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Interdependence of behavioural variability and
response to small stimuli in bacteria
Heungwon Park1, William Pontius2, Calin C. Guet3, John F. Marko4, Thierry Emonet2 & Philippe Cluzel3

The chemotaxis signalling network in Escherichia coli that controls
the locomotion of bacteria is a classic model system for signal trans-
duction1,2. This pathway modulates the behaviour of flagellar
motors to propel bacteria towards sources of chemical attractants.
Although this system relaxes to a steady state in response to environ-
mental changes, the signalling events within the chemotaxis net-
work are noisy and cause large temporal variations of the motor
behaviour even in the absence of stimulus3. That the same signalling
network governs both behavioural variability and cellular response
raises the question of whether these two traits are independent.
Here, we experimentally establish a fluctuation–response relation-
ship in the chemotaxis system of living bacteria. Using this relation-
ship, we demonstrate the possibility of inferring the cellular
response from the behavioural variability measured before stimu-
lus. In monitoring the pre- and post-stimulus switching behaviour
of individual bacterial motors, we found that variability scales lin-
early with the response time for different functioning states of the
cell. This study highlights that the fundamental relationship
between fluctuation and response is not constrained to physical
systems at thermodynamic equilibrium4 but is extensible to living
cells5. Such a relationship not only implies that behavioural vari-
ability and cellular response can be coupled traits, but it also pro-
vides a general framework within which we can examine how the
selection of a network design shapes this interdependence.

It is standard procedure to characterize the stochastic dynamics of
physical systems in thermodynamic equilibrium by measuring spon-
taneous fluctuations and responses to small external perturbations.
Because these two distinct measurements contain the same informa-
tion, they are related by the fluctuation-dissipation theorem4. Although
the fluctuation-dissipation theorem has practical applications—to
evaluate force-extension sensors for single biomolecules6,7 and to pre-
dict static cell-to-cell variability of gene expression8,9—it has not been
possible to apply it directly to the study of the dynamical behaviour of
living cells because they are open systems with significant non-
thermal dynamics. However, this theorem has recently been extended
to a fluctuation-response theorem (FRT) for systems that are not in
thermodynamic equilibrium but that have a well-defined steady state
and Markovian dynamics5,10–12. For application to living cells this con-
dition amounts to studying dynamic processes with sufficiently short
‘memory’ that they can relax to a well-defined steady state. Here we use
the FRT as an operational framework to establish the interdependence
of distinct cellular traits, such as cellular fluctuations and response to a
small stimulus, without relying on the biochemical details of a specific
signalling pathway. To tackle this question experimentally, we used the
well-characterized chemotaxis system in E. coli, which governs bacterial
locomotion13.

The chemotaxis network regulates the rotation direction—clockwise
(CW) or counter-clockwise (CCW)—of the flagellar motors, which
control the swimming direction of the cell1,2. One of the hallmarks of

bacterial chemotaxis is adaptation. Following a stepwise stimulus, the
CW bias (the probability that the motor will rotate clockwise) decreases
abruptly, before slowly adapting back to its pre-stimulus level. Even
when bacteria are adapted to their environment, the CW bias of indi-
vidual cells fluctuates around the mean. These temporal fluctuations in
CW bias reflect slow fluctuations in signalling events throughout the
transduction network14. To verify that the bacterial chemotaxis system
satisfies the FRT, we monitored both the temporal fluctuations of the
CW bias before stimulus and the cellular response to a small stimulus at
the single-cell level. Both quantities were obtained from the time series
of CW and CCW intervals of individual motors from bacteria immo-
bilized on a glass coverslip15 and submerged in a motility medium that
does not support growth. Such single-cell experiments are complicated
by inherent cell-to-cell differences in relative chemotaxis protein con-
centration, leading to differences in switching dynamics (Fig. 1a). To
compare cells with similar behaviour, we sorted wild-type cells accord-
ing to their steady-state CW bias (Fig. 1a). These CW bias bins define
different classes of cells, which, despite being genetically identical, have
different dynamics and must be analysed separately3.

