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Supporting Text  

SI Text 1: Deriving photophysical models of FRET measurements 

Here we derive the photophysical models of FRET measurements (i.e., the measurement model 
in the state-space model). Both bimolecular and unimolecular FRET systems are considered. We 
also derive the E-FRET formula so that the underlying assumptions are clearly seen.    

 

General measurement model for bimolecular FRET systems 

A general photophysical model that links the concentrations of chemical species and 
(background-subtracted) fluorescence intensities is written as:  

!!!(#) = &!!	([)
∗](#) + [,∗)∗](#) + [,)∗](#)) + -!!(#), 

!##(#) = &##	/[,
∗](#) + [,∗)](#) + (1 − 2$%&)[,

∗)∗](#)3 + -##(#),      (Eqs. 1-1) 

!#!(#) = 4	!!!(#)55555555 + 6	!##(#)55555555 + &##	7	2$%&	[,
∗)∗](#) + -#!(#). 

See Materials and Methods for definitions of each term and parameter. We reiterate that 
-!!(#), -##(#) and -#!(#) are zero-mean stochastic variables – typically Gaussian distributions – 
describing measurement noise of respective fluorescence signals, and we assume that their 
magnitudes are estimated independently from the B-FRET algorithm (SI Appendix, SI Text 3). 
Also, the parameters that depend on the imaging system, 4, 6 and 7 are determined from 
independent measurements (SI Appendix, SI Text 3). This general model (Eqs. 1-1) contains five 
latent variables (i.e., [)∗](#), [,∗](#), [,)∗](#), [,∗)](#) and  [,∗)∗](#)), and thus the problem 
of inferring these variables by observing three variables (i.e., !!!(#), !##(#), and !#!(#)) is 
inherently ill-posed. However, in typical FRET experiments, experimental design can be used to 
constrain the degrees of freedom of the system and obtain interpretable results. Below, we 
consider the typical set of constraints satisfied by most FRET experiments – the same set of 
assumptions used by E-FRET – and how they constrain the general model (Eqs. 1-1).  

 

A reduced measurement model for bimolecular FRET systems 

We first assume that the total concentrations of the donor and acceptor are conserved during a 
measurement: 

[)'('%)] = [)∗](#) + [)](#) + [,∗)∗](#) + [,∗)](#) + [,)∗](#) + [,)](#), 

[,'('%)] = [,∗](#) + [,](#) + [,∗)∗](#) + [,∗)](#) + [,)∗](#) + [,)](#), 

where [)*+*,-] and [,'('%)] are the total concentrations of the acceptor and donor respectively. 

Next, we assume that the photobleaching rate is a first-order decay process. Combined with the 
assumption that there’s no synthesis of new fluorescent proteins during a measurement, this 
leads to:  



 
 

3 
 

6([)∗](#) + [,∗)∗](#) + [,)∗](#))

6#
= −9(#)([)∗](#) + [,∗)∗](#) + [,)∗](#)), 

6([,∗](#) + [,∗)∗](#) + [,∗)](#))

6#
= −:(#)([,∗](#) + [,∗)∗](#) + [,∗)](#)), 

where	9(#) and :(#) are the bleaching rates of the acceptor and donor at time #.  Solving these, 
we get:   

[)∗](#) + [,∗)∗](#) + [,)∗](#) = [)'('%)]	;
.∫ 01'!23'!"

# = [)'('%)]<!(#, =!), 

[,∗](#) + [,∗)∗](#) + [,∗)](#) = [,'('%)]	;
.∫ 41'!23'!"

# = [,'('%)]<#(#, =#), 

where we introduced the functions <!(#, =!) = ;
.∫ 01'!23'!"

#  and <#(#, =#) = ;
.∫ 41'!23'!"

#  
parameterized by =! and =# respectively.  <!(#, =!) and <#(#, =#) represent the intact fractions 
of the acceptor and donor at time #, respectively.  

Lastly, we assume that the system is in a quasi-steady state at each time point. Namely, the 
timescale of photobleaching is sufficiently longer than the following two timescales: (i) the 
timescale of the binding and unbinding of the molecules X and Y, to which the donor and 
acceptor are fused respectively, and (ii) the timescale of diffusion of either the donor or 
acceptor over the compartment that enclose the molecules. With this assumption, the fraction 
of each free or complexed species that is intact decays exponentially. In particular, we get:  

[)∗](#)

[)∗](#) + [)](#)
= <!(#, =!), 

[,∗](#)

[,∗](#) + [,](#)
= <#(#, =#). 

Furthermore, defining @(#) as the binding affinity constant between X and Y at time #: 

[,∗)∗](#) = @(#)	[,∗](#)[)∗](#) 

= @(#) A/[,∗](#) + [,](#)3<#(#, =#)B A/[)
∗](#) + [)](#)3<!(#, =!)B 

= @(#)([C](#)<#(#, =#))/[D](#)<!(#, =!)3 

= [,)'('%)]	(#)<!(#, =!)<#(#, =#), 

where [C](#) = [,∗](#) + [,](#) and [D](#) = [)∗](#) + [)](#), and  [,)'('%)]	(#) =

[,∗)∗](#) + [,∗)](#) + [,)∗](#) + [,)](#). 

Under these assumptions, the general model (Eqs. 1-1) becomes 

!!!(#) = &!!	(!(#, *!)[,"#"$%] 	+ /!!(#), 
!&&(#) = &&&((&(#, *&)[0"#"$%] 	− (!(#, *!)(&(#, *&)2'$(	[0,"#"$%](#)) + /&&(#),           (Eqs. 1-2) 

!)*(#) = 3	!!!(#)44444444 + 5	!&&(#)44444444 + &&&(!(#, *!)(&(#, *&)6	2'$(	[0,"#"$%](#) 	+ /&!(#). 
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Without loss of generality, we set &!! = &## = 1. This is because these parameters only 
determine the units of the concentrations of the chemical species. Although setting &!! =
&## = 1 means that we use different concentration units for [)'('%)] and [,'('%)] and 
[,)'('%)], this doesn’t affect the estimation of the FRET index 2 = 5$%&[#!"'"%(]

[#"'"%(]
 because both 

the numerator and denominator of 2 are measured by the same concentration unit. Also, since 
we are not necessarily interested in estimating 2$%&	and [,)'('%)] separately, we assign a 
single time-dependent variable to the product, i.e., 2$%&	[,)'('%)](#) = E(#). Note, however, 
one can easily incorporate measurements of the parameters &!!, &## and 2$%&, and infer 
different FRET indices (e.g., 28 =

[#!"'"%(]
[#"'"%(]

 or 	29 =
[#!"'"%(]
[!"'"%(]

) within the B-FRET framework.  

Finally, we discretize the model in time since actual measurements are conducted at discrete 
time points. For an effective FRET measurement, !## and !#! have to be measured 
simultaneously or consecutively with sufficiently small time interval compared to the timescale 
of the changes in the donor-acceptor interaction, @(#); so, we designate the time points for !## 
and !#! as #8:;)

# ≡ G#8
# , #9

# , … , #;)
# I. !!! can be measured independently from – and often less 

frequently than – the measurements of !## and !#!, because !!! does not depend on the FRET 
between the donor and acceptor. Accordingly, we define the !!! measurement time points as 
#8:;*
! ≡ {#8

!, #9
!, … , #;*

! }. Generally L# ≠ L!, and the measurement intervals do not have to be 
constant.   

Using these assumptions and the notation above, we get the probabilistic measurement model 
of the observables for the bimolecular FRET system: 

!!!"#"!$ = &!"#"!, (!$[*#$#%&] + -!!"#"!$, 

!''(#(') = &'(#(', (')[0#$#%&] 	− &!(#(!, (!)&'(#(', (')3( + -''(#('),           (Eqs. 1-3) 

!)*(#(') = 4&!(#(!, (!)[*#$#%&] + 5&'(#(', (')[0#$#%&] + (6 − 5)&!(#(!, (!)&'(#(', (')3( + -'!(#('), 

where E< ≡ E/#<
#3. 

 

General measurement model for unimolecular FRET systems 

A unimolecular FRET-sensor molecule consists of a donor and acceptor domains and a sensor 
domain. The donor and acceptor domains flank the sensor domain.  The sensor domain changes 
its conformation upon binding to a cognate molecule, which causes the change in the distance 
between the donor and acceptor and thus the level of FRET. Unimolecular FRET systems are 
different from bimolecular FRET systems in that: (i) the donor-acceptor stoichiometry is fixed to 
1:1 in a unimolecular system, while it is variable in a bimolecular system, and (ii) in a 
unimolecular system, there can be finite basal FRET between the donor and acceptor even when 
the sensor is in an ‘off’ state, while in a bimolecular FRET system there is essentially no FRET 
between free donor and acceptor unless the concentrations of the fluorescent proteins are very 
high (in which case we can easily incorporate the effect in the measurement model). We 
consider the FRET sensor in a unimolecular FRET system as a two-state molecule that can be 
either in active or inactive state when the donor and acceptor are close or distant to each other. 
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When both donor and acceptor are intact, we assume that an active sensor shows high specific 
FRET efficiency 2$%& , and an inactive sensor low specific FRET efficiency 2$=>. The system 
consists of the following eight chemical species: D∗A∗, D∗A, DA∗, ,∗ ∙ )∗, ,∗ ∙ ), , ∙ )∗,	and , ∙ ), 
where a chemical species with a dot ‘∙’ is in an inactive state, and without a dot an active state. 
Similarly to the bimolecular-FRET model, the observables !!!, !## and !#! are linked to the 
concentrations of the chemical species as follows:  

!++(#) = &++	([)∗*∗](#) + [)*∗](#) + [) ∙ *∗](#) + +[)∗ ∙ *∗](#)) + .++(#), 

!--(#) = &--	0[)∗*](#) + [)∗ ∙ *](#) + (1 − 3./0)[)∗*∗](#) + (1 − 3.12)[	)∗ ∙ *∗](#)4 + .--(#),  (Eqs. 1-4)  

!-+(#) = 5	!++(#)66666666 + 7	!--(#)66666666 + &--	8	03./0	[)∗*∗](#) + 3.12	[)∗ ∙ *∗](#)4 + .-+(#). 

The parameters are defined in the same way as the bimolecular FRET model. Again, -!!(#), 
-##(#) and -#!(#) are zero-mean stochastic variables describing measurement noise of 
respective fluorescence signals, and we assume that their magnitudes are estimated 
independently from the B-FRET algorithm. 

 

A reduced measurement model for unimolecular FRET systems 

We first assume that the total concentration of the FRET sensor molecule does not change 
during a measurement: 

&343/5	 = [)∗*∗](#) + [)∗*](#) + [)*∗](#) + [)*](#) + [)∗ ∙ *∗](#) + [)∗ ∙ *](#) + [) ∙ *∗](#) + [) ∙ *](#). 

We also introduce variables to describe the total concentrations of active- and inactive-state 
sensors respectively: 

[,)'('%)](#) = [,∗)∗](#) + [,∗)](#) + [,)∗](#) + [,)](#), 

[, ∙ )'('%)](#) = [,∗ ∙ )∗](#) + [,∗ ∙ )](#) + [, ∙ )∗](#) + [, ∙ )](#). 

