𝐴𝑗(𝑧), and the 

average of the splines as ⟨𝐴𝑗⟩. The uncertainty of the LHS, −𝑐 𝜕𝑧𝐴 − 𝐷𝐴𝜕𝑧
2𝐴, is then 

 

𝜎𝐿𝐻𝑆
2 (𝑧𝑖) = (⟨𝑐⟩2 +

𝑉𝑎𝑟(𝑐)

𝑁𝑟𝑒𝑝𝑠 − 1
) ((𝜕𝑧⟨𝐴𝑗⟩(𝑧𝑖))

2

+ 𝑉𝑎𝑟(𝜕𝑧𝐴𝑗)(𝑧𝑖)) − ⟨𝑐⟩2 (𝜕𝑧⟨𝐴𝑗⟩(𝑧𝑖))
2

+ 𝐷𝑎
2 𝑉𝑎𝑟(𝜕𝑧

2𝐴𝑗)(𝑧𝑖), 

 

using 𝑉𝑎𝑟(𝑋 𝑌) = (⟨𝑋⟩2 + 𝑉𝑎𝑟(𝑋))(⟨𝑌⟩2 + 𝑉𝑎𝑟(𝑌)) − ⟨𝑋⟩2⟨𝑌⟩2. In the first two terms, we propagated 

uncorrelated errors in 𝑐 and 𝜕𝑧⟨𝐴⟩ to errors in their product. ⟨𝑐⟩ is the average speed over replicates 

for the given condition. Note that 𝑉𝑎𝑟(𝑐) is divided by 𝑁𝑟𝑒𝑝𝑠 − 1 to get a standard error, but the 

variance of the spline terms are not divided by 𝑁𝑟𝑒𝑝𝑠 − 1, since they are already “averages”.  

 
Then, for the KS model of Eqn. 3, 

 

𝜎𝑅𝐻𝑆
2 (𝑧𝑖) = 𝛾2  

1

𝑁𝑟𝑒𝑝𝑠 − 1
𝑉𝑎𝑟 (

𝐴

𝐴 + 𝐴ℎ

𝐵) (𝑧𝑖), 

 
while for the modified KS model, 

 

𝜎𝑅𝐻𝑆
2 (𝑧𝑖) = 𝛾0

2  
1

𝑁𝑟𝑒𝑝𝑠 − 1
𝑉𝑎𝑟 (

𝐴

𝐴 + 𝐴ℎ

𝐵

𝐵 + 𝐵𝑐

 𝐵) (𝑧𝑖), 

 
where 𝑉𝑎𝑟( ) above is the variance over replicate experiments at a given value of the parameters, 

as would be the case when computing a likelihood function. Dividing by 𝑁𝑟𝑒𝑝𝑠 − 1 gives the 

(squared) standard error of the mean over replicates. 
 

The uncertainty of the LHS of Eqn. 4 is: 
 

𝜎𝐿𝐻𝑆
2 (𝑧𝑖) = (⟨𝑐⟩2 +

𝑉𝑎𝑟(𝑐)

𝑁𝑟𝑒𝑝𝑠 − 1
) ((𝜕𝑧⟨𝐵⟩(𝑧𝑖))

2
+ 𝑉𝑎𝑟(𝜕𝑧𝐵𝑗)(𝑧𝑖)) − ⟨𝑐⟩2(𝜕𝑧⟨𝐵⟩(𝑧𝑖))

2
, 
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where 𝐵𝑗(𝑧) is the spline fit to bacterial density in experiment 𝑗. 

 
The error for the RHS of the KS model of Eqn 4. is: 

 

𝜎𝑅𝐻𝑆
2 (𝑧𝑖) = 𝐷𝐵

2 𝑉𝑎𝑟(𝜕𝑧
2𝐵𝑗)(𝑧𝑖) + 𝜒2 𝑉𝑎𝑟 (𝜕𝑧 (𝐵𝑗(𝑧𝑖) 𝜕𝑧Φ𝑗(𝑧𝑖))), 

 
where Φ𝑗(𝑧) is the spline fit to the perceived signal in experiment 𝑗.  

 
The error for the RHS of the modified KS model is: 

 

𝜎𝑅𝐻𝑆
2 (𝑧𝑖) = 𝐷𝐵

2 𝑉𝑎𝑟(𝜕𝑧
2𝐵𝑗)(𝑧𝑖) + 𝜒0

2 𝑉𝑎𝑟 (
1

1 + 𝐵(𝑧𝑖)/𝐵ℎ

𝜕𝑧 (𝐵𝑗(𝑧𝑖) 𝜕𝑧Φ𝑗(𝑧𝑖))). 