First, we quantified the response in single cells by measuring the
length of successive CCW intervals immediately following the stimu-
lus. The stimulus (10 nM of aspartate) used in this study is small and
close to the limit of sensitivity of the bacterial chemotaxis system16. At
the single-cell level, the length of the first CCW interval following the
small stimulus (Supplementary Fig. 1a) was distributed around the
mean CCW interval length before stimulus (Supplementary Fig. 1b).
Given that CCW interval length is a stochastic variable, we averaged
the CCW interval lengths after stimulus between cells and found that
the mean length of the first CCW interval following stimulus was
slightly longer than the mean pre-stimulus CCW interval length
(Fig. 1b). Therefore, we expected the response of the system to be
within the linear regime, which was necessary to apply the FRT. We
also tested the response of the chemotaxis system for a stimulus 100
times larger (1mM aspartate). Surprisingly, the second CCW interval
following the stimulus returned to near pre-stimulus length for both
large and small attractant concentrations (Fig. 1c). Although the
cellular response to stimulus extends in some cases beyond the second
interval (Supplementary Fig. 1d, e), these results qualitatively indicate
that the first CCW interval contains most of the chemotactic response
to both small and large stimuli.

To characterize the system quantitatively, we defined the response
time of a single cell as the cumulative length of post-stimulus CCW
intervals that are strictly longer than the mean CCW interval length
before stimulus (Fig. 1b, c and Supplementary Fig. 1e; see Methods for
definition of response time). This procedure yields a reasonable estimate
of the response time under the condition of small stimulus (Supplemen-
tary Fig. 2). We found that the response time averaged over CW bias
bins decreased with CW bias for both small (Fig. 2a) and large stimuli
(Fig. 2a, inset). Because all cells returned to their pre-stimulus behaviour
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(Supplementary Fig. 1), the system exhibited near-precise adaptation at
the single-cell level, regardless of CW bias (Supplementary Fig. 3). This
result agrees with that obtained from population measurements17,18 and
shows that the dynamics have sufficiently short ‘memory’ and that
individual cells can relax to a well-defined steady state.

A direct consequence of the linear approximation is that the res-
ponse time of the system to a small external stimulus should be pro-
portional to the correlation time of the spontaneous fluctuations
before stimulus. Using serial correlation analysis19,20, we evaluated

the correlation time in non-stimulated cells (Supplementary Fig. 4).
In agreement with our assumption of linear dynamics21 and the general
prediction of the FRT, we found that the correlation time scales linearly
with the response time to small stimulus (R2 5 0.75; Fig. 2b) whereas to
large stimulus it scales poorly (R2 5 0.07; Fig. 2b, inset). This result has
an important practical implication: The response time that governs the
cellular response in chemotaxis can be experimentally inferred by
measuring the temporal correlations in behavioural fluctuations from
cells before stimulus.