Next, we assume that the photobleaching rate is a first-order decay process:  

7([)∗*∗](#) + [)*∗](#) + [)∗ ∙ *∗](#) + [) ∙ *∗](#))
7# = −:(#)([)∗*∗](#) + [)*∗](#) + [)∗ ∙ *∗](#) + [) ∙ *∗](#)), 

7([)∗*∗](#) + [)∗*](#) + [)∗ ∙ *∗](#) + [)∗ ∙ *](#))
7# = −;(#)([)∗*∗](#) + [)∗*](#) + [)∗ ∙ *∗](#) + [)∗ ∙ *](#)), 

where 9(#) and :(#) are the bleaching rates of the acceptor and donor and at time #.  Solving 
these, we get:   

[,∗)∗](#) + [,)∗](#) + [,∗ ∙ )∗](#) + [, ∙ )∗](#) = &'('%)	;
.∫ 01'!23'!"

# = &'('%)	<!(#, =!), 

[,∗)∗](#) + [,∗)](#) + [,∗ ∙ )∗](#) + [,∗ ∙ )](#) = &'('%)		;
.∫ 41'!23'!"

# = &'('%)	<#(#, =#), 

where we, in the same way as bimolecular FRET, introduced the functions <!(#, =!) =

;
.∫ 01'!23'!"

#  and <#(#, =#) = <#(#, =#) parameterized by =! and =#, respectively. <!(#, =!) and 
<#(#, =#) represent the intact fractions of the donor and acceptor at time # respectively.   
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Lastly, we assume that the system is in a quasi-steady state at each time point, i.e., the time 
scale of the active-inactive transition is sufficiently shorter than that of photobleaching. 
Therefore, at a certain time #, the intact fractions of the acceptor and donor molecules of all 
active-state (or inactive-state) sensor molecules are given by <!(#, =!) and <#(#, =#). This gives 
us the following relationships:   

[,∗)∗](#) = <!(#, =!)<#(#, =#)[,)'('%)](#), 

[,∗ ∙ )∗](#) = <!(#, =!)<#(#, =#)[, ∙ )'('%)](#). 

Under these assumptions, the general model (Eqs. 1-4) is reduced to: 

!++(#) = &++	<+(#, =+)&343/5	 	+ .++(#), 

!--(#) = &--0<-(#, =-)&343/5	 − <+(#, =+)<-(#, =-)(3./0	[)*343/5](#) + 3.12	[) ∙ *343/5](#))4 + .--(#),  (Eqs. 1-5)    

!78(#) = 5	!++(#)66666666 + 7	!--(#)66666666 + &--<+(#, =+)<-(#, =-)8	(3./0	[)*343/5](#) + 3.12	[) ∙ *343/5](#)) 	+ .-+(#). 

To simplify, we reparametrize the model. Setting &!! = &## = 1 as in the bimolecular FRET 
model, we get: 

[)'('%)] = &!!&'('%)	 = &'('%) , 

[,'('%)] = &##&'('%)	 = &'('%)	, 

E(#) = &##(2$%&	[,)'('%)](#) + 2$=>	[, ∙ )'('%)](#))

= (2$%&	[,)'('%)](#) + 2$=>	[, ∙ )'('%)](#)). 

Note that because generally &!! ≠ &##, the concentration of [)'('%)] is measured by a different 
unit from those of [,'('%)] and E(#); However, this is not an issue as far as we denominate the 
FRET index by [,'('%)], in the same way as the bimolecular case. 

By discretizing the model in time in the same way as the bimolecular FRET, we get  

!!!"#"!$ = &!"#"!, (!$[*#$#%&] + -!!"#"!$, 

!''(#(') = &'(#(', (')[0#$#%&] 	− &!(#(', (!)&'(#(', (')3( + -''(#('),    (Eqs. 1-6)       

!'!(#(') = 4&!(#(', (!)[*#$#%&] + 5&'(#(', (')[0#$#%&] + (6 − 5)&!(#(', (!)&'(#(', (')3( + -'!(#('). 

Note that the apparent form of the model is identical to that of the bimolecular-FRET model, 
although the interpretation of E(#<) ≡ E< is different: for bimolecular FRET E(#) represents 
2$%&	[,)'('%)](#) whereas for monomolecular FRET E(#) represents (2$%&	[,)'('%)](#) +
2$=>	[, ∙ )'('%)](#)).  Once the parameters and E< are inferred from the data, one can quantify 
the FRET signal as 

2< =
E<

[,'('%)]
=
2$%&	[,)'('%)]/#<

#3 + 2$=>	[, ∙ )'('%)]/#<
#3

[,'('%)]
, 

which has a clear interpretation given by the last expression. 
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On the parameterized photobleaching functions in the measurement models 

In principle, we can use any parameterized photobleaching functions for <!(#, =!) and <#(#, =#), 
which describe the temporal evolutions of the fractions of intact acceptor and donor 
respectively, depending on the FRET experiment. The photobleaching dynamics of the 
fluorophores can be usually described by simple functions such as linear, single-exponential, or 
bi-exponential functions. Which function is more appropriate depends primarily on the degree 
of photobleaching, which depends on the length of a measurement and excitation intensity. For 
some data sets, the appropriate functional form can be unknown. In this case, different models 
can be compared using a model-selection criterion such as the Bayesian information criterion 
(Materials and Methods) to find out which model is best evidenced by the data.  

 

Derivation of E-FRET formula for bimolecular FRET 

Here, based on the original work, we re-derive the E-FRET formula (Materials and Methods), so 
that assumptions involved can be seen more clearly. First, the E-FRET formula reads    

2@(AA(#) =
!#!(#) − 4!!!(#)55555555 − 6!##(#)

!#!(#) − 4!!!(#)55555555 + (7 − 6)!##(#)

!!!(# = 0)5555555555555

!!!(#)55555555
. 

The E-FRET method asserts that this formula gives an estimate of the following FRET index,  

2(#) =
2$%&[,)'('%)](#)

[,'('%)]
. 

For a unimolecular FRET system with non-zero minimum FRET efficiency, the FRET index is (see 
‘A reduced measurement model for unimolecular FRET systems’), 

2(#) =
2$%&	[,)'('%)](#) + 2$=>	[, ∙ )'('%)](#)

[,'('%)]
. 

In general, 2@(AA(#) ≠ 2(#); however, under certain assumptions, one can shown 2@(AA(#) =
2(#), which we show below. For brevity, we only consider the case of bimolecular FRET (i.e.,	
2 = 2$%& [,)'('%)](#) [,'('%)]⁄ ), but one can easily derive the same formula for the case of 
unimolecular FRET with non-zero minimum FRET.   

In the above section entitled ‘A reduced measurement model for bimolecular FRET systems’, we 
assumed (i) the conservation of the total fluorescent protein concentrations, (ii) the 
photobleaching is a first-order decay process, and (iii) the system is in a quasi-steady state at 
each time point. Mathematically, these assumptions were expressed as 

[)∗](#) + [,∗)∗](#) + [,)∗](#) = [)'('%)]<!(#, =!), 

[,∗](#) + [,∗)∗](#) + [,∗)](#) = [,'('%)]<#(#, =#), 

[,∗)∗](#) = [,)'('%)]	(#)<!(#, =!)<#(#, =#). 

Using these, the general equation that link chemical species to fluorescence intensities (Eqs. 1-1) 
becomes the reduced model (Eqs. 1-2), which reads 
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!!!(#) = &!!	<!(#, =!)[)'('%)] 	+ -!!(#), 

!##(#) = &##(<#(#, =#)[,'('%)] 	− <!(#, =!)<#(#, =#)2$%&	[,)'('%)](#)) + -##(#), 

!BC(#) = 4	!!!(#)55555555 + 6	!##(#)55555555 + &##<!(#, =!)<#(#, =#)7	2$%&	[,)'('%)](#) 	+ -#!(#). 

By plugging these expressions into the E-FRET formula, and assuming zero measurement noise 
(-!! = -## = -#! = 0), one gets 

2@(AA(#) =
!#!(#) − 4!!!(#)55555555 − 6!##(#)

!#!(#) − 4!!!(#)55555555 + (7 − 6)!##(#)

!!!(# = 0)5555555555555

!!!(#)55555555
 

=
E!!	F	G"#$	[HI%&%#'](K)M((K, O()M!(K, O!)

E!!	F	G"#$	[HI%&%#'](K)M((K, O()M!(K, O!) + E!!F1[H%&%#']M!(K, O!) − G"#$[HI%&%#'](K)M((K, O()M!(K, O!)2
1

M((K, O()
 

=
2$%&	[,)'('%)](#)

	[,'('%)]
= 2. 

Thus, the E-FRET formula gives the estimation of the FRET index defined as 2 =
2$%& [,)'('%)](#) [,'('%)]⁄  when the three assumptions are satisfied.  

 

SI Text 2: Learning algorithm and prior distributions 
Overview 

The goal of the B-FRET learning algorithm is to make an information-theoretically optimal 
inference of a user-defined FRET index 2 at each time point, given a model ℳ and a set of data 
T.  

A data set can be described as  T = G!!!,8:;* , !##,8:;) , !#!,8:;)I, where  

!!!,8:;* = G!!!(#8
!), !!!/#9

!3, … , !!!/#;*
! 3I, 

!##,8:;) = G!##(#8
#), !##(#9

#), … , !##/#;)
# 3I, 

!#!,8:;) = G!#!(#8
#), !#!(#8

#), … , !#!/#;)
# 3I. 

Note that measurement time points for !!! are generally different from those of !## and !#! 
(Materials and Methods). 

A model ℳ can be written as  

!!!/#S
!
3 = <!/#S

!
, =!3[)'('%)] + -!!/#S

!
3,			(Eq. 2 − 1)    

X< = X<.8 + Y<.8,			(Eq. 2 − 2)    

Z< = [<(=$)X< + \< .			(Eq. 2 − 3)    

See Materials and Methods and SI Appendix, SI Text 1 for the derivation and the set of 
assumptions involved. The equation for !!! is separated from the state-space representation of 
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the equations for Z< = A!##/#<
#3,

	

!#!/#<
#
3B
T

 (Eqs. 2-2 and 2-3), because only !## and !#! are 

dependent on the latent variable X< = (1, E<)
T, where E< ≡ E/#<

#3. We call Eq. 2-2 a dynamic 
model and Eq. 2-3 a measurement model. Y<.8 = (0, ^)T is the process noise, where the 
stochastic variable ^ follows a zero-mean probability distribution parameterized by =U, 
^	~	`/^a=U3. -!! and \< describes the measurement noise of !!!, !## and !#!, respectively. We 
assume zero-mean Gaussian measurement noise, i.e.: 

-!!/#<
!3	~	N A0, c!!

9 /#<
#3B,  

\< 	~	Nde, f
c##
9 /#<

#3 0

0 c#!
9 /#<

#3
gh. 

The variances of the measurement noise as functions of time c!!9 /#<!3, c##9 /#<
#3, and c#!9 /#<#3 

are determined independently from the B-FRET algorithm (SI Appendix, SI Text 3). The 
measurement model matrix [<(=$) is defined as 

[<(=$) = f
<#(#<

#
, =#)[,'('%)] −<!(#<

#
, =!)<#(#<

#
, =#)

4<!(#<
#
, =!)[)'('%)] + 6<#(#<

#
, =#)[,'('%)] (7 − 6)<!(#<

#
, =!)<#(#<

#
, =#)

g, 

where 4, 6 and 7 are imaging-system parameters determined by independent measurements 
(Materials and Methods; SI Appendix, SI Text 3) and =$ = {[)'('%)], [,'('%)], =!, =#} are 
unknown parameters of the measurement matrix [< (Materials and Methods for definitions). 
We label the set of all unknown parameters in the model by =, i.e.,  

= = G=$, =VI. 

