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Significance

Signal-to-noise ratio (SNR) limits 
what we can learn from data. In 
fluorescence microscopy, SNR is 
set by the number of photons 
acquired from a sample and the 
efficiency with which these 
photon are used in data analysis. 
Experimental configurations that 
determine the former tend to be 
highly optimized, whereas 
analysis methods to maximize 
the latter remain comparatively 
underexplored. This is the case 
for intensity-based, time-lapse 
fluorescence resonance energy 
transfer (FRET) microscopy, a 
powerful method for quantifying 
the dynamics of molecular 
interactions inside cells. Here, we 
develop an information-
theoretically optimal method to 
estimate molecular interaction 
from such FRET data that 
maximizes SNR. Like bright 
fluorescent proteins and 
sensitive photodetectors, the 
method expands the scope of 
FRET microscopy by significantly 
improving SNR.
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Intensity-based time-lapse fluorescence resonance energy transfer (FRET) microscopy 
has been a major tool for investigating cellular processes, converting otherwise unob-
servable molecular interactions into fluorescence time series. However, inferring the 
molecular interaction dynamics from the observables remains a challenging inverse 
problem, particularly when measurement noise and photobleaching are nonnegli-
gible—a common situation in single-cell analysis. The conventional approach is to 
process the time-series data algebraically, but such methods inevitably accumulate 
the measurement noise and reduce the signal-to-noise ratio (SNR), limiting the 
scope of FRET microscopy. Here, we introduce an alternative probabilistic approach, 
B-FRET, generally applicable to standard 3-cube FRET-imaging data. Based on 
Bayesian filtering theory, B-FRET implements a statistically optimal way to infer 
molecular interactions and thus drastically improves the SNR. We validate B-FRET 
using simulated data and then apply it to real data, including the notoriously noisy 
in vivo FRET time series from individual bacterial cells to reveal signaling dynamics 
otherwise hidden in the noise.

FRET | statistical inference | live-cell imaging | cell signaling | information theory

Molecular interactions inside cells underlie essentially all biological functions (1–3). Leveraging 
the principle of FRET (4, 5), intensity-based time-lapse FRET microscopy based on the 
so-called 3-cube imaging method (6–11) has been widely used to investigate the dynamics 
of molecular interactions inside cells. With growing interest in quantifying cell-to-cell (or 
compartment-to-compartment) variations and temporal fluctuations in cellular processes 
(12–19), time-lapse FRET measurements are increasingly being conducted on single cells or 
subcellular compartments (20–37). In so-called ensemble FRET (as opposed to single-molecule 
FRET) measurements, which we are interested in here, fluorescence is integrated from a 
number of fluorescence proteins (FPs) in a compartment; however, cells and subcellular 
compartments often contain small numbers of FPs and thus exhibit relatively large photon 
shot noise, which limits the signal-to-noise ratio (SNR). Attempts to reduce the shot noise 
by increasing fluorescence-excitation power are confronted with higher phototoxicity and 
photobleaching rates, both of which limit the achievable measurement durations in live cells 
(Fig. 1). This trade-off between SNR and measurement duration in turn places limits on what 
we can learn from FRET data, as demonstrated by recent FRET-based investigations of 
signaling dynamics in single bacterial cells (24–27).

From an information-theoretic perspective, the trade-off between SNR and measurement 
duration can only be mitigated by improving the efficiency of information usage (Fig. 1). 
In a typical FRET experiment designed to study the temporal dynamics of molecular inter-
actions, the focus of this paper, image analysis is applied to multicolor time-lapse movies to 
extract a set of fluorescence-intensity time series from a compartment (e.g., a single cell). 
Via FRET, these time-series data encode information about specific molecular interactions 
within the compartment. However, because these time series also reflect processes other than 
FRET, such as photobleaching, careful data analysis is needed to decode the relevant infor-
mation about the specific molecular interactions of interest from the time series. To date, 
researchers have primarily focused on increasing the efficiency of the encoding process that 
generates the time series by, e.g., optimizing FRET pairs (28, 38–40) and microscope setups 
(41, 42). However, equally important—and yet vastly underexplored—is the efficiency of 
the decoding process: Data processing inevitably incurs information loss (43), and 
data-analysis methods that do not explicitly consider informational aspects tend to incur 
unnecessarily large losses, effectively discarding valuable information contained in the original 
time-series data (44).

Numerous methods to analyze intensity-based time-series FRET data have been proposed 
(6–8, 45–50). Qualitative methods, such as simple ratiometry (45), neglect spectral crosstalk 
and photobleaching. Consequently, the results depend on the specific instruments and are D
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biased by photobleaching (7, 51), making them unsuitable for quan-
titative studies. Quantitative methods such as E-FRET (7) and 
lux-FRET (49) provide algebraic formulae that correct for both spec-
tral crosstalk and photobleaching and infer instrument-independent 
quantities that can be interpreted from molecular terms. However, 
as previously pointed out (51), such algebraic calculations inevitably 
build up noise in data and thus lower the SNR. To see this, consider 
a case where a fluorescence intensity I1 is subtracted from another I2 , 
as often done to correct for spectral cross talk (7–9, 46, 49): The 
resulting intensity is smaller than I2 (i.e., I2 − I1 < I2 ), but its noise 
measured by variance is larger than that of I2 (i.e., 
Var(I2 − I1) = Var

(
I2
)
+Var

(
I1
)
>Var

(
I2
)
  ). This implies that 

such algebraic methods implement suboptimal decoding methods. 
Previous works (52, 53) have explored and implemented 
non-algebraic, principled methods for single-time-point FRET data, 
resulting in better performance than algebraic methods. However, 
no such method exists for the analysis of time-series FRET data. The 
decoding of FRET dynamics from time-series data is complicated 
by other time-varying factors, such as photobleaching kinetics and 
measurement noise. Some of the confounding factors can be avoided 
or mitigated with more specialized lifetime-based FRET measure-
ments (54), but the presence of such confounding factors in 
intensity-based FRET measurements does not mean the measure-
ment method cannot encode sample information efficiently. Rather, 
it could be said that intensity-based FRET data encode information 
in a more intricate manner that calls for more careful decoding.