Cellular behavioural variability can also be defined by the amplitude
of the noise rather than its temporal correlations. To characterize the
amplitude of the output noise of the chemotaxis network, we com-
puted the power spectral density of the switching binary time series
measured from individual motors before stimulus (Fig. 3a and Sup-
plementary Fig. 5). We evaluated the low-frequency noise by integrat-
ing the power spectrum between f 5 1/1,500 s21 and f 5 1/10 s21. In
this frequency range, the temporal fluctuations are putatively caused
by the slow methylation–demethylation of the receptor-kinase com-
plexes that are also controlling the adaptive process14. Two elements
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Figure 1 | CCW interval lengths pre- and post-stimulus. a, Histogram of
CW bias of wild-type RP437 cells. We sorted cells into CW bias intervals by
their pre-stimulus CW bias: 0.00–0.05 (A), 0.05–0.10 (B), 0.10–0.15 (C), 0.15–
0.20 (D), 0.20–0.25 (E), 0.25–0.30 (F), 0.30–0.40 (G), 0.40–0.50 (H) and 0.50–
0.60 (I). Grey bars are cells representative of wild-type behaviour. To increase
the chance of obtaining cells with CW bias higher than 0.2, we transformed
wild-type cells with pZE21-CheR (Methods). This extended the range of CW
bias considered in our study to values greater than 0.4: bins H and I (not
shown). b, c, The first (b) and second (c) mean post-stimulus CCW interval
lengths versus pre-stimulus CW bias for all cells (wild-type RP437 and RP437
expressing CheR from pZE21-CheR). (See Supplementary Fig. 1 for individual
cells.) Black circles, cells exposed to a small stimulus (10 nM L-aspartate). Grey
triangles, cells exposed to a large stimulus (1mM L-aspartate). Error bars show
the standard error associated with the average CCW interval length in each
bin. Dark grey dashed line, geometric mean of the CCW interval lengths
following a randomly chosen time point in non-stimulated cells. Black line,
power-law fit of the geometric mean of pre-stimulus CCW interval lengths
calculated over 1,500 s for all cells (wild-type RP437 and RP437 expressing
extra CheR from pZE21-CheR) as a function of the pre-stimulus CW bias
(Supplementary Fig. 1b).
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Figure 2 | Relationship between response to stimulus and fluctuations
before stimulus. a, Average response time for all cells (wild-type RP437 and
RP437 expressing extra CheR from pZE21-CheR) exposed to a stepwise small
stimulus (black circles, 10 nM L-aspartate) or large stimulus (grey triangles in
inset to a, 1mM L-aspartate). The letters correspond to the CW bias bins
(Fig. 1a). Error bars show the standard error associated with the average
response time within each bin. b, Average response time to a small stimulus
(black circles) or large stimulus (grey triangles in inset to b) as a function of the
correlation time for all cells (wild-type RP437 and RP437 expressing CheR from
pZE21-CheR). For the large stimulus, the average response time was adjusted
by a correction factor (Supplementary Fig. 2c). The solid lines are linear fit
functions forced through the origin. For the black line: response
time 5 C 3 correlation time. C < 0.98 6 0.10 (R2 5 0.75). For the grey line in
the inset: relaxation time 5 C 3 correlation time. C < 12.23 6 1.83 (R2 5 0.07).
Error bars for the correlation time are the half-lengths of the first uncorrelated
CCW intervals. Error bars for the response time are the standard error
associated with the average response time within each bin. Grey area,
representative behaviour of a wild-type population. Insets in a and b share axes
with the main panels.
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contribute to the observed output noise: the spontaneous noise asso-
ciated with the signalling events of the chemotaxis network and the
stochastic switching behaviour of the bacterial motor (Fig. 3a). The
binary nature of the switching behaviour of the motor dominates the
variance of the noise and masks the signalling noise within the
chemotaxis network the output signalling molecule of which is the
phosphorylated form of the signalling protein CheY1,2. The active
form, CheY-P, binds to the sensory basal part of the flagella rotary
motor and induces CW rotation. Using a procedure developed by ref.
22, we decoupled the signalling noise, s2

CheY-P, from that of the motor.
We then found that the signalling noise decreased with the CW bias
(Fig. 3b).

Operationally, we used a simplified expression of the FRT, in which
the response function of the chemotaxis system m(t) and the auto-
correlation function C(t) of the spontaneous fluctuations of the cellular

behaviour should be related by m(t)~{K
d
dt

C(t). Here, the fluctuation–

response coupling coefficient K may depend on the genetic background,
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Figure 3 | Low-frequency noise in non-stimulated cells. a, Low-frequency
noise in individual wild-type RP437 cells (black) and RP437 cells expressing
CheR from pZE21-CheR (grey) versus CW bias. The inset shows power spectral
density as a function of noise frequency. Black line, power density averaged over
all cells (wild-type RP437 and RP437 expressing CheR from pZE21-CheR) with
CW bias 5 0.15–0.20. Dark grey line, power density of the motor decoupled
from the signalling network3. We determined the low-frequency noise for the
region between the dotted lines. See Supplementary Fig. 5 for all CW bias bins.
b, Signalling noise as a function of CW bias for wild-type RP437 cells and
RP437 cells expressing CheR from pZE21-CheR. Signalling noise is defined as
the variance s2