Both bimolecular and unimolecular FRET systems follow the same model equation, although the 
interpretations of the parameters and variables are different (SI Appendix, SI Text 1).  

Making the optimal inference of 2< ≡ 	2/#<
#3 amounts to computing the posterior probability 

distribution of 2< given a set of data T and a model ℳ, `(2<|T,ℳ); with the distribution at 
hand, one can obtain, e.g., the most probable value of 2< quantified by the mode of the 
distribution and the uncertainty of the estimation quantified by, e.g., the standard deviation of 
the distribution. As written, this posterior distribution hides the influence of model parameters. 
To make this explicit, we expand the distribution `(2<|T,ℳ) over the model parameters =:   

`(2<|T,ℳ) = j`(2< , =|T,ℳ) 6= 

= j`(=|T,ℳ)`(2<|=, T,ℳ)6=.			(Eq. 2 − 4) 

This decomposition illustrates how we evaluate `(2<|T,ℳ) in practice: first, evaluate (or draw 
samples from) the posterior distribution of the model parameters `(=|T,ℳ); second evaluate 
the posterior distribution of the FRET index `(2<|=, T,ℳ)  given the sampled parameter. With 
a sufficient number of samples, the integral of the posterior distribution of the FRET index 
`(2<|T,ℳ) is approximated straightforwardly by a Monte Carlo approach (Materials and 
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Methods). In B-FRET, below, we first describe how the respective distributions are evaluated. 
We then briefly discuss the prior distributions of the parameters.   

 

Evaluating the posterior distribution of the model parameters	`(=|T,ℳ) 

Using the Bayes’ rule, the posterior distribution of the parameters = given the data T, 
log `(=|T) (hereafter, we omit the conditioning by the model ℳ to make the expressions less 
cluttered) can be written as 

log `(=|T) = log `(T|=) + log `(=) + & 

= log `/!##,8:;) , !#!,8:;)a=3 + log `/!!!,8:;*a=3 + log `(=) + & 

= log `/Z8:;)a=3 + log `/!!!,8:;*a=3 + log `(=) + &	 

where log `(=) is the log prior distributions of the parameters (see below) and & is the 
normalization constant. Note that, given the model parameters,  log `(T|=) =
log `/!##,8:;) , !#!,8:;)a=3 + log `/!!!,8:;*a=3 because !!! is independent of the hidden 
variable {E<} and the measurement noise of !!! is independent of that of !## and !#!. 

The log-likelihood function of the parameters {[)'('%)], =!}, log `/!!!,8:;*a=3 is evaluated as 

log `/!!!,8:;*a=3 = log `/!!!,8:;*a{[)'('%)], =!}3

= log

⎝

⎛q
1

r2sc!!
9 (#<

!)

expw−
/!!!/#<

!3 − <!(#<
!, =!)[)'('%)]3

9

2c!!
9 (#<

!)
x

;*

<W8
⎠

⎞	

= −{
/!!!/#<

!3 − <!/#<
!, =!3[)'('%)]3

9

2c!!
9 (#<

!)

;*

<W8

+ Const.			(Eq. 2 − 5)	

Evaluating the log-likelihood function log `/Z8:;)a=3 is less straightforward due to the 
involvement of the hidden variable X<. This can be written as 

log `/Z8:;)a=3 = { log `(Z<|Z8:<.8, =)

;)

<W8

= { log Åj`(Z<|X< , =)`(X<|Z8:<.8, =)6X<Ç

;)

<W8

,			(Eq. 2 − 6) 

where we define `(Z8|Z8:X, =) ≡ `(Z8|=). The distribution `(Z<|X<) is specified by the 
measurement model (Eq. 2-3). Thus, we need to evaluate the predictive distribution of the state 
at time point Ñ, X<, given certain parameter values, =, and the observables up to Ñ − 1, Z8:<.8, 
i.e.,   `(X<|Z8:<.8, =). This can be written as 

`(X<|Z8:<.8, =) = j`(X< , X<.8|Z8:<.8, =)6X<.8 
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= j`(X<|X<.8, Z8:<.8, =)`(X<.8|Z8:<.8, =)6X<.8 

= j`(X<|X<.8, =)`(X<.8|Z8:<.8, =)6X<.8 , (Eq. 2 − 7) 

where we used `(X<|X<.8, Z8:<.8, =) = `(X<|X<.8, =). The distribution `(X<|X<.8, =) is 
specified by the dynamic model (Eq. 2-2). Thus, we need to evaluate the filtering (or posterior) 
distribution of the hidden state X<.8, given certain parameter values, =, and the observables up 
to the same time point Ñ − 1, Z8:<.8, i.e.,  `(X<.8|Z8:<.8, =). This can be written, using Bayes’ 
rule, as 

`(X<|Z8:< , =) =
1

Ü<
`(Z<|X< , Z8:<.8, =)`(X<|Z8:<.8, =) 

=
1

Ü<
`(Z<|X< , =)`(X<|Z8:<.8, =), (Eq. 2 − 8) 

where we used `(Z<|X< , Z8:<.8) = `(Z<|X<), which is specified by the measurement model (Eq. 
2-3). Ü< is the normalization constant.  

With these expressions, the likelihood function (Eq. 2-6) can be evaluated by the following 
recursive method. First, by providing the filtering distribution of the time point one step before 
the initial time point `(XX|=)	/= `(XX|Z8:X, =)3 as a prior, Eq. 2-7 gives the predictive 
distribution of the initial time point `(X8|Z8:X, =) = `(X8|=). Given this predictive distribution, 
Eq. 2-8 gives the filtering distribution of the initial time point	 `(X8|Z8, =). This enables to 
evaluate, through Eq. 2-7, the predictive distribution of the next time point	`(X9|Z8, =), which 
can be fed into Eq. 2-8 to obtain the filtering distribution `(X9|Z9, =). By repeating this 
procedure, the predictive distributions `(X<|Z8:<.8, =) at all the following time points can be 
obtained. This enables to compute the likelihood function (Eq. 2-6).  

The predictive and filtering distributions have closed-form expressions when i) the model is 
linear, which is true for FRET measurements, and ii) the process noise is Gaussian. Since 
Gaussian dynamic model is able to capture a broad range of dynamics1,2, and therefore has 
direct relevance to FRET-data analysis, we first discuss the linear-Gaussian case below. However, 
there can be situations where the dynamics of a system is inherently non-Gaussian (e.g., the 
step-like dynamics described in the main text). To better capture the dynamics in such cases, 
one needs to assume a non-Gaussian process noise, which necessitates evaluating the predictive 
and filtering distributions numerically. We thus discuss the non-Gaussian case next.    

 

Gaussian process noise 

Assuming Gaussian process noise, the predictive and filtering distributions can be written as1,2 

`(X<|Z8:<.8, =) = N/X<aàY
.(=), â<

.(=)3, 

`(X<|Z8:< , =) = N/X<aàY(=), â<(=)3,	
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where the parameters of the Gaussian distributions above can be computed with the following 
Kalman filter prediction and update steps. 

The prediction step is  

àY
.(=) = à<.8(=), 

â<
.(=) = â<.8(=) + ä<.8, 

where ä<.8 is the variance-covariance matrix of the process noise, i.e., Y<.8~N(e, ä<.8), and 

ä<.8 = Å
0 0

0 cZ
9Ç. 

The update step is 

ã<(=) = Z< −[<(=)à<
.(=), 

å<(=) = [<(=)â<
.(=)[<

T(=) + ç< , 
é<(=) = â<

.(=)[<
T(=)åY

.[(=), 
àY(=) = à<

.(=) + é<(=)ã<(=), 
â<(=) = â<

.(=) − é<(=)å<(=)é<
T(=). 

 
The recursion is started from the prior mean àX and covariance âX of the distribution of XX 
`(XX|Z8:X, =) ≡ N(XX|àX, 	âX), which is given as 

àX = Å
1

EX
Ç, 

âX = Å
è 0

0 cZ#
\ Ç. 

The parameters EX and cZ#  are chosen to reflect our ignorance about the initial state. Typically, 
an arbitrary value of EX (e.g., EX = 0) and a sufficiently large variance cZ#

\  are used. The 
parameter è	(> 0) needs to be sufficiently small but nonzero, e.g., è = 10.8X, for the numerical 
stability in computing âX.8(=). The exact choices of these parameters do not affect the result.   

Using these, the log posterior distribution (Eq. 2-6) can be written as 

log `/Z8:;)a=3 = { log Åj`(Z<|X])`(X]|Z8:<.8, =)6X<Ç

;)

<W8

 

= { log ÅjN(Z<|[<(=)X< , ç<)N/X<aà<
.(=), â<

.(=)36X<Ç

;)

<W8

 

= { logN/Z<a[<(=)à<
.(=), å<(=)3

;)

<W8

 

= −{f
1

2
log|2så<(=)| +

1

2
ã<
T(=)å<

.8(=)ã<(=)g

;)

<W8

. 
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Thus, the posterior distribution of the parameters is given by  

log `(=|T) = log `/Z8:;)a=3 + log `/!!!,8:;*a=3 + log `(=) + Const. 

= −^_
1
2 log

|2ef)(O)| +
1
2 g)

*(O)f)+,(O)g)(O)h
-!

).,
−^

(i(((K)() − M((K)(, O()[I%&%#'])/

2j((/ (K)()

-"

).,
+ log k(O) + Const.			(Eq. 2 − 9)	 

	
Non-Gaussian process noise 

To compute the filtering and predictive distributions numerically, we approximate functions by a 
step function1. Since the first element of X] is fixed to 1, the predictive distribution in practice is 
one-dimensional, i.e., `/X] = (1, E<)

TaZ8:<.8, =3 = `(E<|Z8:<.8, =). Rewriting the predictive 
distribution, we have 

`(E<|Z8:<.8, =) = j`(E<|E<.8, =)`(E<.8|Z8:<.8, =)6E<.8. 