Here, we develop a general computational framework, B-FRET, 
that implements a principled and statistically optimal way to 
extract information about molecular-interaction dynamics from 
fluorescence-intensity time-series data. Using filtering theory (55, 
56), B-FRET directly learns from data the photophysical model 
(46, 49, 52, 57) that maps the concentrations of FPs to fluores-
cence intensities. This allows B-FRET to take into account all 
the confounding factors, such as spectral crosstalk, photobleach-
ing, and measurement noise, and to systematically propagate 
these into the estimation of molecular interaction dynamics. 
Consequently, B-FRET not only drastically increases the SNR 
but also enables the computation of the estimates’ statistical 
uncertainties—an aspect absent in previous algebraic methods 
(58). We use B-FRET to analyze noisy time-lapse FRET data 

both from computational models and from single live cells and 
show that it estimates molecular interaction dynamics at unprec-
edented precision.

Results

The B-FRET Framework and Learning Algorithm. A FRET sample 
contains FPs whose states (fluorescent or photobleached and free 
or complexed) change in time. An intensity-based time-lapse 
FRET measurement is a (noisy) map from a configuration of FPs 
in various states to observable fluorescence-intensity time series 
(Fig. 2A). The goal of quantitative FRET-data analysis is to infer, 
from the observables, the dynamics of the degree of donor–acceptor 
interaction [i.e., protein–protein interaction for bimolecular 
FRET or protein conformational changes for unimolecular FRET 
(54)]. Ideally, the estimate should be interpretable in molecular 
terms and independent of instrumentation and photobleaching. 
The degree of interaction can be defined in various ways depending 
on the purpose of an experiment (7, 46), and we call such a user-
defined degree of interaction a FRET index E  . B-FRET is a 
computational framework to infer the FRET index E  in a statistically 
optimal manner. For concreteness, we consider the general case 
of bimolecular FRET, in which the donor and acceptor are on 
different carrier molecules; hence the stoichiometry of the acceptor 
to the donor is unknown. However, the B-FRET algorithm can 
also be used for unimolecular FRET (Discussion and SI Appendix, 
SI Texts 1 and 2). To demonstrate its performance, we compare the 
results of B-FRET with those of E-FRET (7), arguably the most 
widely used (25, 59, 60) quantitative method that corrects for both 
spectral crosstalk and photobleaching (Materials and Methods and 
SI Appendix, SI Text 1).

In a bimolecular FRET system, the donor ( D ) and acceptor ( A ), 
fused to two different molecules, can form a molecular complex 
leading to FRET from the donor to the acceptor. The system is 
characterized by the concentrations of eight chemical species: 
D∗, D, A∗, A, D∗A∗, D∗A, DA∗ , and DA , where fluorescent and 
nonfluorescent molecules are indicated by the presence and absence 
of a star ( ∗ ) respectively, and donors and acceptors can be free (e.g., 
D∗ ) or complexed (e.g., D∗A∗ ) (Fig. 2A). Inferring the temporal 
evolution of all eight chemical concentrations from the three 

A B

Fig. 1. Trade-off between signal-to-noise ratio (SNR) and total measurement duration in time-lapse FRET measurements. (A) Schematics showing FRET-signal 
time series obtained in two measurement conditions. True FRET values (dashed lines) are not directly accessible but are estimated through measurements 
(gray dots). High SNR can be achieved by increasing the power of fluorescence excitation, but it also increases the rate of photobleaching, which shortens 
the measurement duration (Top). Long measurement duration can be achieved by reducing the power of fluorescence excitation, but it lowers SNR (Bottom).  
(B) The fundamental trade-off between SNR and measurement duration constrains the accessible data quality. This trade-off can only be mitigated (magenta) 
either by increasing the number of photons one gets from a sample (encoding efficiency) or by improving the efficiency with which the acquired photons are 
used to estimate FRET (decoding efficiency). The former has been thoroughly explored previously by, e.g., optimizing FRET pairs. Here, we address the latter by 
developing an algorithm to optimally extract the information of FRET from a set of time-lapse FRET data.D
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available time series (see below) is ill-conditioned and intractable. 
However, we do not necessarily need a general solution to this 
problem; instead, we only need a solution that would apply to the 
types of phenomena we are interested in, such as cell signaling, 
which has a characteristic timescale. All existing quantitative FRET 
analysis methods exploit the fact that the biological timescale of 
interest studied using FRET measurements is much longer than 
that of individual protein binding/unbinding events but shorter 
than the timescale over which the copy number of constituent FPs 
changes significantly (SI Appendix, SI Text 1). Accordingly, in what 
follows, we focus on the same timescale and seek an optimal solu-
tion within that regime. In previous FRET analysis methods, some 
of these assumptions were implicit or unclear. One of the advan-
tages of the Bayesian framework described below is that it forces 
us to make all assumptions mathematically explicit, as described 
in Materials and Methods and SI Appendix, SI Text 1, thus improv-
ing clarity.

The B-FRET algorithm is independent of how a user defines a 
FRET index E  (Discussion). For concreteness, here we consider a 
standard measure of the degree of interaction (7, 24, 25, 27, 46, 
61, 62):

 [1]
E (t ) =

Emax[DAtotal](t )

[Dtotal]
,

where [Dtotal]≡ [D∗](t )+[D] (t )+ [D∗
A
∗](t )+ [D∗

A](t )+ 
[DA∗](t )[DA∗](t )+ [DA](t ) is the total concentration of the donor 
molecule, and [DAtotal](t )≡[D

∗
A
∗](t )+ [D∗

A](t )+ [DA∗](t )+

[DA](t ) is the total concentration of the donor-acceptor complex; Emax 
is the specific FRET efficiency of the complex, defined as the prob-
ability of energy transfer from the donor to the acceptor in the 
donor–acceptor complex per donor excitation event and is a con-
stant given an experimental condition (38, 54). The FRET index 
E  defined by Eq. 1 is independent of instrument-specific 
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Fig. 2. Optimal decoding of the degree of molecular interaction by B-FRET. (A) A schematic of 3-cube time-lapse FRET imaging. A FRET sample (Left) consists 
of 8 chemical species (the schematic implies bimolecular FRET, where the donor and acceptor can be isolated from each other. See SI Appendix, SI Text 1 for 
unimolecular FRET): fluorescent donor (D; cyan) and acceptor (A; orange), photobleached D and A (gray) and 4 different D–A complexes. A time-lapse FRET 
measurement encodes the molecular information into the three fluorescence time series (Right), I

AA
 (acceptor excitations and acceptor emissions), I

DD
 (donor 

excitations and donor emissions), and I
DA

 (donor excitations and acceptor emissions). The encoding subjects to measurement noise, photobleaching, and spectral 
crosstalk (Middle). A photophysical model relates the sample state to the observables, and the model is learned from the observables via B-FRET. (B) A FRET 
index E  , which quantifies the degree of molecular interaction, is decoded from the synthetic data in A by E-FRET (Top) and B-FRET (Bottom). True (magenta) and 
estimated E (gray line) are shown. For B-FRET, 95% credible intervals are shown by gray shade. (C) Prior and posterior distributions of the unknown parameters 
of the photophysical model. From Left to Right: the total concentrations of the acceptor ( [A

total
] ), the donor ( [D

total
] ), the fraction of intact acceptors (  f

A
 ), and 

donors (  f
D
 ). Insets in the left two panels are magnified posterior distributions (green) plotted in log scale for both X and Y axes. In the right two panels, 2.5 and 

97.5 percentiles of f
A
 and f

D
 sampled from prior or posteriors are shown, respectively. Posterior distributions are generally well confined, implying the high 

efficiency with which B-FERT extracts the information from the data.
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parameters and the degree of the photobleaching of the fluorescent 
molecules and is linearly dependent on the fractional occupancy 
of the donor, making it an ideal measure of the degree of molecular 
interaction (7, 46).