CheY-P of the fluctuating [CheY-P]. Letters correspond to the CW
bias bins (Fig. 1a). The power spectral densities and CW biases are averaged
over cells within the same CW bias. Error bars show the standard error
associated with the estimated signalling noise within each bin.
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Figure 4 | Relationship between signalling noise and response time to a
small external stimulus. a, Mean coupling coefficient 1= K(v)h iv for each
CW bias bin. We computed the geometric mean over frequencies ranging
from 1/1,500 s21 to 1/20 s21, represented by the dashed lines in the inset to
a. We found that the coupling coefficient K for the small stimulus was constant
at long timescales for frequencies in this range (see also Supplementary Fig.
7a). The standard error of the mean is smaller than the symbol size except for
the highest CW bias bin I. The line is the mean value of 1= K(v)h iv computed
over CW biases ranging from 0.00 to 0.5. The inset to a shows 1=K vð Þ for cells
with a CW bias ranging from 0.15 to 0.20 (10 nM L-aspartate increase). For
large stimulus K is not constant (see Supplementary Fig. 7b). b, Average
response times of all cells (wild-type RP437 and RP437 expressing inducible
CheR) to small stimulus (black circles) or large stimulus (grey triangles in inset
to b) versus mean pre-stimulus signalling noise. Solid lines are linear fits
forced through the origin. Response time 5 C|s2

CheY-P. Black line:
C 5 259 6 25 smM22 (R2 5 0.8) for small stimulus. Grey line in inset to
b: C 5 3,215 6 307 smM22 (R2 5 0.4) for large stimulus. Grey area,
representative behaviour of a wild-type population. The insets in b shares axes
with the main panel. c, The correlation time as a function of the mean
signalling noise before stimulus for all cells (wild-type RP437 and RP437
expressing CheR from pZE21-CheR). Black line, linear fit function forced
through the origin. Correlation time 5 C|s2

CheY-P. C < 257 6 21 smM22

(R2 5 0.9). Letters correspond to the CW bias bins (Fig. 1a). Error bars for the
correlation time are the average half-lengths of the first uncorrelated CCW
intervals. Error bars for the signalling noise are the standard error associated
with the signalling noise in each bin. Grey area is representative behaviour of a
wild-type population.
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growth conditions, and functional state of the cell. We plotted the

coefficient K(v)~{
2Im½~m(v)�

vP(v)
as a function of CW bias, where

P(v) is the power spectral density of the spontaneous fluctuations
(Fig. 4a and Supplementary Figs 6 and 7). In the most general non-
equilibrium case, the coupling coefficient K may change when the
genetic background or the growth conditions are modified. In chemo-
taxis, we found that the value of the coupling coefficient K(v) is
independent of the functioning states of the cell and levels of expres-
sion of the chemotaxis proteins (Fig. 4a). This result is remarkable
because most of the chemotaxis network has highly nonlinear signal
processing23,24.

It is usual to consider that noise is an independent limiting factor in
intracellular signalling and that evolution selects network designs to
reduce it25. However, using the framework of the FRT, we asked
whether the temporal fluctuations in the switching rate of the motor
and the cellular response are ever dynamically coupled. Remarkably,
we found that the response time to a small external stimulus scaled
linearly with the signalling noise from the chemotaxis network in cells
before stimulus (R2 5 0.8; Fig. 4b), which was consequently linearly
related to the correlation time (R2 5 0.9; Fig. 4c). Furthermore, we
found that the response time to a large stimulus scaled poorly
(R2 5 0.4) with the signalling noise, reflecting that for large stimulus,
the system operates outside the regime of linear approximation
(Fig. 4b, inset).