To approximate the distribution `(E<|Z8:<.8, =) by a step function, we first restrict the domain 
of the function to a finite interval ëX ≤ E< ≤ ë3, where ëX and ë3  are sufficiently small and 
large numbers respectively. Then we divide the interval into d sub-intervals ëX < ë8 < ⋯ < ë3  
with a uniform interval Δë = ë=t8 − ë= 	for ñ = 0,… , 6 − 1. The predictive distribution 
`(E<|Z8:<.8, =) ≡ ó̀(E<) is then specified by {ë8, … , ë3; ó̀8, … , ó̀3}, where ó̀= = ó̀(ë=)	for	ñ =

1,… , 6. In the same way, the filtering distribution `(E<.8|Z8:<.8, =) ≡ <õ(E<.8) is specified by 
{ë8, … , ë3; <õ8, … , <õ3}, where <õ= = <õ(ë=). The process noise ^<.8 that appears in the dynamic 
model, E< = E<.8 + ^<.8, follows a distribution `(^|=) ≡ úù(^), and is specified, with the same 
discretization interval Δë and a sufficiently large number ë# = ë3 − ëX, by 
Gë.# , … , ë#; úù.# , … , úù#I, where úù= = úù(ë=) for ñ = −,,−, + 1,… , ,. Using this notation, the 
approximated prediction distribution can be written as, for ñ = 1,… , 6, 

ó̀= = ó̀(ë=) = j úù(ë= − ë)
&9

&#
<õ(ë)6ë 

={j úù(ë= − ë)
&:

&:;<
<õ(ë)6ë

3

SW8

 

≈ Δë{úù=.S<õS

3

SW8

 

= Δëü†õä°¢= ,			(Eq. 2 − 10)   

where †õ = /<õ8, <õ9, … , <õ33 and ä° = d

úùX ⋯ úù3.8
⋮ ⋱ ⋮

úù8.3 ⋯ úùX

h. After this is computed, ó̀=  rescaled to 

uv=
w&1∑ uv(9

(>< 2
  to properly normalize the approximated distribution.  
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Eq. 2 – 10 approximates the predictive distribution at time #<, `(E<|Z8:<.8, =), as a piecewise 
continuous function. Given this, the filtering distribution at time #<,   

`(E<|Z8:< , =) =
1

Ü<
`(Z<|E< , =)`(E<|Z8:<.8, =) 

is approximated by multiplying the discrete values ó̀=  by `(Z<|E< , =) =
N(Z<|[<(=)(1, E<)

T, ç<),  evaluated at the same timepoints. Thus, the values of the steps in 
filtering distribution are: 

<õ= = <õ(ë=) =
N(Z<|[<(=)(1, ë=)

T, ç<) ó̀=

&
,			(Eq. 2 − 11) 

where the normalization constant & is given by  

& = 	j N/Z<a[<(=)(1, ë=)
T, ç<3 ó̀(ë=)6ë=

&9

&#
 

={j N/Z<a[<(=)(1, ë=)
T, ç<3 ó̀(ë=)6ë=

&:

&:;<

3

SW8

 

= Δë{NAZ<•[<(=)/1, ëS3
T
, ç<B ó̀S

3

SW8

. 

In the same way as the Gaussian case, the predictive and filtering distributions at all time points 
can be computed in a recursive manner.  

Once we have the predictive distribution at each time point # = #<
#, we can evaluate the log-

likelihood function as 

log `/Z8:;)a=3 = { log Åj`(Z<|E< , =)`(E]|Z8:<.8, =)6E<Ç

;)

<W8

 

= {logfj N/Z<a[<(=)(1, ë)
T, ç<3 ó̀(ë)6ë

&9

&#
g

;)

<W8

 

={ logd{j N/Z<a[<(=)(1, ë)
T, ç<3 ó̀(ë)6ë

&:

&:;<

3

SW8

h

;)

<W8

 

={ logdΔë	{NAZ<•[<(=)/1, ëS3
T
, ç<B ó̀S

3

SW8

h

;)

<W8

.			(Eq. 2 − 12) 

Since the likelihood function `/!!!,8:;*a=3 and the prior distribution `(=) can be evaluated in 
the same way as the Gaussian case, the posterior distribution of the parameters is given by  

log `(=|T) = log `/Z8:;)a=3 + log `/!!!,8:;*a=3 + log `(=) + & 
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=^logyΔ{	^N}~)�Ä)(O)11, {02
1, Å)Ç kv0

2

0.,
É

-!

).,
−^

(i(((K)() − M((K)(, O()[I%&%#'])/

2j((/ (K)()

-"

).,
+ log k(O) + Const. (Eq. 2 − 13) 

 

Approximating the posterior distribution log `(=|T) 

Samples {=Ö} can be drawn from this posterior distribution Eq. 2-9 or Eq. 2-13, by using a 
Markov chain Monte Carlo (MCMC) method (e.g., Slice sampling3,4) – this approach is exact in 
the limit of large number of samples. However, since this method is computationally costly, in 
the B-FRET algorithm, we implemented the option to approximate the distribution by a 
lognormal distribution (the Laplace approximation3,4); we chose a lognormal distribution rather 
than a Gaussian distribution since all parameters in our model take positive values. To make this 
approximation, we first find the mode of the log posterior distribution as a function of 
log ` (log = |T), which we label by log =Ü!á, using an optimization algorithm, and then 
compute the Hessian matrix at the mode defined by  

¶ = −∇-+à O∇-+à O log `(log = |T) |-+à OW-+àO?*@. 

Them, the posterior distribution is approximated by  

`(=|T) ≈ Lognormal(=| log =Ü!á , ¶
.8), 

where ¶.8 is the inverse of ¶. The difference in the performance between the two methods 
are negligible (SI Appendix, Fig. S4), so we used the Laplace approximation unless otherwise 
indicated.  

 

Evaluating the posterior distribution of the state given a set of parameters `(2<|=, T,ℳ) 

Since a user-defined FRET index 2< is dependent only on the hidden state X< and model 
parameters = (e.g., 2< =

ZA
[#"'"%(]

= 2$%&
[#!"'"%(]
[#"'"%(]

	, where [,'('%)] is a part of the model 

parameter =), evaluating the (smoothing) distribution of the FRET index conditioned by 
parameters `(2<|=, T) is equivalent to evaluating the distribution of the hidden state 
conditioned by the parameters  `(X<|=, T). Note that, once the parameters = are given, the 
only relevant data to the inference of X< is Z8:;)  since !!! is independent from {X<}, and thus 
`(X<|=, T) = `/X<a=, Z8:;)3. The distribution `/X<a=, Z8:;)3 can be evaluated by the following 
Bayesian smoothing equation1,2:  

`/X<a=, Z8:;)3 = j`/X< , X<t8aZ8:;) , =3 6X<t8 

= j`/X<t8aZ8:;) , =3`/X<aX<t8, Z8:;) , =3 6X<t8 

= j`/X<t8aZ8:;) , =3`(X<|X<t8, Z8:< , =) 6X<t8 
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= j`/X<t8aZ8:;) , =3
`(X<|Z8:< , =)`(X<t8|X< , Z8:< , =)

`(X<t8|Z8:< , =)
6X<t8 

= `(X<|Z8:< , =)j
`/X<t8|Z8:;) , =3`(X<t8|X< , =)

`(X<t8|Z8:< , =)
6X<t8			(Eq. 2 − 14), 

where from the second to the third line we used  

`/X<aX<t8, Z8:;) , =3 = `(X<|X<t8, Z8:< , Z<t8:;) , =) 

=
`/Z<t8:;)|X< , X<t8, Z8:< , =3`(X<|X<t8, Z8:< , =)

`/Z<t8:;)aX<t8, Z8:< , =3
 

=
`/Z<t8:;)|X<t8, Z8:< , =3`(X<|X<t8, Z8:< , =)

`/Z<t8:;)aX<t8, Z8:< , =3
 

= `(X<|X<t8, Z8:< , =). 

The Bayesian smoothing equation (Eq. 2-14) has a closed form expression when the process 
noise is Gaussian. However, when the process noise is non-Gaussian, we need to resort to a 
numerical method. We discuss both cases below.  

 

Gaussian process noise 

The closed-form expression1,2 for the smoothed distribution is 

`/X<aZ8:;) , =3 = N/X<aà<
â (=), â<

â(=)3, 

where the parameters of the Gaussian distributions can be computed by the following 
RTS(Rauch-Tung-Striebel) smoother: 

à<t8
. (=) = à<(=), 

â<t8
. (=) = â<(=) + ä<, 

´<(=) = â<(=)[â<t8
. (=)].8, 

à<
â (=) = à<(=) + ´<(=)[à<t8

â (=) −à<t8
. (=)], 

â<
ä(=) = â<(=) + ´<(=)[â<t8

â (=) − â<t8
. (=)]´<

T(=). 

Here, à<
.(=), â<.(=), à<(=), and â<(=) are the mean and covariance of the predictive and 

smoothed distribution computed above, i.e., `(X<|Z8:<.8, =) = N/X<aàY
.(=), â<

.(=)3	 and 
`(X<|Z8:< , =) = N/X<aàY(=), â<(=)3.  ä< is the variance-covariance matrix of the process 
noise, i.e., Y<~N(e, ä<). The recursion is initiated from the last timepoint Ñ = L#, with 
à;)
â (=) = ¨;)(=) and â;)

â (=) = â;)(=). 

 

Non-Gaussian process noise 



 
 

17 
 

We approximate the smoothed distribution `/X<aZ8:;)3 by step functions1. Rewriting the 
smoothed distribution using E/##,<3 ≡ E<, we get 

`/E<aZ8:;) , =3 = `(E<|Z8:< , =)j
`/E<t8|Z8:;) , =3`(E<t8|E< , =)

`(E<t8|Z8:< , =)
6E<t8. 

In the same way as the step-function approximation of the predictive and filtering distributions, 
we restrict the domain of the function to a finite interval ëX ≤ E< ≤ ë3, and divide the interval 
into d sub-intervals ëX < ë8 < ⋯ < ë3  with a uniform interval Δë = ë=t8 − ë= 	for ñ = 1,… , 6 −

1. The smoothed distribution `/E<aZ8:;) , =3 ≡ ≠̃(E<) is then specified by {ëX, … , ë3; ≠̃8, … , ≠̃3}, 
where ≠̃= = ≠̃(ë=). Using this notation, the approximated smoothed distribution can be written 
as, for ñ = 1,… , 6, 

≠̃= = ≠̃(ë=) = <õ(ë=)j
≠̃(ë)úù(ë= − ë)

ó̀(ë)

&9

&#
6ë 

= <õ(ë=){j
≠̃(ë)úù(ë= − ë)

ó̀(ë)

&:

&:;<
6ë

3

SW8

 

= Δë<õ={úù=.S
≠̃S

ó̀S

3

SW8

 

= Δë<õ=üØù∞°¢= , 

where åù = A
ä<ã
u<ã
,
äBã
uBã
, … ,

ä9ã
u9ã
B and ä° = d

úùX ⋯ úù3.8
⋮ ⋱ ⋮

úù8.3 ⋯ úùX

h. The predictive distribution { ó̀=} and 

filtering distribution {<õ=} and are obtained by the recursive filtering algorithm described above. 
After this is computed, ≠=  is modified to ä=

w&1∑ ä(9
(>< 2

 to normalize the approximated distribution.  

 

Prior distributions of the model parameters 

The choice of prior distributions for the model parameters = = G[)'('%)], [,'('%)], =!, =# , =VI 
depends on the detail of the FRET experiment and how much an experimenter has knowledge 
about the parameters in advance. As demonstrated in the main text, however, it is not 
necessary to know the values of these parameters in advance because the fluorescence time 
series obtained by a typical FRET measurement contain enough information to confine these 
parameters.  Here, we discuss some examples and practical tips on constructing priors, without 
assuming any knowledge about these parameter values.  

First, for a parameter whose value is restricted within a range of [4, ±] by definition (e.g., the 
wight parameter : in the bi-exponential photobleaching function, <#(#) = : exp A−

'
å)<
B + (1 −
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:) exp A−
'
å)B
B, is bounded by [0,1]), one can use, e.g., a uniform distribution `(ë|4, ±), which 

takes 8
ç.%

 for ë ∈ [4, ±] and 0 otherwise.  

Other parameters that appear in the model can only take positive values, i.e., left-bounded by 
zero, by definition (e.g., the total concentration of acceptor [)'('%)]). For those parameters, we 
used log-normal distributions: 

`(ë) = lognormal(ë|≥, c9) =
8

&é√9ê
exp A−

(-ë &.í)B

9éB
B. 

Now we discuss how we chose ≥ and c9 for each parameter. The basic idea here is that before 
executing the B-FRET algorithm we roughly estimate each parameter and set ≥ and c9 so that 
“true” value of the parameter is certainly included in the support of the prior function.  