At its core, B-FRET is an application of filtering theory or 
Bayesian inference for so-called state space models (55, 56). In this 
framework, one infers the temporal evolution of hidden (i.e., 
unobservable) dynamical state variables from noisy observations. 
A state-space model consists of a dynamic model, which describes 
the temporal evolution of hidden state variables, and a measure-
ment model, which is a static function mapping the hidden vari-
ables at time t to observables at time t . We discuss these in turn.

In B-FRET, the hidden dynamic variable is the product of the 
specific FRET efficiency and the total concentration of the com-
plex, i.e., �(t ) = Emax [DAtotal](t ) (Materials and Methods). The 
dynamic model links �(t ) at two consecutive times via a proba-
bility distribution called the process noise described by a parametric 
probability distribution such as a Gaussian distribution (Materials 
and Methods and SI Appendix, SI Text 2). The assumption of a 
dynamical model is a central feature of B-FRET: It allows us to 
exploit temporal correlations in the hidden variable over small 
times (55, 56), which always exist, and yet algebraic methods fail 
to utilize. On the other hand, process noise introduces additional 
parameters (e.g., the standard deviation of a Gaussian distribu-
tion). These are estimated as part of the B-FRET algorithm, as 
described below and in more detail in Materials and Methods and 
SI Appendix, SI Text 2.

In addition to the dynamic model, B-FRET requires a meas-
urement model, which describes the photophysical processes by 
which the hidden variable �(t ) is converted into observables  
(46, 49, 52, 57). In the standard 3-cube FRET imaging setup, the 
observables consist of three fluorescence-intensity time series 
IAA, IDD, and IDA (Fig. 2A). These are, respectively, fluorescence 
measured at the acceptor emission band during excitation of the 
acceptor band; fluorescence measured at the donor emission band 
during excitation of the donor band; and fluorescence measured 
at the acceptor emission band during excitation of the donor band. 
Other than excitations of and emissions from FPs, the photophys-
ical processes involved include photobleaching of FPs, spectral 
crosstalk (i.e., bleed-through of donor emission to the acceptor 
emission band, and cross-excitation of the acceptor at the donor 
excitation band), energy transfer from the donor to acceptor due 
to FRET, and measurement noise (Fig. 2A). These are incorpo-
rated into a single probabilistic measurement model (Materials 
and Methods and SI Appendix, SI Text 1). The measurement model 
is another central feature of B-FRET: This not just allows us to 
exploit our knowledge about the photophysical processes but also 
makes all the assumptions involved in the decoding process math-
ematically explicit. This model also has unknown parameters, one 
of which is [Dtotal] (Eq. 1). We estimate them as described below.

Given these two ingredients—the dynamical model and meas-
urement model—our goal is to estimate the FRET index 
E (t ) = �(t ) ∕[Dtotal] (Eq. 1) from observables. In the framework 
of Bayesian inference (44, 63), this amounts to computing the 
posterior distribution of E (t ) , p (E (t )|,) , which quantita-
tively describes how well the possible values of E (t ) are confined 
given all data  and model  . Since this distribution contains 
all the information one can theoretically have, computing the 
distribution ensures the statistically optimal inference of the FRET 
index. Because model parameters are also unknown, they must 
also be inferred from data. Thus, the computation of the posterior 
distribution of the FRET index is decomposed into the evaluations 
of two distributions: the posterior distribution of E (t ) given spe-
cific model parameter values and the posterior distribution of the 

model parameters themselves (Materials and Methods). These two 
distributions can be evaluated using filtering algorithms (SI Appendix, 
SI Text 2). Once these distributions are determined, the posterior 
distribution p (E (t ) |, ) is computed using a Monte Carlo 
approach (Materials and Methods).

B-FRET Efficiently Learns from Data. To see how much the 
B-FRET algorithm improves the SNR of the estimated FRET 
index, we compared the FRET index E computed by B-FRET 
with that computed by E-FRET. We first generated a synthetic 
(bimolecular) FRET dataset by simulating oscillatory dynamics 
of FRET signals and all the confounding factors present in real 
data, namely spectral crosstalk, photobleaching, and measurement 
noise (Fig. 2A and SI Appendix, SI Text 4). With relatively large 
measurement noise, the oscillatory FRET dynamics are hard to 
see in the raw time-series data (Fig. 2A). Consequently, the FRET 
index computed by E-FRET is highly noisy, and the true oscillatory 
dynamics are obscured (Fig. 2B). However, we found that the FRET 
index computed by B-FRET estimates the true signal substantially 
more precisely, as evidenced by the comparison of estimation errors 
(Fig. 3B). Furthermore, unlike E-FRET, B-FRET naturally provides 
statistical uncertainty of the estimated FRET index as a credible 
interval (CI) at each time point. As expected, the width of 95% CIs 
(Materials and Methods for definition) increases over time because 
of the decreasing data quality resulting from photobleaching (gray 
shadow in Fig. 2B). Consistent with the precise estimation of E , the 
posterior distributions of the model parameters are highly confined 
around their true values used to generate the synthetic data (Fig. 2C). 
These observations demonstrate that the raw fluorescence time-
series data, despite high levels of noise, contain rich information 
about molecular interactions, and B-FRET successfully exploits the 
available information to better constrain the possible values of the 
FRET index and model parameters.

B-FRET Is Robust to the Variation in FRET Temporal Patterns. To 
see how much the precision of FRET-index estimation is affected 
by the underlying temporal pattern of molecular interactions, we 
next generated synthetic data in which the FRET signal exhibits 
random dynamics (SI Appendix, SI Text 4). Unlike the case of 
oscillatory dynamics (Fig. 2), the random signal is aperiodic and 
contains a broad range of frequencies, including those comparable 
to or higher than the data-sampling frequency, which precludes 
algorithms that exploit regular patterns in a signal. Despite this, 
we found that the FRET index computed by B-FRET is more 
precise and less noisy than that computed by E-FRET (Fig. 3A 
and SI Appendix, Fig. S1A).