We interpret this observation in simple mathematical terms, where
the fluctuations in the network output, dCheY-P, about its average
have linearized kinetics in the form of a Langevin equation21,26:
d
dt

dCheY-P~{
1
t

dCheY-Pz
ffiffiffiffi
D
p

dg(t), where
ffiffiffiffi
D
p

dg(t) is a white-noise

source with intensity D and t is the measured correlation time in the
output of the signalling system. In this coarse-grained picture, there
should exist a strict relationship between the signalling output noise
amplitude s2

CheY-P and the time t, where s2
CheY-P~ D=2ð Þt. Although

the coefficient D could potentially depend on intracellular parameters
in a complex way, our experiments surprisingly showed that two cel-
lular traits, s2

CheY-P and the response time, are linearly coupled. This
observation implies that the coefficient D remains approximately con-
stant over a wide range of functioning states of the cell (that is, CW
bias). This result is consistent with the fact that the coefficient K(v)h iv
(Fig. 4a) determines the behaviour of D, because K(v)h iv!1=D.
Consequently, we anticipate that below an upper bound imposed
mainly by rotational diffusion27, cells with the largest behavioural
variability before stimulus would also exhibit the strongest chemotactic
drift in response to an external stimulus21.

Although the FRT predicts the existence of a coupling between
cellular response and noise, it does not specify how this coupling
depends on the different states of the cell. Therefore, we hypothesize
that the specific design of the signalling pathways could govern such
interdependence. We find that a simple kinetic model and experi-
mental data support this hypothesis (Supplementary Fig. 8): in che-
motaxis, the value of the coefficient D is governed by the adaptation
mechanism that uses the classic futile cycle21 as a core module in which
two antagonistic enzymes regulate the activity of the kinase-receptor
complexes. Because the futile cycle is a design shared by a large class of
signalling pathways21,28,29, it raises the possibility that for these systems,
noise and cellular response are coupled in a similar way. To gain
general insights into the selection of a specific coupling, we should
examine how certain classes of design and function of networks may
constrain the behaviour of this interdependence30.

METHODS SUMMARY
Response time. For each cell (whose behaviour is defined by a specific CW bias
bin), the response time was measured from the time of stimulus through all
successive averaged CCW intervals that were longer than the mean pre-stimulus
CCW interval length. This mean was obtained by averaging together the CCW

interval lengths chosen at random time points within the binary time series of the
non-stimulated cell.
Correlation time. To determine the correlation time of the CCW sequences, we
used serial correlation coefficients (Supplementary Fig. 4c) for the CCW interval
lengths19,20. We converted the correlated number of sequences to the real correla-
tion time lengths, including the half-length of the first uncorrelated CCW interval.
To determine whether the sequences in each lag (the number of preceding CCW
intervals) were correlated, we used the Wilcoxon rank sum test (the ‘‘ranksum’’
Matlab function) at a significance level of P 5 0.01 (Supplementary Fig. 4d), as in
ref. 20. We considered the first non-zero lag that had h 5 0 as the end of the
correlation.
Low-frequency noise and motor noise. We define the low-frequency noise NLF

i
of the ith cell as the integrated power density Pi(f) of the binary time series from

fi 5 1/1,500 s21 to ff 5 1/10 s21, which is NLF
i :

ðff

fi

Pi fð Þdf (Fig. 3a). We define

the low-frequency motor noise NLF,M
i as the integrated flat baseline of the power