First, [)'('%)] and =! can be estimated relatively precisely without B-FRET because !!! is not 
dependent on the hidden variable {E<} (see Eq. 2-1).  The estimation is done by simply fitting 
the equation for !!!, !!! = [)'('%)]<!(#|=!)  (Eq. 2-1; here we neglect the measurement-noise 
term), to the data G!!!/#<!3I. Namely,  

G[)'('%)]ìä' , =!,ìä'	I = argmin
{[!"'"%(],O*}

	{ A[)'('%)]<!(#|=!) − !!!/#<
!3B

9
;*

<W8

. 

Thus, for the priors of  [)'('%)] and =!, we chose ≥ and c such that the mode of the log-normal 
distribution (exp(≥ − c9)) matches the estimated parameter values, after manually selecting 
relatively small c = cX	to reflect our relatively high confidence about the estimated parameter 
value. Note the standard deviation of a log-normal distribution lognormal(ë|≥, c9) with respect 
to log ë is c, so if one thinks an estimated parameter could be off roughly by CìAA  fold, s/he can 
set, e.g.,  c = log(CìAA). Thus, the priors for these parameters are: 

`([)'('%)]) = Lognormal([)'('%)]a log[)'('%)]ìä' + cX
9, cX

9), 

`/=!,=3 = Lognormal/=!,=a log =!,ìä',= + cX
9, cX

93, 

where =!,=  is the i-th element of =!.  

The parameters [,'('%)] and =# cannot be estimated in the same way because both !## and !#! 
are dependent on the hidden variable {E<}, which one cannot access before applying B-FRET. To 
roughly estimate [,'('%)], we note that the equations for !## and !#! can be written, neglecting 
the measurement-noise term, as 

!##/#<
#3 ≈ <#/#<

# , =#3[,'('%)] + −<!/#<
# , =!3<#/#<

# , =#3E< , 

!#!/#<
#3 ≈ 	4[)'('%)]<!/#<

# , =#3 + 6[,'('%)]<#/#<
# , =#3 + (7 − 6)<!/#<

# , =!3<#/#<
# , =#3E< . 

At the first time point of a measurement, <#(#8# , =#) = <!(#8
# , =!) = 1 by definition (there’s no 

photobleaching), and !!!(#8!) ≈ [)'('%)]. Deleting E< from the two equations, we get 
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[,'('%)]ìä' ≈
!#!(#8

#) + A(7 − 6)!##(#8
#) − 4!!!(#8

!)B

7
. 

The right-hand side of this equations are all observables (!!!(#8!), !##(#8#), and !#!(#8#)) or 
imaging-system parameters (4, 6,	and 7), and thus computable without knowing {E<}. Using 
this, we set the prior of [,'('%)] as 

`([,'('%)]) = Lognormal([,'('%)]a log[,'('%)]ìä' + cX
9, cX

9). 

Since [,'('%)]ìä' only gives a crude estimation, we set cX9 to a relatively high value. To roughly 
estimate =#, we fit the function of <#(#|=#) to a normalized time series of !##, G!##/#<#3/
!##(#8

#)I, i.e.,  

=#,ìä'	 = argmin
	O)

	{/<#(#|=#) − !##/#<
#3/!##(#8

#)3
9

;)

<W8

. 

Note that this is a rather crude estimation because the observed G!##/#<#3I depends on the 
degree of FRET between the donor and acceptor, which we neglect here. However, since the 
effect of FRET on the intensity !## is generally small (i.e., <#(#|=#)[,'('%)] >
<!(#|=!)<#(#|=!)E(#)), so this still gives an order-of-magnitude estimation. We can reflect the 
relatively high uncertainty by a relatively high cX9, and set the prior as 

`/=#,=3 = Lognormal/=#,=a log =#,ìä',= + cX
9, cX

93, 

where =#,=  is the i-th element of =#. 

The estimation of =V, which dictates the process noise of the hidden state ^	~	`/^a=V3, is more 
challenging and requires a sophisticated inference algorithm like B-FRET. Still, a rough, order-of-
magnitude estimation can be done for the purpose of constructing a prior distribution. First, we 
compute E< = 2@(AA/#<#3[,'('%)]ìä', where 2@(AA/#<#3, which gives an estimation of 5$%&[#!"'"%(]

[#"'"%(]
 

is obtained from the E-FRET formula (Materials and Methods) and the estimation of [,'('%)], 
[,'('%)]ìä', was obtained above.  Although this is a highly noisy estimate of E< based on the 
information-inefficient E-FRET formula, this allows us to compute the distribution of ΔE< =
E< − E<.8, which gives an estimation of  `/^a=U3, enabling to obtain =V,ìä'. Using, a large cX9, 
we set the prior as  

`/=V,=3 = Lognormal/=V,=a log =V,ìä',= + cX
9, cX

93, 

where =#,=  is the i-th element of =#. 

 

SI Text 3: Determining imaging-system parameters and measurement-
noise levels 
B-FRET assumes the knowledge of imaging-system dependent parameters, 4, 6, and 7 (see 
Materials and Methods or below for definitions), which have been routinely measured in 3-cube 
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FRET measurement setups5–7. Also assumed are the levels of measurement noise associate with 
the fluorescence signals !!!, !##, and !#! as functions of frame number (or time). Here, we 
describe how we determined these.     

 

Measurements of imaging system parameters 

The measurements of imaging-systems parameters 4, 6, and 7 were described elsewhere5,6 in 
detail, and so here we describe them only briefly. First, the cross-talk coefficients 4 and 6 can be 
estimated by observing the fluorescent signals from strains that express only the acceptor or the 
donor because 

4 ≡
∂#è#!##!

∂!è!!#!!
≃
!#!(!)

!!!(!)
,				(Eq. 3 − 1) 

6 ≡
∏!π!##!

∏#π####
≃
!#!(#)

!##(#)
,				(Eq. 3 − 2) 

where, ∂# (∂!) is the intensity of illumination reaching the sample through the donor (acceptor) 
excitation filter,  è#! (è!!) the absorption coefficient of the acceptor at the donor-excitation 
(acceptor-excitation) wavelength,	∏# (∏!) the throughput of the donor (acceptor) emission light-
path,	π# (π!) the quantum sensitivity of the camera for donor (acceptor) emission, and ##!, #!!, 
and ### respectively the exposure time for the FRET, acceptor, and donor channels; ) and , in 
the parentheses in the lower index indicates that the corresponding fluorescent signals are 
obtained from the strain that only expresses the acceptor and the donor respectively. The 
approximations above become exact in the limit of zero measurement noise. This can be shown 
by noting that 

!#!(!) = [)∗]∫#è#!ú!∏!π!##! + -#!(!), 

!!!(!) = [)∗]∫!è!!ú!∏!π!#!! + -!!(!), 

!#!(#) = [,∗]∫#è##ú#∏!π!##! + -#!(#), 

!##(#) = [,∗]∫#è##ú#∏#π#### + -##(#), 

where -#!(!), -!!(!), -#!(#) and -##(#) represent measurement noise, è## the absorption 
coefficient of the donor, and ú# (ú!) the quantum yield of donor (acceptor). As has been done 
before5–7, we obtained the estimates of 4 by measuring !#!(!) and !!!(!) (Eq. 3-1) and 6 by 
measuring !#!(#) and !##(#) (Eq. 3-2) from many cells and linear least-squares fitting the data: 

4 = argmin
%!

{/4ñ!!!(!),= − !#!(!),=3
9

=

, 

6 = argmin
3!

{/6ñ!##(#),= − !#!(#),=3
9

=

, 

where subscripts ñ indicates different cells. The values we obtained were 4 =
0.3369	(±0.0006) and 6 = 0.0891	(±0.0001) for the measurement system used for the E. coli 
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chemotaxis pathway6 (SE shown in parentheses), and 4 = 0.2029	(0.1942, 0.2115)and 6 =
0.6938	(0.6848, 0.7029) for the system used for the HeLa cAMP responses (SI Appendix, Fig. 

S3; 95% confidence intervals in the parentheses). 

The parameter 7 quantifies the change in sensitized emission define as Ω@ = !#! − 4!!! − 6!## 
(Zal et al) per unit change in !## due to FRET, namely 7 ≡ •

3óC
3ò))

•, which, using optical 

parameters, can be written as 7 ≡ ô*ö*õ*')*
ô)ö)õ)'))

. This is in principle can be measured from a FRET 

strain expressing both donor and acceptor and by measuring fluorescence intensities before and 
after acceptor photobleaching:   

7 ≃
Ω@
ñ

!##
u(ä'

− !##
ñ ,				(Eq. 3 − 3) 

where  !##
u(ä' is the intensity of donor fluorescence after the acceptor is photobleached, and Ω@ñ 

and !##ñ  correspond to Ω@  and !##, respectively, in the absence of photobleaching5. Again, the 
approximation is exact in the limit of zero measurement noise. The relation can be shown by 
noting 

Ωú
ñ = [,∗)∗]∫#è##2$%&ú!∏!π!##! + -óC , 

!##
u(ä'

− !##
ñ = [,∗)∗]∫#è##2$%&ú#∏#π#### + -##

ñ , 

where -óC  and  -##ñ  represent measurement noise. However, acceptor photobleaching can cause 
confounding effects such as photoconversion8, and thus Eq. 3-3 is not very useful as an equation 
to empirically estimate 7. Alternatively, if one can induce changes in FRET by, e.g., external 
stimuli, 7 can be measured without acceptor photobleaching6. To see this, consider two states 
(æ = 1 or 2) of a FRET sample that have different FRET levels. For each state, the equation 3-3 
holds:   

7 ≃
Ω@,S
ñ

!##
u(ä'

− !##,S
ñ , 

where Ω@,Sñ  and !##,Sñ  are Ω@ñ and !##ñ  when the sample state is æ (= 1 or 2). Note 7 and !##
u(ä' are 

common in the two states. By deleting !##
u(ä' from the two equations 7 can be expressed as  

7 ≃
aΩ@,9

ñ − Ω@,8
ñ a

a!##,9
ñ − !##,8

ñ a
. 

Based on this expression, we estimated the value of 7 by least-squares fitting the fluorescence 
signals from multiple cells, i.e.,  

7 = argmin
ù!

{/7ñ|!##,9
ñ − !##,8

ñ | − |Ω@,9
ñ − Ω@,8

ñ |3
9

=

, 

where subscripts ñ indicates different cells. The value obtained was 7 = 0.3497	(±0.0018) for 
the system used for the E. coli chemotaxis pathway6 (SE shown in parentheses), and 7 =
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1.284	(1.257, 1.312) for the system used for the HeLa cAMP responses (SI Appendix, Fig. S3; 
95% confidence intervals in the parentheses). 