The above two cases, oscillatory and random, were successfully 
analyzed with Gaussian process noise, a standard choice for the 
process noise for its flexibility in capturing a broad class of 
dynamics (55, 56). However, for highly non-Gaussian dynamics, 
e.g., ones that remain unchanged most of the time but exhibit 
abrupt step changes only occasionally, it is known that 
non-Gaussian process noise can perform better than Gaussian 
process noise (56). Although B-FRET is computationally cheaper 
with Gaussian process noise since many calculations can be exe-
cuted analytically, the algorithm can be adapted to other process 
noise statistics by replacing the analytical calculations with 
numerical ones (SI Appendix, SI Text 2). To test the performance 
of B-FRET for non-Gaussian dynamics, we generated a synthetic 
FRET signal consisting of discrete steps (SI Appendix, SI Text 4) 
and modeled the process noise using a Student’s t distribution 
(Materials and Methods). Indeed, the FRET index computed by 
B-FRET precisely captures the dynamics (Fig. 3A and SI 
Appendix, Fig. S1B).D
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We note that B-FRET, combined with the framework of model 
selection, does not require a user to know in advance which 
model (e.g., Gaussian or non-Gaussian process noise) to use to 
analyze a set of data. By computing the Bayes Information 
Criterion (BIC; Materials and Methods), B-FRET enables users 
to automatically select a model that is best evidenced by the data. 
Applying this, we confirmed that the step data support the choice 
of non-Gaussian process noise, while the oscillatory and random 
data do not (SI Appendix, Fig. S2).

B-FRET Outperforms Conventional Methods Irrespective of the 
Measurement Conditions. To see how the relative performance 
of B-FRET to E-FRET depends on the specific conditions of 
time-lapse imaging, such as the levels of measurement noise 
and sampling intervals, we investigated the signal-estimation 
errors of both methods for various measurement conditions. 
We first generated sets of synthetic data in which the degree of 
donor–acceptor interaction follows Gaussian random statistics 
over time with a correlation time �c , and fluorescence signals 
IAA, IDD , and IDA were measured with many different relative 
sampling frequencies �c∕Δt and levels of measurement noise 
(SI Appendix, SI Text 4). For each dataset, we then estimated the 
FRET index E  using both B-FRET and E-FRET methods.

Fig. 4A shows representative results for B-FRET. As the SNR 
of raw fluorescent time-series data increases, B-FRET detects more 
subtle changes in E  with lower statistical uncertainties (95% CIs 
are shown by gray shades in Fig. 4A). Also, the higher the sampling 
frequency relative to the FRET dynamics, the more precise the 
B-FRET estimation. This is because faster sampling increases the 
correlation between successive fluorescence signals, and these cor-
relations are exploited by B-FRET. Meanwhile, the effect of 
reduced sampling frequency (Fig. 4 A, Lower Left) can be com-
pensated by increasing the data SNR (Fig. 4 A, Upper Left).

We quantified the average error in FRET signal estimation as 
the root-mean-square error normalized by the magnitude of the 
fluctuation of the true signal, 

�
⟨
�
Eest −Etrue

�2⟩∕Std(Etrue) , for 
both E-FRET and B-FRET in various measurement conditions 

(Fig. 4 B and C). B-FRET (red) outperforms E-FRET (blue) in 
all conditions explored; importantly, even if E-FRET signals are 
smoothed with median filters with an optimal window size in 
terms of error reduction (gray)—which requires knowledge of the 
true FRET signal that an experimenter does not usually have access 
to—E-FRET still significantly underperforms compared with 
B-FRET. This can be understood by noting that, in the E-FRET 
method, some information about the true FRET signals contained 
in the raw fluorescent time series is already lost upon the algebraic 
computation to obtain E  , and no smoothing after that computa-
tion can recover the lost information. As a result, even in the limit 
of low data-sampling frequency (Fig. 4B; 𝜏c∕Δt < 0.1 ), where 
there is almost no correlation to exploit between two consecutive 
time points, B-FRET outperforms E-FRET. Thus, irrespective of 
specific measurement conditions, B-FRET utilizes a larger amount 
of information in the raw observables and achieves a more precise 
estimation of E  without requiring knowledge about 
molecular-interaction dynamics.

B-FRET Improves Signal Estimation of Real Data. To test the 
performance of B-FRET on real data, we first applied the method 
to a previously developed bimolecular FRET system that reports 
the kinase activity of the  Escherichia  coli chemotaxis signaling 
pathway (24, 61, 62). Recent FRET analyses of this pathway 
at the single-cell level have revealed fundamental features of 
cell signaling that are inaccessible by a population-level assay, 
such as spontaneous fluctuation in the pathway activity (24), 
environment-dependent dynamic modulation of the degree of 
cell-to-cell variability (27), and the high efficiency with which 
cells use information acquired by the pathway (25). However, the 
FRET data from single E. coli cells are noisy, severely suffering 
from the trade-off discussed in Fig. 1. This has limited further 
characterizations of the signaling pathway.

The E. coli chemotaxis signaling pathway is a two-component 
signal transduction system (64), where the receptor-associated 
kinase CheA phosphorylates the response regulator CheY, which 
is then dephosphorylated by the phosphatase CheZ. The binding 

A BRandom Step

B-FRET

E-FRET

Raw data

p

Fig. 3. B-FRET exhibits high signal-estimation performance irrespective of underlying molecular-interaction dynamics. (A) Synthetic data with random (Left) and 
step (Right) FRET signals. (Top) Fluorescent-intensity time series. (Middle) The FRET index E computed by E-FRET (gray; E

est
 ) and its true values (magenta; E

true
 ). 

