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Hidden Stochastic Nature of a Single Bacterial Motor
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The rotary flagellar motor of Escherichia coli bacterium switches stochastically between the clockwise
(CW) and counterclockwise (CCW) direction. We found that the CW and CCW intervals could be
described by a gamma distribution, suggesting the existence of hidden Markov steps preceding each motor
switch. Power spectra of time series of switching events exhibited a peaking frequency instead of the
Lorentzian profile expected from standard kinetic two-state models. Our analysis indicates that the
number of hidden steps may be a key dynamical parameter underlying the switching process in a single
bacterial motor as well as in large cooperative molecular systems.
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Introduction.—The bacterium of E. coli is propelled by
several flagella and the rotation of each flagellum is con-
trolled by a rotary motor [1]. When motors rotate counter-
clockwise (CCW), the flagella bundle together and the
bacterium swims smoothly; when motors rotate clockwise
(CW), the bundle breaks apart and the bacterium tumbles
in a random fashion. The modulation of the tumbling
frequency allows bacteria to perform chemotaxis by swim-
ming toward attractant or away from repellent. Single cell
experiments established that the CW bias (probability that
a motor spins CW) increases nonlinearly, in a sigmoidal
fashion, with the concentration of the active form, CheY-P,
of the signaling molecule [2,3]. The steep input-output
relationship of the motor is associated with an underlying
allosteric process catalyzed by the binding of the signaling
CheY-P molecules to the basal part of the motor [4]. CheY-
P molecules interact with a ring shape assembly of about
34 identical FliM protein subunits. For several decades, a
series of models have aimed to identify the underlying
general kinetic parameters that control the steady states
behavior of motor switches [4–9]. Recently, Tu and
Grinstein [10] theoretically showed, in agreement with
recent experiments [11,12], that in a dynamical two-state
(CW and CCW) model the temporal fluctuation of CheY-P
drives, at long time scales, the switching behavior of the
motor to produce a power-law distribution for the durations
of the CCW states. Bialek et al. [5] used the bacterial motor
as a model system to evaluate the noise limitation of intra-
cellular signaling. More specifically, Duke et al. [4,13]
presented a unified stochastic approach demonstrating
that all allosteric switches could be mapped to a simple
one-dimensional Ising model. In particular, this stochastic
approach to cooperative molecular behavior was used to
describe how the equilibrium between the CCW and CW
states of the bacterial motor depends nonlinearly on the
concentration of CheY-P. It was hypothesized that each
subunit may undergo a conformational change catalyzed
by the binding of CheY-P. The coupling between neighbor-
ing subunits favors the propagation of conformational
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change of subunits along the ring. Although this model
reproduces satisfactorily the equilibrium behavior, very
little is still known about the underlying dynamical behav-
ior of such cooperative switching. In this Letter, we mea-
sure and analyze long binary time series of switching
events from individual motors to characterize experimen-
tally the underlying stochastic nature of this classic allo-
steric system at the level of a single motor.

Experimental conditions.—Switching behavior of indi-
vidual motors in wild-type cells was already reported in
earlier studies [14]. In wild-type cells the chemotaxis
network that controls the concentration of the input signal
of the motor can introduce some noise as reported in
[11,15]. In order to study the stochastic nature of the motor
alone without the contribution of the network, we used
the PS2001 bacterial strain whose chemotaxis network
was defective [9]. We also used the activated CheY*
mutant protein (CheYD13K), which does not need to be
phosphorylated in order to bind to the motor. Thus, in our
experiment, the concentration of the CheY* that binds to
the subunits of the ring is not controlled by the chemotaxis
network but stably preexpressed from an inducible vector
expressing the CheYD13K gene [11]. Under these condi-
tions the concentration of CheY* does not exhibit tem-
poral correlation at long time scales as described in
[10,11]. We analyzed the distributions of CCW and CW
events of a bacterial motor at the different preinduction
levels of CheY*. We recorded the motor switching events
from a bacterial motor using the same apparatus as in [11].
We immobilized the cells on a glass surface and used
0:5 �m latex beads to label and visualize some rotating
flagella [2,11,12]. By contrast with tethered assays like in
[15], motors never stop rotating and exhibit only CW and
CCW rotational states. We used a sampling rate of 100 Hz
and the resolution time was about 0.1 sec. We represent
the motor switches with a binary time series (CCW and
CW states). We varied the intracellular concentration
[CheY*] by preinducing the cells with various amounts
of isopropyl-�-D-thiogalactoside, [IPTG]. PS2001 mutant
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cells were grown from an overnight culture in tryp-
tone broth at 30 C with various IPTG concentrations
(with �IPTG� � 25–100 �M) and then harvested
(optical density � 0:5 at 595 nm). Cells were then washed
and suspended in minimal medium [7.6 mM (NH4)2 SO4,
2 mM MgSO4, 20 �M FeSO4, 0.1 mM EDTA, 0.1 mM L-
methionine, 60 mM potassium phosphate pH 6.8].
CheYD13K was expressed from an inducible lac promoter
pMS164 [9]. PS2001 strain is deleted for CheB, CheZ, and
CheY. The resulting CW bias varies from 0 to 1 for cells for
different IPTG levels. We sorted the binary time series by
CW bias into the following 9 intervals: 0:1� 0:05; 0:2�
0:05; . . . ; 0:9� 0:05. Data from each bin came from ten
different cells with a typical total observation time of
15 minutes each. This binning procedure was crucial to
our study because it allowed us to analyze the noise from
individual motors that have about the same [CheY*]. In
previous studies [6,9,14] data from cells possibly with
large difference in [CheY*] were combined together,
which masked the dynamical properties of the cooperative
switching in a single motor.