 

Effects of parameter-estimation error on the FRET signal  

The imaging-system parameters 4, 6 and 7 determined above can only be measured with finite 
precision; therefore the determined values inevitably contain some error. The FRET index we 
estimate 2 = 2$%&[,)'('%)] [,'('%)]⁄ , when expressed by using observables, is a function of 
these parameters, as can be seen in the E-FRET formula5 (Materials and Methods):  

2@(AA(#) =
!#!(#) − 4!!!(#)55555555 − 6!##(#)

!#!(#) − 4!!!(#)55555555 + (7 − 6)!##(#)

!!!(# = 0)5555555555555

!!!(#)55555555
, 

therefore the errors in 4, 6 and 7 necessarily bias the estimation of 2. How these errors affect 
the estimation of 2 was quantitatively investigated previously6, and we reproduce the 
discussion below to make our argument self-contained. Briefly, the conclusions are the 
following. (i) The bias in the absolute level of estimated 2 grows exponentially as more 
acceptors and donors are photobleached; this generates an increasing or decreasing trend – the 
sign depends on the sign of the errors – over time in the estimated 2, even if the actual degree 
of molecular interactions remains unchanged over time. However, (ii) the bias in the changes in 
the estimated 2 that occurs at a time scale faster than the (generally slow) photobleaching is 
small. This means that changes in the estimated 2 around the slowly increasing or decreasing 
trend are reliable signals. Because of these properties, for both E-FRET and B-FRET results, we 
subtracted slowly increasing or decreasing trends by fitting a linear or exponential function6.   

Here, we show the effects of the error in the imaging-system-parameter estimations6.  The 
estimated values of the parameters can be written as 

4ìä' = 4 + Δ4, 

6ìä' = 6 + Δ6, 

7ìä' = 7 + Δ7, 

where true values of the parameters are denoted by 4, 6, and 7 and the deviations from them 
by  Δ4, Δ6, and Δ7. First, using Ω@ = !#!(#) − 4!!!(#)55555555 − 6!##(#), we note that 2@(AA  can be 
approximated as 

2@(AA =

Ω@
!##
Ω@
!##

+ 7

!!!(0)

!!!
 

≈
!!!(0)

7

Ω@

!##!!!
 

=
!!!(0)

7

!#! − 6	!## − 4	!!!

!##!!!
. 
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In the second line, we used óC
ò))

≪ 7 to simplify the following calculation, although it is not 

essential. This assumption is valid in a typical low FRET-efficiency experiment where the value of 
Ω@  is sufficiently lower than !##  A óC

ò))
≪ 1B and yet, to be able to detect FRET signals, the 

parameter 7 needs to be ~¿(1). For example, in our setup for bi-molecular FRET, óC
ò))

≲ 0.05 

and 7 ≃ 0.35 (ref.5) 

The error in 2@(AA  due to the error in the estimated parameters Δ4, Δ6, and Δ7 can be written 
as 

Δ2@(AA = 2@(AA(4 + Δ4, 6 + Δd, 7 + Δ7) − 2@(AA(4, 6, 7) 

≃
√2@(AA(4, 6, 7)

√4
Δ4 +

√2@(AA(4, 6, 7)

√6
Δ6 +

√2@(AA(4, 6, 7)

√7
Δ7 

≃ −
!!!(0)

7!##
Δ4 −

!!!(0)

7!!!
Δ6 −

2@(AA

7
Δ7 

Thus, the fraction of error in 2@(AA  can be written as 

Δ2@(AA

2@(AA
= −

!!!Δ4

Ω@
−
!##Δ6

Ω@
−
Δ7

7
. 

As derived in SI Appendix, SI Text 1, the observables !## and !!! and the sensitized emission Ω@  
can be written as 

!## ≃ &## A[C'('%)]	;
.∫ 41'!23'!"

# − 2$%&	[CD]	;
.∫ 01'!2t41'!23'!"

# B~&##	[C'('%)]	;
.∫ 41'!23'!"

#  

!!! ≃ &!!	[D'('%)]	;
.∫ 01'!23'!"

#  

Ω@(#) ≃ &##	7	2$%&	[CD]	;
.∫ 01'!2t41'!23'!"

# , 

where :(#) > 0 and 9(#) > 0 are, respectively, the (time-dependent) rates of photobleaching 
of the donor and acceptor, and the final approximation for !## is valid under the assumption 
óC
ò))

≪ 75. 

Using these expressions, we get  

Δ2@(AA

2@(AA
	~	)	;∫ 41'!23'!"

# Δ4 + ,	;∫ 01'!23'!"
# Δ6 −

Δ7

7
, 

where ) = ú**	[û"'"%(]
ú))	ù	5$%&	[üû]

> 0 and , =
[ü"'"%(]

ù5$%&	[üû]
> 0. The first and the second terms grow 

quasi-exponentially as the fluorescent proteins photobleach; thus, the measured value of 2@(AA, 
at baseline levels of molecular interaction, changes over time. Note that the time scale of this 
change is governed by the time scale of photobleaching.  

The remaining question is how uncertainty in the parameters	4, 6, and 7, in the presence of 
photobleaching, affects the mapping between changes in molecular interactions and the 
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corresponding change in 2@(AA. To address this, we analyze the sensitivity of 2@(AA  to the change 
in the degree of molecular interaction and its dependence on photobleaching.  

The degree of molecular interaction is dictated by the time-dependent binding affinity @(#) 
between the two target molecules X and Y. Therefore, the sensitivity of 2@(AA  to changes in @ at 
a given time can be quantified by †5C'DD(°|%,3,ù)

†°
. With errors in the parameters, this quantity can 

be written as 

√2@(AA(@|4 + Δ4, 6 + Δ6, 7 + Δ7)

√@
=
√2@(AA(@|4, 6, 7)

√@
+
√Δ2@(AA(@)

√@
 

=
√2@(AA(@|4, 6, 7)

√@
ƒ1 +

√Δ2@(AA(@)
√@

√2@(AA(@|4, 6, 7)
√@

≈ ≡
√2@(AA(@|4, 6, 7)

√@
(1 + ∆). 

Thus,  ∆≡ 	
EFGC'DD

EH

EGC'DDI@J4, 6, 7K

EH

 characterizes the bias error, and the question is how this quantity 

behaves with photobleaching. To compute this, we note 

∆	=

√

√@
Å−

!!!(0)
7!##(@)

Δ4 −
!!!(0)
7!!!

Δ6 −
2@(AA(@)

7
Δ7	Ç

√2@(AA(@)
√@

 

=

−
!!!(0)Δ4

7

√

√@
Å

1

!##(@)
	Ç −

Δ7

7

√2@(AA
√@

√2@(AA
√@

 

=

−
!!!(0)Δ4

7

√

√@
Å

1

!##(@)
	Ç

√2@(AA
√@

−
Δ7

7
, 

where we used the fact that !!! is independent of @, i.e., †ò**
†°

= 0. We note 

√2@(AA

√@
≃
√

√@
f
1

7

Ω@(@)

!##(@)

!!!(0)

!!!
g 

=
!!!(0)

7!!!

√

√@
Å
Ω@

!##
Ç 

=
!!!(0)

7!!!
f
1

!##

√Ω@

√@
−
Ω@

!##
9
√!##

√@
g 

= −
!!!(0)

7!!!

1

!##

√!##

√@
ƒ−

√Ω@
√@

√!##
√@

+
Ω@

!##
≈ 
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= −
!!!(0)

7!!!

1

!##

√!##

√@
Å7 +

Ω@

!##
Ç, 

where at the final step we used  − †óC
†°

†ò))
†°

« = |ΔΩ@| |Δ!##|⁄ = 7. By plugging this to the 

expression for ∆, we get  

∆	=

!!!(0)Δ4
7

1

!##
9
√!##
√@

−
!!!(0)
7!!!

1

!##

√!##
√@

A7 +
Ω@
!##

B

−
Δ7

7
 

=
−!!!Δ45

!## A7 +
Ω@
!##

B

−
Δ7

7
 

≃ −
!!!	Δ45

!##	7
−
Δ7

7
 

= »	;∫ 41'!2.0('!)3'!"
# Δ4 −

Δ7

7
, 

where » =
ú**	[û"'"%(]
ú))	[ü"'"%(]ù

> 0 and in the third line we used óC
ò))

≪ 7. This expression tells us that 

the relative error in the mapping from molecular interaction to 2@(AA, ∆, is small if Δ4 and Δ7 
are small. Furthermore, this relative error grows slower than the relative error in the baseline of 
2@(AA, w5C'DD

5C'DD
, because only the difference between the donor and acceptor photobleaching rates 

appears in the exponential. Additionally, the coefficient » is typically smaller than the 
coefficients in w5C'DD

5C'DD
, ) and ,. In fact, assuming &!! ≈ &## and [D'('%)] ≈ [C'('%)], one can 

show that both »/) and »/, are bounded by  5$%&	[üû]
[ü"'"%(]

< 1.  

 

Measurement noise estimation 

We assume Gaussian measurement noise -!!(#), -##(#), and -#!(#) for the fluorescence 
signals !!!(#), !##(#), and !#!(#), respectively (Materials and Methods).  Thus, the 
measurement noise can be written as 

-!!(#)	~	N A0, c!!
9 (#)B,  

-##(#)	~	N A0, c##
9 (#)B, 

-#!(#)	~	N A0, c#!
9 (#)B.  

We would like to estimate the time-dependent noise variances c!!9 (#), c##9 (#), and c#!9 (#) from 
data. The Gaussian approximation is sufficiently precise for typical FRET measurements where 
the shot noise (or Poisson noise) originating from photon counting is the dominant source of 
measurement noise. When necessary, however, it is straightforward to incorporate into the B-
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FRET framework measurement noise that follows different probability distributions: one only 
needs to change the likelihood functions of model parameters accordingly (Materials and 

Methods and SI Appendix, SI Text 2).  

The basic idea of the noise-variance estimation we used here draws on the fact that 
measurement noise is delta-correlated and hence fast, whereas other sources of changes in 
fluorescence signals, such as photobleaching and changes in donor-acceptor interactions, are 
slower. If the timescale separation is clear, the noise-variance estimation is easy since one just 
needs to subtract the slowly-changing components (estimated by, e.g., moving average of a 
time series) before computing variances of a time series. However, in general, such “slow” 
factors may also contain some frequency components higher than the sampling frequency, 
which appears to be delta-correlated and requires a little more sophisticated method. Also, the 
fact that the noise variance changes over time due to, e.g., photobleaching complicates its 
estimation. Below, we describe a principled, general method to estimate the noise variances 
applicable to most fluorescence time-series data.     

First, note that, if the noise variance is constant in time and a time-series data is sufficiently 
long, the estimation of noise variance is straightforward. This is achieved by using the 
autocorrelation function &(…) = 〈!(# + …)!(#)〉. In this function, the power of white noise is 
concentrated at … = 0, and therefore &(0) estimates the sum of the noise variance and the 
power of the delta-correlated component form the other sources. On the other hand, &(…) for 
… > 0 only estimates the variance from other sources and does not contain the power of 
measurement noise.  Thus, defining &′(0) as the extrapolated value at … = 0 from &(…) for … >
0, the difference between &(0) and &′(0) gives the noise variance.  

The method based on the auto-correlation function assumes constant noise variance. However, 
in fluorescence time-series data, the noise variance changes over time. Therefore, the method is 
applicable only to short local segments of a time series, where one can safely assume that the 
noise variance is approximately constant. As a result of segmenting a time series into short 
snippets, however, the noise-variance estimation suffers from higher statistical uncertainty, 
making it more challenging to estimate the trend of noise variance precisely. To address this, we 
draw on the fact (shown below) that, in the regime where shot noise is dominant, the variance 
of measurement noise (Var(!(#))) is proportional to the expected value of a fluorescence 
intensity 〈!(#)〉, namely: 

9 =
Var(!(#))

〈!(#)〉
.				(Eq. 3 − 3) 

Here, 9 is an unknown proportionality constant that is fixed for a given fluorescence channel 
irrespective of the magnitude of a fluorescence intensity (shown below). Therefore, once one 
obtains 9 for a given fluorescence channel, the problem of estimating noise variance at each 
time point (i.e., Var(!(#))) is reduced to the problem of estimating the expected value of a 
fluorescence intensity at each time point (i.e., 〈!(#)〉), which is much easier. We estimated 〈!(#)〉 
by fitting single or bi-exponential functions to a fluorescence time-series data.  