(Bottom) The FRET index E computed by B-FRET (gray; E
est

 ) and its true values (magenta). The shade shows ~95% credible intervals. (B) A bar chart quantifying 
the error in E estimation defined as ⟨��Eest − E

true

��⟩ , where the angle bracket is temporal average. The error bars are SDs over 5 datasets with identical FRET signal 
dynamics but different realizations of measurement noise.
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of chemoattractant molecules to the receptors changes the pro-
pensity for the receptor, and hence the kinase, to be active. 
Opposing this propensity is the feedback regulation by methyla-
tion and demethylation enzymes. These two mechanisms together 
produce a steady-state kinase activity that is independent of the 
background chemoattractant concentration, a ubiquitous phe-
nomenon in cell signaling called response adaptation (20, 65–67). 
The pathway’s activity can be read out by quantifying the FRET 
between the donor (mYFP; monomeric yellow fluorescent protein) 
fused to CheZ, and the acceptor (mRFP; monomeric red fluores-
cent protein) fused to CheY, which binds to CheZ when phos-
phorylated by CheA. It has been well established that, upon a step 
increase in a chemoattractant concentration, the kinase activity 
and the concentration of phosphorylated CheY (and hence the 
level of FRET) decrease rapidly before response adaptation. In 
contrast, a step decrease in a chemoattractant concentration causes 
the opposite response (24, 61).

We measured fluorescence time series, IAA, IDA, and IDD from 
single E. coli cells using a 3-cube FRET measurement setup 
(Fig. 5A and Materials and Methods). In this setup, we delivered 
fast-switching (~0.1 s) step-like changes of α-methyl-aspartate 
(MeAsp), a nonmetabolizable analog of the chemoattractant aspar-
tate, using a recently developed microfluidic system (25, 27). Large 
step changes in MeAsp (100% changes or higher) were delivered to 
cells at the beginning and end of the measurement to define the 

dynamic range (i.e., minimal and maximal FRET levels) of each 
cell. Several small step changes in MeAsp (20% changes) that cause 
subsaturating responses, on average, were also applied in the middle 
of the measurement (Fig. 5B). First, we extracted the FRET index 
E using the E-FRET method (Fig. 5 B, Left). As expected, the large 
noise prevented us from discerning single responses to the subsatu-
rating (20%) step stimuli. Quantifying responses from such noisy 
data requires some form of data averaging, as was done before (25, 
27); however, it unavoidably masks the properties of individual 
responses. Next, we analyzed the same dataset using B-FRET 
(Fig. 5 B, Right). B-FRET drastically improved the SNR and dis-
closed the cell-to-cell and temporal variations in the signaling 
dynamics more vividly: Some cells respond to small step signals 
faithfully, whereas others neglect the same signals; some cells fluc-
tuate vigorously, whereas others are more stable. Such variations 
could be functionally important for a cell population to deal with 
environmental uncertainties, as recent studies have suggested (13, 
14, 19, 68, 69). Furthermore, B-FRET does not just make some 
subsaturating responses clearly discernible by eye; it also enables us 
to determine whether the changes in FRET are statistically signifi-
cant or not (red boxes in Fig. 5B). Finally, as with synthetic data 
(Fig. 2C), the posterior distributions of the model parameters are 
highly confined (Fig. 5C), demonstrating that real experimental data 
also contain sufficient information to confine the photophysical 
model.

C

A Low sampling freq.
( )

High data
SNR

(SNR )

Low data
SNR

(SNR )

BHigh sampling freq.
( )

Fig. 4. B-FRET exhibits high signal-estimation performance irrespective of measurement conditions. (A) Representative simulated data and estimated values 
of a FRET index E in four different measurement conditions. I

DD
 with (dark gray) and without (cyan) measurement noise and estimated (dark gray) and true 

(magenta) E are shown. In the simulation, the correlation time of the molecular-interaction dynamics �
c
 , sampling interval Δt  , and the level of measurement 

noise (SNR) were varied systematically (SI Appendix, SI Text 4). (B) Errors in E estimation defined as 
�

⟨
�
E
est

−E
true

�
2⟩∕Std(E

true
) for B-FRET (red), E-FRET (blue), 

and E-FRET combined with optimal median filtering (gray) were plotted against relative sampling frequency, �
c
∕Δt  . Cases of high data SNR (=0.13; Top) and low 

data SNR (=0.04; Bottom) are shown. To obtain the gray curves, E computed by E-FRET was median filtered with a window size that minimizes the error. Such 
optimal smoothing requires knowledge about true signals, which an experimenter cannot access in a real experiment, and therefore cannot be implemented 
in practice. B-FRET outperforms this optimally-filtered E-FRET in all conditions. (C) Error in E estimation plotted against data SNR. Cases of under-sampling 
( �

c
∕Δt ≈ 1 ) and over-sampling ( �

c
∕Δt ≈ 10 ) are shown.
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Next, we tested the performance of B-FRET on real unimolec-
ular FRET data. We used HeLa cells stably expressing cAMP FRET 
biosensor and dopamine receptor D1, and we analyzed cAMP 
responses to 0.1 µM dopamine (Fig. 6A and Materials and Methods 
and SI Appendix, SI Text 6). In the same way as the bimolecular 
FRET data, B-FRET significantly improved the SNR compared 
with E-FRET (Fig. 6B), and the posterior distributions of the 
model parameters were greatly confined by the data (Fig. 6C). 
Together, these results demonstrate that B-FRET can greatly 
improve the quality of extracted FRET signals and therefore help 
experimenters reveal dynamic features of cellular processes.

Discussion

Inefficient decoding of molecular interactions from FRET data 
amounts to wasting hard-won information from detected photons. 

Here, we propose a computational framework, B-FRET, to decode 
the information with theoretically maximal efficiency. A conven-
tional way to improve the SNR in live FRET imaging has been 
to aggregate signals from many samples (e.g., cells) and compute 
their average (61, 62); however, this method fails to capture var-
iations and asynchronous dynamics across samples. B-FRET 
reduces the need for such averaging, as we demonstrated here by 
analyzing signaling dynamics in single cells (Fig. 5 and 6), thereby 
providing a powerful aid to studies of biological variation—both 
across cells within a population and across time within a single 
cell—that would be lost in averaging.

B-FRET is of practical use even to experimenters who do not 
necessarily aim to reduce SNR per se: To achieve a given SNR, 
B-FRET requires fewer photons, reducing the need for high-power 
illumination and therefore the unwanted effects of photobleaching 
and phototoxicity (Fig. 1). Thus, B-FRET computationally extends 

A

B

100 120 144 0

1000

C

Prior

Posterior

Fig.  5. B-FRET shows high signal-estimation performance with real bimolecular FRET data. (A) Three observables, I
AA
, I

DD
, and I

DA
  were acquired from a 

bimolecular FRET system in single E. coli cells. In this system, the FRET level changes depending on the activity of a kinase that governs the chemotaxis behavior 
of E. coli. (B) Using FRET datasets from individual E. coli cells, FRET index E was estimated by E-FRET (Left) and B-FRET (Right). Five representative cells are shown. 
Blues and red in the background indicate different concentrations (shown in the unit of µM) of a chemoattractant MeAsp delivered to the cells using a microfluidic 
device. The red vertical line in the Left panel corresponds to the change in the FRET index ΔE = 0.05 . For B-FRET, 95% credible intervals are shown by the gray 
shade. The noise reduction by B-FRET reveals temporal and cell-to-cell variation in the FRET dynamics more clearly. The data in A corresponds to the cell shown 
at the bottom. (C) Prior and posterior distributions of the model parameters for the cell shown at the bottom, plotted in the same way as Fig. 2C.
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the scope of FRET analyses by increasing the SNR and hence requir-
ing fewer photons, in much the same way as brighter FRET pairs 
or more sensitive photodetectors experimentally enhance them.