CWand CCW interval distributions.—Information about
the stochastic processes underlying the cooperative switch
of the motor can be obtained by analyzing the CCW and
CW interval distributions [4,5,13]. We plot in Fig. 1 the
probability density functions of CCW and CW intervals
obtained from motors with the same CW bias ranging from
0.1 to 0.9. This approach contrasts with previous studies
that combined CCW (CW, respectively) intervals from
motors with different CW bias [6,9,14]. We found that
the CW and CCW distributions are identical when the
CW bias is equal to 0.5 and evolve antisymmetrically
from this point. The CW and CCW distributions could be
fitted with the gamma distribution function defined as
FIG. 1. Probability density functions of CCW ( gray) and CW (blac
Fit with gamma distribution function (white lines).
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follows:

Gr��� �
�r�r�1 exp�����

��r�
;

where r and � are, respectively, the shape and the scale
parameter, and ��r� the gamma function. The fit parameter
r and � are plotted as a function of the CW bias (Fig. 2).
The r parameter represents the number of hidden steps of a
Poisson process preceding the motor switch and occurring
with the rate �. Consequently, the mean duration of CCW
(CW, respectively) time interval is given by the ratio r=�
(r0=�0, respectively). Since r in the gamma distribution
represents the number of underlying Markov steps, r is
chosen to be an integer. The rate � is then equal to r divided
by mean duration of the CW intervals. When the value of
the parameter r saturates for both CCW and CW intervals,
the maxima of the distributions are close to the resolution
time of 0.1 sec of the experimental apparatus (CCW at high
bias and CW at low bias). At this saturation level, the
gamma distribution function fits well both CW and CCW
interval distribution when the parameter r ranges from 4 to
5. We chose to perform arbitrarily the fits with r � 5 at the
saturation level.

Power spectrum analysis.—Figure 3 shows averaged
power spectra associated with binary time series collected
from individual motors for a fixed value of the CW bias
(i.e., [CheY*] level). Most of the spectra have a well-
defined peaking frequency at �1 s�1. For CW bias � 0:1
the associated spectrum is almost flat with weak power
amplitude at the peaking frequency. For larger CW bias the
amplitude of the power at the peaking frequency increases
reaching the maximum for CW bias � 0:5.After this point
the amplitude of the power at the peaking frequency de-
creases with the CW bias. For a bias � 0:9, the shape of the
k) time intervals as a function of CW bias. The bin size is 0.1 sec.
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FIG. 2. Gamma distribution parameters as a function of the
motor bias obtained from the fit of CW (black) and CCW ( gray)
distributions in Fig. 1. (a) Shape parameter, r, of the gamma
distribution represents the number of hidden steps of a Poisson
process, (b) Poisson rate (scale parameter, �). The error bars
represent the standard deviation due to differences in CW bias
between cells within the same CW bias interval.
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power spectrum is similar to that found for a CW bias �
0:1. At time scales larger than 1 s, the power spectrum
exhibits a flat profile. It was shown analytically that the
noise spectrum of a closed system of hidden reactions can
exhibit ‘‘peaking’’ [16]. Similarly, the observed peaking of
the power spectrum associated with the binary time series
can be interpreted as the result of a hidden chain of Poisson
steps preceding a switch. By contrast, if a switch were
preceded by only one Poisson step (r � 1), then the CCW
or CW intervals would be exponentially distributed and the
associated power spectrum would be described by a stan-
dard Lorentzian. In the symmetrical case, when CW and
CCW intervals are identically distributed, the amplitude of
the power at the peaking frequency grows with the number
of hidden Poisson steps [17]. We derive the expression of
the autocorrelation function B��� following the same ap-
FIG. 3. Spectral characteristics of individual bacterial motors
as a function of the CW bias ( gray). Power spectra (black line)
associated with simulated binary time series generated from
gamma distributions.
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proach as in [17], where P01��� is the conditional proba-
bility for the system to be in state 1 at time � � given that it
was in state 0 at time � 0. Likewise, P10��� is the condi-
tional probability to be in state 0 at time � � given that the
state was 1 at time � 0. r and � are the number of steps and
Poisson process rate for the state 0 (CCW state), and r0 is
number of hidden steps and �0 is the rate of the Poisson
process occurring in state 1 (CW state). Gn is the gamma
distribution and Pn �

����n exp�����
n! is the Poisson probabil-

ity. Similarly, G0n and P0n are functions of the rate �0. In
[17], the autocorrelation function was derived for sym-
metrical binary time series with identically distributed
CCW and CW intervals.
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In our study, we derived the autocorrelation functions for
nonsymmetrical binary time series using two distinct pairs
of parameters taken from Fig. 2: (r; �) for the gamma
distribution of CCW intervals and (r0; �0) for the gamma
distribution of CW intervals [12]. The associated power
spectra were obtained numerically using the Wiener-
Khinchin theorem, and were plotted with the experimental
spectra for various pairs of the r and � parameters (Fig. 3).
We found that the power spectra generated numerically
reproduce well the profile of the experimental power spec-
tra. This result suggests that the observed peaking fre-
quency in the power spectra is caused solely by the
nature of the distribution and not by the temporal correla-
tions between the time intervals. To confirm the latter
hypothesis, we found that the power spectrum profile
with a peaking frequency was conserved when the experi-
mental CCW and CW were randomly shuffled (data not
shown).

Discussion.—By definition of the gamma function, the
parameters r and � are, respectively, the number of hidden
Poisson steps occurring at a rate �, which precedes a motor
switch. Our analysis with the gamma distribution function
suggests that each motor switch is preceded by several
hidden Poisson steps. The standard assumption derived
from simple two-state kinetic models was that the distri-
bution of motor waiting intervals is exponential [6,14].
This assumption would imply that only one Poisson step
precedes a motor switch. Under this condition, the associ-
ated power spectrum would exhibit a Lorentzian profile
with no peaking frequency. Alternatively, we tested the
model developed by Duke et al. [4]. In this stochastic
model the conformational change of one subunit spreads
through an idealized ring of closely packed subunits to
mediate a switch. Each subunit has two conformations,
active and inactive. If the whole ring is in the active
5-3
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FIG. 4. (a) Energy diagram for motor subunits. White circle
represents the inactive conformation; black circle is the active
conformation of a subunit. Grey small circles are ligand mole-
cules. The diagram is taken from [4] where 2EJ is the cost for
creating two interfaces, and EA is the energy difference between
the active and inactive state of one subunit. (b) Domain growth
of the ring of the motor. An idealized ring is represented by
adjacent circles (subunits). Birth and growth of active domains
(left), domains encompassed the whole ring (right).
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(resp. inactive) conformation the motor rotates in the CW
(resp. CCW) direction and maintains this direction until the
whole ring switches to the inactive (resp. active) confor-
mation. The intermediate states of the ring are composed of
a mixture of active and inactive subunits and are hidden in
this process because they do not cause a change of direc-
tion. Each nucleation event is associated with an energy
change (�E) equal to either (� EA 	 2EJ) or (EA 	 2EJ);
2EJ is the cost for creating two interfaces, and EA is the
energy difference between the active and inactive state of
one subunit [Fig. 4(a)]. In the Duke model the switching
kinetics is mostly governed by a very strong coupling (EJ)
between subunits where only one nucleation event induces
a switch. If a motor switch was associated with the crossing
of one energy barrier only, the power spectrum would
exhibit a Lorentzian profile [18] with no peaking fre-
quency, which is contrary to our experimental results. By
contrast, in the regime of weak coupling (smaller EJ) but
stronger EA than in Duke et al., several nucleation events
can precede a switch. In this qualitative picture, we pro-
pose that the number of hidden steps is the number of
nucleation events preceding a switch. The probability
that the binding of one CheY* molecule induces one
nucleation is a fixed characteristic of the motor and behaves
like � exp���E=kT�. The probability that CheY* binds
one subunit of the motor increases with the concentration
[CheY*]. Therefore, the number of nucleation events per
unit of time, �, is proportional to exp���E=kT�, and
increases with [CheY*] (i.e., CW bias) [Fig. 2(b)]. At
higher CW bias (higher [CheY*]), the ring of protein
subunits is bombarded by CheY* molecules with a higher
rate yielding a greater number r of independent nucleation
events [Fig. 2(a)]. Each nucleated domain will spread and
05810
will combine together to encompass the whole ring after a
time interval of about�r=� [Fig. 4(b)]. Since the ring has a
finite size, the number of nucleation events reaches satu-
ration [Fig. 2(a)]. After the rth nucleation event, a switch
occurs and then, a new series of hidden Poisson steps
(nucleation events) starts all over with a different rate �0.
After a switch occurs the active (CW) ring can experience
nucleation events again with a consecutive growth of the
inactive domain and the motor switches back to the inac-
tive (CCW) state. In the CW state, unoccupied active
subunits are more likely to undergo a conformational
change than occupied active subunits [see energy diagram
Fig. 4(a)]. For this reason the nucleation rate �0 will
decrease with the CW bias (i.e., [CheY*]) as depicted in
Fig. 2(b).

In light of this discussion, it has become clear that we
need new models that will incorporate all the character-
istics of this large allosteric system. However, we inter-
preted the presence of a peaking frequency in the power
spectrum as the consequence of a number of hidden
Poisson events. Although there may exist other underlying
mechanisms than the gamma distribution function to de-
scribe our data, experimental parameters such as the ob-
served peaking frequency impose new strong constraints
on any stochastic models of large individual allosteric
complexes [4,5,10].
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