To estimate 9 for a fluorescence channel, we plotted the estimations of Var(!(#)) against the 
estimations 〈!(#)〉 and determined the slope (SI Appendix, Fig. S5). Although both estimations 
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suffer from statistical uncertainty, we reduced the uncertainty by aggregating many data. To be 
concrete, by denoting estimations of average and variance for a snippet time series {!=(#)} 
(labeled by ñ) by )({!=(#)}) and Œ({!=(#)}) respectively, we determine 9 by computing 

9 = argmin
	0!

{/	9ñ)({!=(#)}) − Œ({!=(#)})3
9

=

. 

Now we show the proportionality between the expectation of a fluorescence intensity and its 
variance (Eq. 3-3). We start from the assumption that the number of photons œu from a sample 
and collected by a microscopy fluorescence channel follows Poisson distribution 

`/œuaΛ3 =
Λ>L;.¢

œu!
, 

where the average and variance of œu are the same, Λ = 〈œu〉 = Var(œu). At the detector, the 
photons are converted into photoelectrons with a wave-length-dependent efficiency ú2(“) on 
average, and thus the average number of photoelectrons œì;  can be written as 

〈œì;〉 = ú2(“) × 〈œu〉. 

The variance of œì;  can be written as  

Var(œì;) = Ω>
9 × ú2(“)9 × Var/œu3, 

where Ω> is called noise factor associated with the multiplicative noise in signal amplifying 
process, and typically Ω> = √2 for an EM-CCD detector and Ω> = 1 for CCD and CMOS detectors. 
The photoelectrons are converted into pixel counts (or intensity), and this can be written as 

! =
œì;

&Ω
, 

where &Ω is a conversion factor (electron/count) dependent on a detector. On average, the 
intensity and the number of photons are connected by  

〈!〉 =
ú2(“)

&Ω
〈œu〉. 

The variance of the intensity can be written as 

Var(!) = Var A
œì;

&Ω
B =

1

&Ω9
Var(œì;) 

=
ú2(“)9Ω>

9

&Ω9
Var/œu3 

=
ú2(“)9Ω>

9

&Ω9
〈œu〉 

=
ú2(“)

&Ω
Ω>
9〈!〉. 

Therefore, we get  
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Var(!)

〈!〉
=
ú2(“)

&Ω
Ω>
9 ≡ 9. 

Thus, 9 defined in Eq. 3-3 is constant for a fluorescent channel and can be estimated by using 
data with different absolute values of Var(!) and 〈!〉. 

 

SI Text 4: Synthetic data and model functions used to analyze data 

Synthetic data 

All the synthetic data in this paper were generated according to the following equations (see 
Eqs. 3 in Materials and Methods):  

!!!(#) = &!!<!(#)[)'('%)] + -!!(#), 

!##(#) = &##/<#(#)[,'('%)] 	− <!(#)<#(#)E(#)3 + -##(#),           

!#!(#) = 4&!!<!(#)[)'('%)] + 6&##<#(#)[,'('%)] + &##(7 − 6)<!(#)<#(#)E(#) + -#!(#). 

See Photophysical model in Materials and Methods for how these equations are derived and for 
the definitions of parameters and variables. -!!, -## and -#! are the stochastic variables that 
represent the measurement noise whose variances are dependent on time. We emulated a 
situation where shot-noise is the dominant source of measurement noise. Thus, the variance of 
shot noise is proportional to the expected value of a fluorescence intensity (SI Appendix, SI Text 

3), and therefore we write 

-!!(#)~N(0, 9!&!!<!(#)[)'('%)]), 

-##(#)~N Å0, 9# A&##<#(#)/[,'('%)] 	− <!(#)E(#)3BÇ, 

-##(#<)~N A0, 9#/4&!!<!(#)[)'('%)] + 6&##<#(#)[,'('%)] + &##(7 − 6)<!(#)<#(#)E(#)3B, 

where 9! and 9# are the proportionality constants that converts the expected value of an 
intensity into the variance (SI Appendix, SI Text 3).  

Common parameter values used in all cases below are: [)'('%)] = 18, [,'('%)] = 8, &## =

1360, &!! = 340, 4 = 0.35, 6 = 	0.09, 7 = 0.5, 2$%& = 0.1, 9! = 1/0.46, 9# = 1/0.46.	 

 

Oscillatory FRET data (Fig. 2) 

We assumed photobleaching dynamics that follows 

<!(#) = :!;
. '
å*< + (1 − :!);

. '
å*B , 

<#(#) = :#;
. '
å)< + (1 − :#);

. '
å)B , 
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where …#8 = 1200, …#9 = 120, …!8 = 3000, …!9 = 300, :! = 0.6, :# = 0.6. We also assumed all 
three fluorescence signals !!!, !##, and !#! were sampled at {#<} = {0,0.5,1, … ,600} with fixed 
interval Δ# = 0.5. The hidden variable E(#) follows   

E(#) = 4X + 48 sin(’#<) + 49 sin(±’#<), 

where 4X = 0.5, 48 = 0.12, 49 = 0.1, ± = 2.5, ’ = 0.1.  

 

Random FRET data (Fig. 3) 

We assumed the same photobleaching dynamics and sampling time as the oscillatory FRET 
data. The dynamics of E(#) was assumed to follow the Ornstein-Uhlenbeck process, 

6E

6#
= −

1

…@
(E(#) − EX) + ÷2,>-(#), 

where -(#) is a Gaussian white noise with average zero and a delta correlation in time: 

〈-(#)〉 = 0,					〈-(#)-(#ñ)〉 = :(# − #ñ), 

where :(#) is the Dirac delta function. The parameters used were EX = 0.5, …@ = 5, ,> =
0.025/…@. We simulated this process by using the following update rule for discretized time 
Δ# = 0.5, which exactly reproduces the continuous dynamics9: 

E(# + Δ#)~NwE(#);.w'/åMN + EX, ,>…§• f1 − ;
.9w'åMNgx, 

where N(≥, c9) is a Gaussian distribution. After computing all {E(#)}, we replaced negative 
values of  E(#) with zero to satisfy E(#) ≥ 0. 

 

Step FRET data (Fig. 3) 

We assumed the same photobleaching dynamics and sampling time as the oscillatory FRET 
data. The dynamics of E(#) follows  

E(#) = ÿ

0.3	(300 < # ≤ 450, 900 < # ≤ 1150)

0.5	(0 ≤ # ≤ 150, 450 < # ≤ 750, 1150 < #)

0.7	(150 < # ≤ 300, 750 < # ≤ 900)

 

 

Random FRET data in various measurement conditions (Fig. 4) 

We assumed single-exponential photobleaching dynamics: 

<!(#) = ;
. '
å*< , 

<#(#) = ;
. '
å)< , 
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where …#8 = 4800	…!8 = 12000. We assumed all three fluorescence signals !!!, !##, and 
!#! were sampled at {#<} = {0,0.5,1, … ,1200} with fixed interval Δ# = 0.5. The dynamics of 
E(#) was assumed to follow the Ornstein-Uhlenbeck process 

6E

6#
= −

1

…@
(E(#) − EX) + ÷2,>-(#), 

essentially in the same way as above, but we explored different time constants ranging from 
…@ = 0.025 (under-sampling) to …@ = 100 (over-sampling) while keeping the long-term 
variance fixed to ,>…@ = 0.025. We also simulated different measurement-noise levels by 
changing the proportionality constants that converts the expected value of an intensity into 
the variance 9! and 9#. We explored the values ranging from 9! = 9# = 0.02 (high SNR) to 
9! = 9# = 40 (low SNR). When different …@  was explored, representative values of 9! =
9# = 0.2 and 9! = 9# = 2 were used for high and low SNR conditions respectively. When 
different levels of measurement noise were explored, representative values of åC

w*
≈ 1 and 

åC
w*
≈ 10 were used for under- and over sampling regimes respectively.  

 

Settings for B-FRET analyses 

Here we summarize the exact models and priors used to analyze each of the data set 
presented in this paper. See Photophysical model in Materials and Methods or Overview in 
SI Appendix, SI Text 2 for the definition of the model used in all the analyses.  

 

Analysis of the synthetic oscillatory FRET data (Fig. 2) 

The photobleaching functions we used were bi-exponential functions  

<!(#; :!, …!8, …!9) = :!;
. '
å*< + (1 − :!);

. '
å*B , 

<#(#; :# , …#8, …#9) = :#;
. '
å)< + (1 − :#);

. '
å)B . 

The prior distributions for all model parameters were constructed as described in Prior 
distributions of the model parameters in SI Appendix, SI Text 2. Specifically, uniform 
distributions bounded by [0, 1] were used for the priors for :! and :#, and log-normal 
distributions, lognormal(ë|≥, c9), were used for the other parameters. The modes of the log-
normal prior distributions (exp(≥ − c9)) were determined as described in Prior distributions of 
the model parameters. The parameter c was set to log 2 for …!8, …!9, …#8, …#9, [,'('%)], and 
[)'('%)]. For a Gaussian process noise, whose variance is parameterized by cZ9, we used the 
prior distribution  

cZ~lognormal/cZ| log 10 + (log 30)
9, (log 30)93. 

For a Non-Gaussian process noise, we used the Student’s t-distribution π#(^|cZ, ∂) 
(Materials and Methods), and used the priors of   
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cZ~lognormal/cZ| log 10 + (log 30)
9, (log 30)93, 

and  

∂~lognormal(∂| log 1 + (log 10)9, (log 10)9). 

 

Analysis of the synthetic random FRET data (Fig. 3) 

The same model and priors as the synthetic oscillatory FRET data were used.  

 

Analysis of the synthetic step FRET data (Fig. 3) 

The same model and priors as the synthetic oscillatory FRET data were used.  

 

Analysis of the synthetic random FRET data in various measurement conditions (Fig. 4) 

The photobleaching functions we used were bi-exponential functions  

<!(#; …!8) = ;
. '
å*< , 

<#(#; …#8, ) = ;
. '
å)< . 

Again, the prior distributions for all model parameters were constructed as described in Prior 
distributions of the model parameters in SI Appendix, SI Text 2. Log-normal distributions, 
lognormal(ë|≥, c9), were used for all parameters. The parameter c was set to log 2 for …!8, 
…#8, [,'('%)], and [)'('%)]. For a Gaussian process noise, whose variance is parameterized by cZ9, 
we used the prior distribution  

cZ~lognormal/cZ| log 10 + (log 30)
9, (log 30)93. 

 

Analysis of the FRET data from single E. coli cells (Fig. 5) 

Because the rate of photobleaching was relatively small for the acceptor while it is relatively 
large for the donor, we used single-exponential and bi-exponential functions for the 
acceptor and donor respectively:  

<!(#; …!8) = ;
. '
å*< , 

<#(#; :# , …#8, …#9) = :#;
. '
å)< + (1 − :#);

. '
å)B . 

We used the Student’s t-distribution π#(^|cZ, ∂) (Materials and Methods) for the process noise.  