A prominent feature of B-FRET is that it directly learns the entire 
photophysical model (46, 49, 52, 57)—the governing equations of 
a FRET measurement— rather than a single variable in the system. 
As a consequence, B-FRET provides a single algorithm for comput-
ing any measure of the degree of molecular interactions. For example, 
since B-FRET estimates � = Emax[DAtotal] , [Dtotal] , and 

[
Atotal

]
 

simultaneously, it is straightforward to estimate an 
acceptor-denominated FRET index EA(t ) =

Emax[DAtotal](t )
[Atotal]

 (46) 
rather than the more widely used donor-denominated FRET index 
E (t ) =

Emax[DAtotal](t )

[Dtotal]
 (Eq. 1). In doing so, one only needs to note 

that a 3-cube FRET measurement makes two different conversions 
between the concentrations of FPs and fluorescence intensities, cor-
responding to the usage of the two different bands of excitation 
wavelengths (49, 70). Specifically, Emax[DAtotal] and [Dtotal] are both 
converted by the same coefficient CDD (Eq. 2 in Materials and 
Methods) to an observable, and so B-FRET determines the concen-
trations of them in the same, but generally unknown, unit; on the 
other hand, 

[
Atotal

]
 is converted by another coefficient CAA (Eq. 2 in 

Materials and Methods) to an observable, and so B-FRET determines [
Atotal

]
 in a different unit from Emax[DAtotal] and [Dtotal] . Thus, 

computing the acceptor-denominated EA requires the measurement 
of the ratio CDD∕CAA , which is readily done using standard samples 
with known concentrations of FPs (49), while computing the 
donor-denominated E does not require such an additional measure-
ment. The key point is that, because B-FRET explicitly considers 
the governing equations, it is always straightforward to identify the 
additional experiments necessary to obtain a certain measure of 
molecular interaction.

Bayesian methods have been developed for the analyses of data 
from other FRET experimental paradigms, such as lifetime-based 
(71) and single-molecule FRET (72, 73). However, the encoding 
methods in those other paradigms are qualitatively different, and 
therefore the Bayesian methods used in those studies are not appli-
cable to the intensity-based, ensemble, time-lapse FRET meas-
urements we focused on here. B-FRET provides a statistically 
optimal data-analysis method for this important class of FRET 
experiments, by exploiting temporal correlations present in time 
series and disentangling confounding factors associated with them.

As with all other quantitative FRET methods, the applications 
of B-FRET are naturally limited by our understanding of the 
photophysical processes involved in FRET measurement. For 
example, photoconversion of fluorescent proteins, which has 
been reported in certain conditions (54, 74, 75), can produce 
another chemical species apart from the donor and acceptor. If 

B

A C

Prior

Posterior

0.1 M dopamine

Fig. 6. B-FRET shows high signal-estimation performance with real unimolecular FRET data. (A) Three observables, I
AA
, I

DD
, and I

DA
 were acquired from a 

unimolecular FRET system in single HeLa cells that express a cAMP FRET biosensor and dopamine receptor D1 (DRD1). (B) Using FRET datasets from individual 
HeLa cells, FRET index E was estimated by E-FRET (Left) and B-FRET (Right). Five representative cells are shown. Blue in the background indicates 0.1 µM dopamine 
delivered to the cells. The red vertical line in the Left panel corresponds to the change in the FRET index ΔE = 0.05 . For B-FRET, 95% credible intervals are shown 
by the gray shade. The data in A corresponds to the cell shown at the bottom. (C) Prior and posterior distributions of the model parameters for the cell shown 
at the bottom, plotted in the same way as Fig. 2C.
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such secondary processes are present in data but absent in the 
photophysical model (Materials and Methods), then B-FRET, 
like other methods, yields misleading results. Also, even with 
B-FRET, it is impossible to distinguish between a false negative 
and a true negative because there is no FRET signal to exploit 
in both cases. Thus, although it is possible to incorporate such 
processes as photoconversion into our photophysical model once 
they are characterized, B-FRET does not alleviate the necessity 
for careful selection of a FRET pair and for control experiments 
to validate the basic assumptions involved in the data analysis. 
The distinct advantage of B-FRET is that it makes all assump-
tions explicit—helping experimenters identify necessary controls 
and tailor their experiments accordingly.

Materials and Methods

Photophysical Model. Here, we consider the case of bimolecular FRET systems 
discussed in the main text; however, essentially the same argument applies to 
unimolecular FRET systems (SI Appendix, SI Text 1).

First, we define the FRET dataset. Time-lapse measurements of IDD, IDA, and IAA  
are conducted at discrete time points. We assume that FRET from the donor to accep-
tor affects IDD and IDA , but not IAA (See below and SI Appendix, SI Text 1). Thus, the 
sampling frequency of IDD and/or IDA limits the temporal resolution of an estimated 
FRET signal. In practice, IDD and IDA are measured (almost) simultaneously to better 
exploit the FRET-induced changes in IDD and IDA . Thus, we designate the same time 
points for the IDD and IDA measurements, and the set of the time points are written as 
tD
1:ND

≡

{
tD
1
, tD

2
, ⋯ , tD

ND

}
 , where ND is the total number of measurements. IAA is 

generally acquired at different time points from IDD and IDA , and thus we designate 
the time points for IAA as tA

1:NA
≡

{
tA
1
, tA

2
, ⋯ , tA

NA

}
 , where NA is the total number of 

measurements, and generally ND ≠ NA . The entire set of the time-lapse fluorescence 
intensity data is  =

{
IAA,1:NA , IDD,1:ND , IDA,1:ND

}
, where

IAA,1:NA =
{
IAA
(
tA
1

)
, IAA

(
tA
2

)
, ⋯ , IAA

(
tA
NA

)}
,

 
IDD,1:ND =

{
IDD
(
tD
1

)
, IDD

(
tD
2

)
, ⋯ , IDD

(
tD
ND

)}
,

 
IDA,1:ND =

{
IDA
(
tD
1

)
, IDA

(
tD
1

)
, ⋯ , IDA

(
tD
ND

)}
.