density (Fig. 3a, dark grey line) on the same timescale. We estimated signalling
noise from the average experimental power spectral density, the average CW bias,
and the gain function between the input signal (steady-state [CheY-P]) and output
signal (average CW bias) using methods introduced by ref. 22 (Methods).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Strains and plasmids. RP437 is a wild-type E. coli strain for chemotaxis31. To
construct pZE21-CheR, we amplified cheR using polymerase chain reaction (PCR)
from the chromosome of the RP437 strain with the following primers: CheR-
KpnI-59: 59-gcc ggt acc atg act tca tca tct ctg ccc tg-39 and CheR-HindIII-39:
59-cgc aag ctt tta atc ctt act tag cgc at-39. The gene fragment was inserted in the
KpnI and HindIII sites of a pZE21 series plasmid30 that contained a kanamycin
resistance cassette and a TetR inducible promoter. The plasmid pZS4-Int1 encodes
tetR under a constitutive promoter, which modulates the expression of the TetR-
regulated cheR construct32. This plasmid carries a spectinomycin resistance gene.
Wild-type cells with and without plasmid exhibited similar noise levels (Fig. 3a)
and CCW interval lengths after stimulus (Supplementary Fig. 1a, c and d) at the
single-cell level.
HPLC calibration of the release of aspartate. We prepared 10ml samples of
0.5-mM caged L-aspartate solution under the same conditions for the chemotaxis
experiments and illuminated them with intense ultraviolet light from a Xenon
flash lamp (built-in L7685 reflective mirror, 60 W, Hamamatsu). We estimated the
relative concentration of the caged L-aspartate in each sample by the high-
performance liquid chromatography (HPLC) peak area. By comparing the
decreasing HPLC peak area with its initial peak area, we found the released
L-aspartate concentration as a function of the number of ultraviolet flashes (Sup-
plementary Fig. 9). The samples released about 1mM L-aspartate per ultraviolet
flash. The HPLC gradient conditions had five steps: (1) equilibrium with 20%
acetonitrile, 0.1% TFA/80% water, 0.1% TFA; (2) gradient of 20–55% acetonitrile
over 30 min; (3) first washing with 55–90% acetonitrile for 20 min; (4) second
washing with 90% acetonitrile for 5 min; and (5) equilibrium with 20% acetonitrile,
0.1% TFA/80% water, 0.1% TFA.
Photo-release and single-cell assay. We sheared the flagella of the cells by slowly
forcing them through a thin needle (inner diameter 5 0.19 mm, 27 G K, B-D) 40
times. Cultures grew overnight in 3 ml of tryptone broth at 35 uC with shaking at
200 r.p.m. We transferred the overnight cultures to a 250 ml flask, in which we
diluted them 1:50 in 12-ml tryptone broth and grew the cells again at 35 uC at
200 r.p.m. To obtain cells with different CW biases, we induced plasmid expres-
sion with various concentrations of anhydrotetracycline (0–2.5 ng ml21) in the
diluted overnight cultures. The media also contained the antibiotic specific to the
plasmid. We harvested the cells when the absorbance A reached ,0.3 at 600 nm.
We washed the cells and resuspended them in motility medium (0.1 mM EDTA,
0.1 mM L-methionine, 10 mM potassium phosphate pH 7.0). We prepared glass
slides (No. 1K, 18 mm, Corning) coated with poly-L-lysine and a solution of beads
(Polybead Amino 1.0mm Microspheres, Polysciences) coated with rabbit antibodies
against flagella. We mixed the cells (4–5ml) with the beads (4–5ml) and incubated
them for 20 min at room temperature (21–22 uC). This process caused the cell bodies
to stick to the glass slide and the beads to attach to the flagella. Although the
probability of a bead attaching to a rotating flagellum was low, we consistently
obtained a few labelled flagella in each sample. After incubation we removed the
unattached cells and beads and then added 8ml of 5mM (for small stimulus) or
500mM (for large stimulus) caged L-aspartate solution to the sample medium. We
covered the sample with oil (immersion oil transparent to ultraviolet: type FF,
Cargille Laboratories) to prevent evaporation. We placed the sample under a
dark-field condenser to produce a bright red image of the bead. Harmful blue light
was filtered out by a long-pass filter (NT52-543, Edmund Industrial). We observed
the samples under an Olympus IX71 microscope with an oil immersion objective
1003 (numerical aperture 5 1.3, Olympus Uplan FI, oil iris ‘/0.17). We recorded
the long circular motions of individual beads attached to rotating flagella of single
cells through a four-quadrant photomultiplier (type: R5900U-01-M4, Hamamatsu).
The signal from the photomultiplier, a four-voltage time series, was monitored with
a PC computer via LabView software (National Instrument). The rotation of the
bead was simultaneously recorded using a charge-coupled device camera (1/399