 
We neglect the uncertainty in 𝛼 because that term is negligibly small (see Fig. S4). 
 
Note that when we compute error bars for the LHS and RHS of Eqn. 5, the evolution of bacterial 
density, we do not include the uncertainty of the conversion from RFP intensity to OD. We exclude 
this because those errors are 100% correlated on both sides of the equation, so including them 
would overestimate our uncertainties. After inferring the parameters, we then account for 
uncertainties in the conversion from RFP to OD in all parameters that have units of OD. 
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Fig. S1. jAspSnFR3 is specific for aspartate and insensitive to glutamate. Sensor fluorescence 
emission response to glutamate (Glu, cyan) is negligible compared to the response to aspartate 
(Asp, green). Concentration values are 0, 100 and 200 μM for both amino acids. Data points are 
averages over an entire sweep of images along the microfluidic device. The same device was used 
for all Asp concentrations. 
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Fig. S2. The standard model for chemotaxis, the Patlak-Keller-Segel (PKS) model, describes 
the bacterial wave at low cell densities but breaks down at high densities. (A) The quasi-
steady state profiles in the co-moving frame, of bacteria density (red) and attractant Asp 
concentration (green), during low cell density migration (OD = 0.6). (B) Fitting the Asp dynamics of 
the PKS model to experimental data (above). 𝑨 and 𝑩 are the Asp concentration and the bacteria 
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density respectively, 𝒄 is the wave speed, 𝑫𝑨 is the molecular diffusion of Asp, 𝜸 is the maximum 
consumption rate, 𝑨𝒉 is the half-max of the consumption rate, and 𝒛 = 𝒙 − 𝒄 𝒕 is the coordinate in 

the co-moving frame (𝒛 = 𝟎 is set to the peak bacteria density). Green: LHS of the Asp dynamics 

equation with 𝑨 and 𝒄 = 𝟒. 𝟒 ± 𝟎. 𝟏 𝛍𝐦/𝐬 measured and 𝑫𝑨 = 𝟖𝟎𝟎 𝛍𝐦𝟐/𝐬 (1–5). Magenta: RHS of 
the Asp dynamics equation with 𝑩 measured, and 𝜸 = 𝟎. 𝟓𝟏 ± 𝟎. 𝟎𝟓 𝛍𝐌/𝐎𝐃/𝐬 and 𝑨𝒉 = 𝟕. 𝟔 ±
𝟑. 𝟕 𝛍𝐌 fit to match the LHS using the data in (B). (C) Fitting the bacterial dynamics of the PKS 

model to experimental data (above). 𝚽[𝑨] = 𝐥𝐧 (
𝟏+𝑨/𝑲𝒊

𝟏+𝑨/𝑲𝒂
) is the cells’ perceived signal (𝑲𝒂 ≫ 𝑨 and 

𝑲𝒊 = 𝟏 𝛍𝐌 (6–9)), 𝑫𝑩 is the effective bacterial diffusivity, 𝝌 is the chemotactic coefficient, and 𝜶 =
𝟎. 𝟒/𝐡𝐫 is the measured growth rate (Methods). Red: LHS of the bacteria dynamics equation with 

𝜶, 𝒄, and 𝑩 measured. Cyan: RHS of the bacteria dynamics equation with 𝑫𝑩 = 𝟒𝟎𝟎 ±
𝟏𝟎𝟎 𝛍𝐦𝟐/𝐬 and 𝝌 = 𝟑𝟑𝟎𝟎 ± 𝟐𝟑𝟎 𝛍𝐦𝟐/𝐬 fit to match the LHS using the data in (C). (D,E,F), (G,H,I), 
(J,K,L) are the same as (A,B,C), using the same parameters, but for high cell density waves. Wave 
speeds are 𝒄 = 𝟓. 𝟓 ± 𝟎. 𝟏 𝛍𝐦/𝐬 (OD = 1.1), 𝒄 = 𝟔. 𝟒 ± 𝟎. 𝟐 𝛍𝐦/𝐬 (OD = 2.1) and 𝒄 = 𝟕. 𝟕 ±
𝟎. 𝟐 𝛍𝐦/𝐬 (OD = 4.6).  (E,F), (H,I), (K,L) magenta and cyan lines are prediction using the same 

parameter values for 𝜸, 𝑨𝒉, 𝑫𝑩, 𝝌 as in (B,C). The shading represents the standard deviation across 
replicates. Replicate 𝑵 = 𝟔 for (A,B,C), 𝑵 = 𝟗 for (D,E,F), 𝑵 = 𝟓 for (G,H,I), and 𝑵 = 𝟒 for (J,K,L). 
Uncertainties for the RHS of each equation are not shown for clarity, but were included in the 
calculation of the mean squared error (SI). 