Next, we construct a photophysical model  to be learned from data  . Under 
a standard 3-cube FRET-microscopy setup, the (background-subtracted) observa-
bles I

AA
, I

DD
, and I

DA
  are generally linked to the concentrations of the chemical 

species as follows (46, 49, 52, 57):

IAA(t) = CAA
(
[A∗](t) +

[
D∗A∗

]
(t) +

[
DA∗

]
(t)
)
+ �AA(t),

 

 
[2]

IDD(t) = CDD
([
D∗
]
(t) +

[
D∗A

]
(t) +

(
1 − Emax

)[
D∗A∗

]
(t)
)
+ �DD(t),

 
IDA(t)= a IAA(t)+d IDD(t)+CDD G Emax

[
D∗A∗

]
(t)+�DA(t),

where �AA, �DD, and �DA describe the measurement noise of corresponding fluores-
cent channels, and we assume they follow the zero-mean Gaussian distributions, 
i.e., �AA(t) ∼ N

(
0, �2

AA
(t)
)
 , �DD(t) ∼ N

(
0, �2

DD
(t)
)
 , and �DA(t) ∼ N

(
0, �2

DA
(t)
)
 , 

where �2
AA

 , �2
DD

 , and �2
DA

 are time-dependent variances and are determined from 
the data (Note, in ensemble FRET measurements, the number of photons collected 
from a sample is large enough to approximate the underlying Poisson distribution 
of photon counts by a continuous Gaussian distribution; see SI Appendix, SI Text 3 
for more detail); IAA and IDD are, respectively, the expectation values of IAA and IDD , 
and thus a IAA and d IDD, respectively, represent the cross-excitation of the acceptor 
by the donor excitation wavelengths and the bleed-through of the donor emission 
into the acceptor emission filter (6–9); CAA , CDD , a , d , and G are parameters dependent 
on imaging systems and the photophysical properties of the donor and acceptor, 
which are defined as

CAA ≡ �A�AAQALASAtAA,

 
CDD ≡ �D�DDQDLDSDtDD,

 a ≡
�D�DAtDA
�A�AAtAA

,

d ≡

LASAtDA
LDSDtDD

,

G ≡

QALASAtDA
QDLDSDtDD

,

where �D ( �A ) is the intensity of illumination reaching the sample through the 
donor (acceptor) excitation filter, �DD the absorption coefficient of the donor, �DA 
( �AA ) the absorption coefficient of the acceptor at the donor-excitation (accep-
tor-excitation) wavelength, QD ( QA ) the quantum yield of donor (acceptor), LD ( LA ) 
the throughput of the donor (acceptor) emission light-path, SD ( SA ) the quantum 
sensitivity of the camera for donor (acceptor) emission, and tDA , tAA , and tDD , 
respectively, the exposure time for the FRET, acceptor, and donor channels (7, 
49, 52). The parameters a , d, and G can be determined by independent meas-
urements (7, 11, 25). CDD and CAA do not necessarily need to be determined for 
determining the donor-denominated FRET index E (Eq. 1  and Discussion). The 
model (Eq. 2) is general, only assuming that the acceptor fluorescence is not 
detectable through the donor emission filter and that the acceptor excitation 
light does not excite the donor, which are easily achieved by selecting appro-
priate filter sets (7, 25).

We introduce the following set of assumptions, which are satisfied in a 
typical FRET experiment and used also in E-FRET (7) (SI Appendix, SI Text 1). i) 
The total amount of donor and acceptor molecules are conserved during the 
course of a measurement. ii) The photobleaching locally follows a first-order 
decay process, i.e., the rate of change of the amount of intact (i.e., fluorescent) 
donor (acceptor) is proportional to its concentration, although the proportion-
ality constants may change over time. iii) The system is in a quasi-steady state 
at each time point with the timescale of photobleaching being much larger 
than other relevant timescales (e.g., that of binding and unbinding of the 
fluorescently labeled proteins). See SI Appendix, SI Text 1 for how these are 
expressed mathematically.

Without loss of generality, we set CAA = CDD = 1 , because these parameters 
only affect the units of the concentrations of the chemical species (Discussion). 
Also, we introduce a label �(t) = Emax

[
DAtotal

]
(t) because we are not necessarily 

interested in decomposing Emax and 
[
DAtotal

]
(t) , which only appear as a product in 

our definition of the FRET index E . Under these assumptions, Eq. 2 is reduced to

IAA(t) = fA(t)
[
Atotal

]
+ �AA(t),

 

 
[3]IDD(t) = fD(t)

[
Dtotal

]
− fA(t)fD(t)�(t) + �DD(t)

 IDA(t) = afA(t)
[
Atotal

]
+ dfD(t)

[
Dtotal

]
+
(
G − d

)
fA(t)fD(t)�(t) + �DA(t),

where [Atotal] and [Dtotal] are the total concentrations of the acceptor and donor, 
respectively; fA(t) and fD(t) are arbitrary functions that express the intact frac-
tions of the acceptor and donor at time t  , respectively, and hence take values 
between 0 and 1 (see SI Appendix, SI Text 1 for derivation). To learn the model 
from data, fA(t) and fD(t) need to be expressed by parametric functions, whose 
parameters, as well as other parameters, are estimated by the inference algo-
rithm described below. Any parametric functions can be used depending on 
the data in principle. See SI Appendix, SI Text 4 for the specific functions used 
to analyze data in this paper.

The presence of the hidden variable � (t) in the equations for IDD and IDA (Eq. 3) 
makes the learning of the model less straightforward. To deal with this, we rewrite 
the equations for IDD and IDA using the framework of the state-space model (55, 56):

xk = xk−1 + qk−1,

 yk = Hkxk + rk .D
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The first line, the dynamic model, describes the time evolution of the state 
xk =

(
1, � (tD

k
)
)T

 . The process noise qk−1 governs the transition between two 
consecutive states. For example, Gaussian process noise can be written as:

q
k−1 ∼ N

(
0,Q

(
��

))
,

where the covariance matrix Q
(
�
�

)
 is defined as

Q
�
�
�

�
=

⎛
⎜
⎜⎝

0 0

0 �
2
�

⎞
⎟
⎟⎠
.