midresolution Exview digital B/W camera, Sony). We converted the signal to a
binary time series indicating transitions between CCW and CW rotations. After
1,500 s (or 300 s) of recording the rotational motion of the bead, we photo-
released the caged aspartate (caged l-aspartic acid, sodium salt (189110): N-[1-
(2-nitrophenyl)ethyloxycarbonyl]aspartic acid, sodium, C13H13N2O8?Na, relative
molecular mass 348.2 and molar absorption e 5 4,710 M21 cm21 at maximum
wavelength lmax 5 264 nm), from Calbiochem or synthesized by D. Trentham,
G. Reid and J. Corrie). We illuminated the sample with an intense ultraviolet light
from the Xenon flash coupled into a light guide (A2873, quartz glass fibre,
Hamamatsu) and widely focused onto the whole sample with two ultraviolet-
coated lenses (focal length 5 35 mm and diameter 5 25.4 mm; focal length 5 20
mm and diameter 5 12.7 mm, ThorLabs). These ultraviolet flashes produced a
stepwise release of 1mM (or 10 nM) L-aspartate from the 0.5 mM (or 5mM) caged
L-aspartate33. The magnitude of the stepwise stimulus corresponds to the typical

increase in attractant concentration encountered by bacteria swimming in a gra-
dient of 1 nMmm21 (refs 34 and 35).
Definition of CW bias. We define TCW

i,j and TCCW
i,j as the durations of the jth CW

and CCW intervals of the ith cell. The CW bias for the jth CW-to-CCW interval

pair of the ith cell is bi,j~TCW
i,j = TCCW

i,j zTCW
i,j

� �
. The pre-stimulus CW bias of the

ith cell, bi,j

D E
before

, is the time average of bi,j over a time window of length ti,before

preceding the stimulus. ti, before was 300 s for the cells with CW bias exceeding 0.25
responding to the large stimulus and 1,500 s for all other cells. Similarly, the post-

stimulus CW bias of the ith cell, bi,j

D E
af ter

, is the temporal average of bi,j over a

time window of duration ti, af ter seconds following the stimulus. For the small (or
large) stimulus, the first two (or 200) CW–CCW interval pairs following stimulus
were not included. ti, af ter was 1,500 s for small stimuli, 900 s for large stimuli and
CW bias ,0.25, and 300 s for large stimuli and CW bias .0.25.
Response time. For each cell (the behaviour of which is defined by a specific CW
bias bin), the response time was measured from the time of stimulus through all
successive averaged CCW intervals that were longer than the mean pre-stimulus
CCW interval length. This mean was obtained by averaging together the CCW
interval lengths chosen at random time points within the binary time series of the
non-stimulated cell. If the response time included more than one CCW interval,
the CW interval length between two successive CCW intervals was also included in
the response time. To get the final response time, we subtracted the mean non-
stimulated portion of the first responding CCW interval. For example, if the third
CCW interval is the last CCW interval length significantly longer than the mean
CCW interval length before stimulus (dashed line in Figs 1b and c), the response
time would be:

TCCW, 1sth iz TCW, 1sth iz TCCW, 2ndh iz TCW, 2ndh iz

TCCW, 3rdh i{ TCCW, 1st, prestimulus

� �
The dashed line in Fig. 1b and c and Supplementary Fig. 1e represents the trend of
the mean pre-stimulus CCW interval length in each CW bias bin. Because of the
presence of a few outliers, we used the geometric mean to compute the trend of the
mean CCW interval lengths after stimulus and mean pre-stimulus CCW interval
length within each CW bias bin (Fig. 1b and c).
Correlation time. To determine the correlation time of the CCW sequences, we
used serial correlation coefficients (Supplementary Fig. 4c) for the CCW interval
lengths19,20. We converted the correlated number of sequences to the real correla-
tion time lengths, including the half-length of the first uncorrelated CCW interval.
To determine whether the sequences in each lag (the number of preceding CCW
intervals) were correlated, we used the Wilcoxon rank sum test (the ‘‘ranksum’’
Matlab function) at a significance level of P 5 0.01 (Supplementary Fig. 4d) as in
ref. 20. We considered the first non-zero lag that had h 5 0 as the end of the
correlation.
Low-frequency noise and motor noise. We define the low frequency noise NLF

i of
the ith cell as the integrated power density Pi(f) of the binary time series from

fi 5 1/1,500 s21 to ff 5 1/10 s21, which is NLF
i :

ðff

fi

Pi fð Þdf (Fig. 3a). We define

the low-frequency motor noise NLF,M
i as the integrated flat baseline of the power

density (Fig. 3a, dark grey line) on the same timescale.
Estimating signalling noise. To estimate the signalling noise, we used a formula

s2
M, total%s2

MzgM
2b

2 s2
CheY-P

½CheY-P�2
which shows the relationship between the vari-

ance s2
CheY-P of [CheY-P] and the variance s2

M, total of the output signals. This
formula was derived from a model recently introduced to describe generally the
gain–noise relationship between the input and output signals in the chemical
reaction network22. As ref. 22 showed, the temporally fluctuating output signal
from a well defined steady state (CW bias 5 b) due to the fluctuating input signal
([CheY-P]) is described by the following linearized chemical Langevin equation:

db
.