 
 
  



 

 

10 

 

 
 
Fig. S3. Conversely, the Patlak-Keller-Segel (PKS) model can be fit to the bacterial wave data 
at high cell densities, but then fails at low densities. The let column is the same as that of Fig. 
S2. The green curves in the middle column and the red curves of the right column are also the 
same as those in Fig. S2. (B) Magenta: RHS of the Asp dynamics equation with 𝐵 measured, and 

𝛾 = 0.31 ± 0.03 𝜇𝑀/𝑂𝐷/𝑠 and 𝐴ℎ = 0.1 ± 2.3 𝜇𝑀 fit to match the LHS using the data in panel (K). 
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(C) Fitting the bacterial dynamics of the PKS model to experimental data (above). Cyan: RHS of 

the bacteria dynamics equation with 𝐷𝐵 = 360 ± 160 𝜇𝑚2/𝑠 and 𝜒 = 2800 ± 320 𝜇𝑚2/𝑠 fit to match 
the LHS using the data in panel (L). (D,E,F), (G,H,I), (J,K,L) are the same as (A,B,C), using the 
same parameters, but for high cell density waves. Wave speeds are 𝑐 = 5.5 ± 0.1 𝜇𝑚/𝑠 (OD = 1.1), 

𝑐 = 6.4 ± 0.2 𝜇𝑚/𝑠 (OD = 2.1) and 𝑐 = 7.7 ± 0.2 𝜇𝑚/𝑠 (OD = 4.6).  (E,F), (H,I), (K,L) magenta and 

cyan lines are prediction using the same parameter values for 𝛾, 𝐴ℎ, 𝐷𝐵, 𝜒 as in (B,C). The shading 

represents the standard deviation across replicates. Replicate 𝑁 = 6 for (A,B,C), 𝑁 = 9 for (D,E,F), 
𝑁 = 5 for (G,H,I), and 𝑁 = 4 for (J,K,L). Uncertainties for the RHS of each equation are not shown 
for clarity, but were included in the calculation of the mean squared error (SI). 
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Figure S4. Contribution from growth is negligible compared to the total bacteria flux. We use 
the best-fit values for the parameters in the extended Patlak-Keller-Segel model to compare 
different components of the bacterial flux. Green: Chemotactic flux −𝜕𝑧(𝜒[𝐵]𝐵𝜕𝑧𝛷[𝐴]). Yellow: 

Diffusion flux 𝐷𝐵  𝜕𝑧
2𝐵. Cyan: Growth 𝛼 𝐵. Red: The measured total bacteria flux −𝑐𝜕𝑧𝐵, which is 

approximately the sum of these three terms. The shading represents the standard deviation across 
replicates. These are shown for waves with peak bacterial cell density of OD = 0.6 (A), 1.1 

(B),  2.1 (C), and 4.6 (D). 
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Fig. S5. The bacteria signal (RFP) depends linearly on the bacteria density. Red: RFP 
fluorescence of uniform cell suspensions of known cell density measured in microfluidic devices 
using the same procedure as the wave experiment. Cyan: linear fit. The slope has value 76 ±
4 signal-unit/OD, and the goodness-of-fit is 𝑅2 = 0.99. Data points are averages over 3 fixed 
positions on the microfluidic device. The same device was used for all bacteria densities. Note that 
this data was not used for any calibration—its purpose is to demonstrate that fluorescence depends 
linearly on bacterial density. 
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Fig. S6. Time progression of the bacteria density and the aspartate concentration in the co-
moving frame. Here we show, using data from one experiment of a travelling wave with peak 
bacteria cell density of OD = 2.1, that within the co-moving reference frame, the bacteria density 

and Asp concentration do not change during the last 6 frames, the time range in which analyses 
were performed. (A) Bacterial density. (B) Asp concentration. 
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