For non-Gaussian dynamics, one can use Student’s t distribution (56, 63), which 
can be written as

qk−1 =

⎛
⎜
⎜⎝

0

q

⎞
⎟
⎟⎠
,

and

q∼ St
(
q| �

�
, �

)
=

Γ
(

�+1

2

)

√
πν�2

�
Γ
(

�

2

)

(
1+

1

�

q2

�2
�

)−
�+1
2

,

where �
�

 is the scale parameter and 𝜈 > 0 is called the degree of freedom. When 
� = 1 , the t distribution reduces to the Cauchy or Lorentz distribution, while for 
𝜈 ≫ 5 , it approaches a Gaussian distribution N(0, �2

�
).

The second line, the measurement model, describes the relationship between 
the observables yk =

(
IDD

(
tD
k

)
, IDA

(
tD
k

))T
 given the state xk . The measurement 

model matrix Hk at time tD
k

 is defined as

Hk =

⎛
⎜
⎜⎝

fD(t
D
k
)
�
Dtotal

�
− fA(t

D
k
) fD(t

D
k
)

a
�
Atotal

�
fA(t

D
k
)+d[Dtotal]fD(t

D
k
)
�
G−d

�
fA(t

D
k
) fD(t

D
k
)

⎞
⎟
⎟⎠
.

The Gaussian measurement noise rk at time tD
k

 is written as

rk ∼ N
(
0,Rk

)
,

where the covariance matrix Rk is defined as

Rk =

⎛
⎜
⎜⎝

�
2
DD

�
tD
k

�
0

0 �
2
DA

�
tD
k

�
⎞
⎟
⎟⎠
.

The variances of measurement noise can be determined from data (SI Appendix, 
SI Text 3).

Learning Algorithm. To compute the posterior distribution of the FRET index Ek , 
p
(
Ek|, 

)
 , where Ek ≡ E(tD

k
) , we rewrite it in term of model parameters �:

p
(
Ek|, 

)
=
�

p(�|, )p
(
Ek|�,, 

)
d�.

The right-hand side is the expectation of a function of model parameters � , 
p
(
Ek|�,, 

)
 , with respect to the (posterior) distribution of � , p(�|, ) . 

Thus, we evaluate the integral on the right-hand side by a Monte Carlo approach, 
drawing many samples from the two probability distributions as described below.

First, we evaluate p(�|, ) . Using Bayes’ rule, this can be written as

p(�|, ) =
p(�|)p(|�,)

Z
,

where p(�|) is the prior distribution of the model parameters, which are 
usually wide in width to express one’s ignorance about the parameter values 
(See SI Appendix, SI Text 2 for how to design prior distributions for each model 

parameter and SI Appendix, SI Text 4 for the actual distributions used to ana-
lyze data presented in this paper); p(|�,) is the likelihood function, which 
describes the probability of observing a set of data  as a function of model 
parameters � ; and Z is the normalization constant, which one does not have 
to evaluate for the purpose of drawing samples from p(�|, ) . The prior 
distribution p(�|) is given by the user of B-FRET, and the likelihood func-
tion p(|�,) is evaluated by using the Bayesian filtering algorithm (55, 56) 
(SI Appendix, SI Text 2). Then, using a sampling method (44, 63), one can draw 
a set of samples 

{
�
i
}R

i=1
 from the distribution, where �i ∼ p(�|, ) and 

R (≫ 1) is the number of samples. Samples were drawn either directly from 
the distribution using a Markov chain Monte Carlo method [e.g., slice sampling 
(44, 63)] or from an approximated Gaussian distribution obtained by Laplace’s 
method (44, 63). In drawing many samples, the latter is computationally much 
cheaper, and thus we adopted it upon confirmation that the bias introduced by 
the approximation is negligible (SI Appendix, Fig. S4).

Second, we evaluate the (posterior) distribution of the FRET index 
p
(
Ek|�i ,,

)
 based on Bayesian smoothing algorithm (55, 56), using the 

sampled parameter set 
{
�
i
}R

i=1
 (SI Appendix, SI Text 2). This enables to draw 

samples 
{
Ei
k

}R

i=1
 from the distribution, where E

i
k
∼ p

(
Ek|�i

,, 

)
 . Using the 

samples, we can evaluate the integral as

�

p(�|, )p
(
Ek|�,, 

)
d� ≈

1

R

R∑

i=1

�
(
Ek − Ei

k

)
,

where �(x) is the Dirac delta function. With sufficiently large R samples from 
p
(
Ek|, 

)
 , one can quantify any properties of the distribution p

(
Ek|, 

)
 . 

We used the median of the sample as representative values of the estimates and 
the interval between 2.27 and 97.73 percentiles, each of which corresponds to 
� ± 2� , respectively, for a Gaussian distribution N(�, �) , as a measure of the 
statistical uncertainty of the estimation and called it a “95% CI”.

E-FRET Method and the Effect of Error in Optical Parameter Estimation. 
The E-FRET method (7) provides a formula for a FRET index Ecorr that gives an 
estimate of Eq. 1. This reads

 [4]

Ecorr(t)=
IDA(t)−aIAA(t)−dIDD(t)

IDA(t)−aIAA(t)+
(
G−d

)
IDD(t)

IAA(t=0)

IAA(t)

where the optical parameters a, d, and G are defined in Photophysical Model. 
For the variables with bars, e.g., IAA(t) , their expected (or smoothed) values 
can be used as opposed to raw intensity values. It can be shown that under 
the assumptions described in Photophysical Model and in the limit of zero 
measurement noise, this quantity converges to the FRET index defined by Eq. 
1 (SI Appendix, SI Text 1). The optical parameters a, d, and G are measured 
from independent measurements but only with finite precision. The errors in 
the estimations of these parameters introduce some biases in the computed 
FRET index, whose effect grows as more fluorescent proteins are photobleached, 
which can be corrected under some assumptions (25) (See SI Appendix, SI Text 3  
for more detail).

Model Selection. In case a user of B-FRET is not sure about what model to use 
(e.g., Gaussian or non-Gaussian process noise), the framework of model selection 
enables to select, among a set of candidate models, a model that is best evidenced 
by a set of data. For this purpose, B-FRET computes the BIC defined as

BIC = N
�
logN


− 2logp

(
|�MAP,

)
,

where N
�
 and N


 are the numbers of the model parameters and data points, 

respectively, and �MAP is the parameter values that maximize the likelihood func-
tion p(|�,) . A model with the lowest BIC value is selected as the best model 
among a set of candidates (SI Appendix, Fig. S2).

Data, Materials, and Software Availability. Data will be made available 
upon publication. Codes written in MATLAB and Python; numerical data in 
MATLAB format (MAT files) and MATLAB scripts data have been deposited in 
Github and Dryad (https://github.com/emonetlab; https://doi.org/10.5061/
dryad.w3r2280w2) (76, 77).D
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