~cMd½CheY-P�{db=tMzjM tð Þ, where db and d½CheY-P� are small devia-
tions of the CW bias and [CheY-P] from their steady values, respectively, tM is the
typical timescale of the motor alone and jM tð Þ is the Gaussian white-noise term
that satisfies jM tð Þ~0 and jM tð ÞjM t0ð Þ~s2

jM

:d t{t0ð Þ. From this equation, we
obtain the total variance of the output signals due to the temporally fluctuating
input signals and the Gaussian white noise:

s2
M, total~

gMb
HM

zgM
2b

2 tCheY-P

tMztCheY-P

s2
CheY-P

½CheY-P�2

where ½CheY-P� is the steady value of fluctuating [CheY-P] values given by:

½CheY-P�~KM
b

1{b

� �1=NH
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where KM (half the concentration of CheY-P that yields CW bias 5 0.5) and
the Hill coefficient NH are given by 3.1 mM and 10.3, respectively, in ref. 15).

The constant HM in the first term is defined by HM:2cM½CheY-P�
.

sjM

2 and b

is the CW bias. gM is the gain function defined as the ratio of the fractional

change of the output signal to the input signal: that is, gM~ db=b
	 
.

d½CheY-P�=½CheY-P�
� �

~NH 1{b
	 


, where NH 1{b
	 


is obtained from ref.

15. tCheY-P is a characteristic timescale of the [CheY-P] fluctuations and is

proportional to the input noise s2
CheY-P as follows: tCheY-P~

s2
jCheY-P

2
s2

CheY-P.

This relationship is derived from the chemical Langevin equation describing

the [CheY-P] fluctuations from its steady state (½CheY-P�):

d½CheY-P�
.

~{
d½CheY-P�

tCheY-P
zjCheY-P tð Þ

where jCheY-P tð Þ is a Gaussian white-noise term that satisfies jCheY-P tð Þ~0 and

jCheY-P tð Þ:jCheY-P t0ð Þ~s2
jCheY-P

:d t{t0ð Þ. As long as the external stimulus is small
enough, the response time to the stimulus should scale to tCheY-P. For the broad
range of the functioning states of this paper, we have one condition, tCheY-P?tM,
in the timescales involved in this system. Under this condition, the above formula
for the total variance of the output signals can be simplified to

s2
M, total%s2

MzgM
2b

2 s2
CheY-P

½CheY-P�2

where s2
M, total is given by b 1{b

	 

for any binary time series and is equal to the

integral of the power spectral density over all frequencies (black line in
Supplementary Fig. 5) averaged over all cells (wild-type RP437 and RP437 expres-
sing CheR from pZE21-CheR) and s2

M is equal to the integral of the power density
(dark grey line in Supplementary Fig. 5) of the isolated motor. We approximated
the baseline of the motor power density by finding the mean value of the flat regime
(from fi 5 1/10 s21 to ff 5 1/5 s21) of the average experimental power density and
extending the baseline to the lowest frequency. By using the simplified formula
above, we estimated the s2

CheY-P values in each CW bias bin (Fig. 3b).
Definition of noise. We hypothesize that a small number of proteins and thermally
activated biochemical reaction rates cause stochastic fluctuations between func-
tional states of signalling proteins. Operationally, we monitor the cellular behaviour
in a motility medium that does not support growth but allows bacteria to perform
chemotaxis. Under these conditions, the observed noise does not result from protein
synthesis or degradation; rather, it results from fluctuations in protein functional
states about a well-defined steady state.
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