Again, the prior distributions were determined Prior distributions of the model parameters in SI 

Appendix, SI Text 2. Briefly, uniform distribution bounded by [0, 1] was used for the prior of :#. 
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Log-normal distributions, lognormal(ë|≥, c9), were used for the other parameters. The 
parameter c was set to log 2 for …!8, …#8, …#9, [,'('%)], and [)'('%)]. The priors for the process 
noise parameters were:  

cZ~lognormal/cZ| log 10
¶ + (log 30)9, (log 30)93, 

and  

∂~lognormal(∂| log 1 + (log 10)9, (log 10)9). 

 

Analysis of the FRET data from single eukaryotic cells (Fig. 6) 

We used bi-exponential functions for both the acceptor and donor:  

<!(#; :!, …!8, …!9) = :!;
. '
å*< + (1 − :!);

. '
å*B , 

<#(#; :# , …#8, …#9) = :#;
. '
å)< + (1 − :#);

. '
å)B . 

And a Gaussian distribution for the process noise. About the prior distributions, first, uniform 
distributions bounded by [0, 1] were used for the priors of :# and :!. Log-normal distributions, 
lognormal(ë|≥, c9), were used for the other parameters. The parameter c was set to log 1.1 
for …!8, …!9, and [)'('%)] and to log 2 for …#8, …#9, and [,'('%)]. For the standard deviation of a 
Gaussian process noise, we used the prior distribution  

cZ~lognormal/cZ| log 1 + (log 30)
9, (log 30)93. 

 

SI Text 5: Step-by-step guide to B-FRET analysis 
To facilitate implementation of the B-FRET algorithm, we provide sample codes written both in 
MATLAB and Python on the Emonet lab git website, where detailed instructions on how to use 
the codes are found.  Here, we provide instructions on the practicalities of the B-FRET analysis 
using the MATLAB sample code as an example.  The Live Code File Formant (.mlx) version can be 
found on the git website.  

1. Preparing data 

All FRET data analyzed by the B-FRET algorithm written in MATLAB needs to be stored in a MAT 
file (.mat file). This MAT file should contain a structure array called all_data that stores all the 
following information: observables (i.e., the time series of fluorescence signals, !!!, !'', and !'!), 
time points for each measurement (#+:-!'  and #+:-"! ), imaging-system parameters (4, 5, and 6), 
and the standard deviations of measurement noise at each time point for each observable (8!!, 
8'', and 8'!). 

Below, we look at how these pieces of information are stored in one of the example data sets.  
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We first load a set of synthetic FRET data that exhibit oscillatory FRET dynamics 
(data_sinusoids.mat; See SI Appendix, SI Text 4 for how this and other data sets were 
generated). Before executing the following lines, make sure your current folder is right above the 
sample_code folder.  

cd './sample_code'; 

dir0 = pwd; % remember the current folder for later use  

cd './data/' % move to the directory where sample data are stored 

load 'data_sinusoids.mat' % load the data file 

This data set contains observables from 5 samples in all_data.IAA, all_data.IDD, and 
all_data.IDA. The time-series data are organized into 5 x N matrices, where N (= 1201) is the 
length of the time series. We plot the observables for the first sample. Note that the length of 
!!! and that of !'', and !'! happen to be the same in this data set, but they don't have to be the 
same in general.  

figure,hold on; 

l1 = plot(all_data.tAA, all_data.IAA(1,:),'r-'); 

l2 = plot(all_data.tDD, all_data.IDD(1,:),'b-'); 

l3 = plot(all_data.tDD, all_data.IDA(1,:),'g-'); 

legend([l1,l2,l3],'I_{AA}','I_{DD}','I_{DA}'); 

xlabel('Time (a.u.)') 

ylabel('Intensity (a.u.)') 

This synthetic data emulates photophysical processes including photobleaching and 
measurement noise, and so the intensities decrease over time and are noisy (SI Appendix, Fig. 
S6a). All of the five data sets are identical in that they were generated using the same set of 
parameters and the dynamics of 3(#) = 9.%/[0*#$#%&](#); however, the realizations of the 
measurement noise are different among the five data sets, and so the outputs of the B-FRET 
algorithm will be different too.  

Three imaging-system (or crosstalk) parameters determined by independent measurements are 
stored in a structure array crstlk: 

all_data.crstlk.a % A value of a 

all_data.crstlk.d % A value of d 

all_data.crstlk.G % A value of G 

all_data also contains the standard deviation of the measurement noise of each time series at 
each time point in all_data.IAA_noise_sd, all_data.IDD_noise_sd, and 
all_data.IDA_noise_sd. Note that the standard deviation of the measurement noise 
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changes in time in general because the magnitude of photon shot noise, the major source of 
noise in FRET measurements, decreases as fluorescence intensities decrease due to 
photobleaching.  

We plot the standard deviation of measurement noise for the first sample (SI Appendix, Fig. S6b): 

figure,hold on; 

l1 = plot(all_data.tAA, all_data.IAA_noise_sd(1,:),'r-'); 

l2 = plot(all_data.tDD, all_data.IDD_noise_sd(1,:),'b-'); 

l3 = plot(all_data.tDD, all_data.IDA_noise_sd(1,:),'g-'); 

legend([l1,l2,l3],'\sigma_{AA}','\sigma_{DD}','\sigma_{DA}'); 

xlabel('Time (a.u.)') 

ylabel('Noise level (a.u.)') 

The following fields in all_data are also available for the sample data sets, but they are not 
used by the B-FRET algorithm. We stored these in it because they are useful in evaluating the 
performance of the algorithm.  

all_data.chi; %1 x 1201 vector storing the time series of true values 
of chi 

all_data.E; % 1 x 1201 vector storing the time series of true values of 
FRET index (= Emax*chi/DT) 

all_data.data_params;% Structure containing all the parameter values 
(See Supplementary Information for the explanation of each parameter) 

all_data.IAA_bar;% Expected value of IAA, i.e., zero-noise version of 
IAA 

all_data.IDD_bar;% Expected value of IDD, i.e., zero-noise version of 
IDD 

all_data.IDA_bar;% % Expected value of IDA, i.e., zero-noise version of 
IDA 

 

2. Defining analysis parameters and model functions 

The behavior of the B-FRET algorithm depends on several analysis parameters and model 
functions. They are defined in define_analysis_params.m and 
define_model_functions.m, respectively. These two files need to be edited accordingly and 
stored in the "root directory" of an analysis (defined as 'dir_info.root_dir' as shown in the next 
section) in which analysis results (i.e., the outputs of the B-FRET code) are stored. The sample 
code folder contains examples of these files in the folder 
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sample_code/definition_files_examples. So, we first make the "root directory" 
(analysis_results). Then, we copy the files in the "root directory".  

cd(dir0) 

mkdir ./analysis_results % making the "root directory" 

cd ./definition_files_examples/ % moving to the folder with examples of 
"definition files" 

copyfile define_analysis_params.m  ../analysis_results % copying 
define_analysis_params.m to the "root directory"  

copyfile define_model_functions.m ../analysis_results % copying 
define_model_functions.m to the "root directory"  

 

2.1. Instructions on how to set the parameters in define_analysis_params.m 

First, you define whether to use a Gaussian process noise or a Non-Gaussian process noise 
(anl_params.process_noise). For a Non-Gaussian process noise, some integrals with 
respect to 3 over an infinite interval (i.e.,∫ &(3)530

10 ) have to be evaluated numerically. For this 
purpose, the infinite interval needs to be replaced with a sufficiently large but finite interval (since 
a computer cannot deal with an infinite interval) and the finite interval needs to be divided into 
subintervals (since a computer cannot deal with continuous functions). The width of the integral 
interval is set by anl_params.chi_interval_width in the unit of the range in which roughly 
estimated 3 changes. Typically, ~10 (i.e., the integration interval is 10 fold wider than the range in 
which naively-estimated 3 varies) is sufficient. The number of subintervals within the integration 
interval is set by anl_params.chi_num_of_subintervals. The larger this number gets, the 
more precise the integration becomes but, computationally, the more costly it gets. To get a 
sense of how large this number should be, one can look at the plots of the integrands as 
functions of 3, which the B-FRET algorithm automatically generates when a Non-Gaussian 
process noise is used and the plots are saved as approximated_distrs_examples.fig -- if 
the integrands are sufficiently smooth then the inregrands will be well approximated.Typically, 
~400 subintervals are sufficient. 

As the default Non-Gaussian process noise, we use the Student's t-distribution, which is defined 
in define_model_functions.m and has a parameter called the degree of freedom, ;. In 
estimating ; via the B-FRET algorithm, we need the prior distribution of ;, <(;). We use a log-
normal distribution for this prior, and anl_params.nu_ini gives the mode of <(;) and 
anl_params.nu_FC gives the standard deviation of <(log(;)) as can be seen in 
define_model_functions.m.  

Second, irrespective of whether you use a Gaussian distribution or a Student's t distribution as 
process noise, you need to define the prior distribution for 82, <(82). 82 defines the standard 
deviation of the Gaussian distribution for the Gaussian-process-noise case and the scale 
parameter of the Student's t-distribution for the Non-Gaussian-process-noise case. 
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anl_params.sigma_chi_ini defines the mode of the prior distribution and 
anl_params.sigma_chi_ini defines the standard deviation of <(log(82)) as can be seen in 
define_model_functions.m.  

Third, if you choose not to do a Markov chain Monte Carlo (MCMC) sampling from the posterior 
distribution of model parameters (i.e., anl_params.do_MCMC = 0), B-FRET approximates the 
posterior distribution by a Gaussian distribution (Laplace approximation) and draw samples from 
the Gaussian distribution. anl_params.Laplace_nsamples sets the number of samples 
drawn from the distribution. Usually, about 1000 is sufficient.  

Fourth, if you choose to do a MCMC sampling from the posterior distribution of the model 
parameters (anl_params.do_MCMC = 1), you need to define parameters related to the MCMC 
sampling procedure. anl_params.num_of_workers sets the number of CPUs used for 
parallel computing (parfor in Matlab). The rest are the parameters fed into the MATLAB 
function slicesample, which implements the slice sampling algorithm. 

 

2.2. Instructions on how to set the parameters in define_model_functions.m 

First, you have to define the functional forms of &' and &! with unknown parameters. These 
functions are fitted to data to obtain initial rough estimations of the parameters. The initial 
parameter values (e.g., mdl_fun.f_D.p_ini) and lower and upper bounds of the parameter 
values used in the fitting procedure (e.g., mdl_fun.f_A.p_lb and mdl_fun.f_D.p_ub) are 
defined. Also, the name of the parameters are defined (e.g., mdl_fun.f_D.p_name) and these 
names should be used as field names when you define the prior distributions in the structure 
mdl_fun.prior0 within the same file. 

Second, if you choose to use a Non-Gaussian process noise, you need to define the functional 
form and the names of the parameters. In the sample code, the Student's t-distribution is defined 
in mdl_fun.Q_tilde.fun.   

Finally, you define the prior distribution of each parameter. For example, the line  

mdl_fun.prior0.tau_D1 = @(x,p_ini) lognpdf(x, mu(p_ini),sigma); 

defines the prior distribution of tau_D1 as the log-normal distribution with parameter values of 
mu(p_ini) and sigma. Note that, although sigma is defined in the same file, mu(p_ini) is a 
function of an initial estimation of the parameter p_ini and this is not given within the file. 
Instead, p_ini is given by the B-FRET algorithm in a way that is dependent on the data (see 
Supplementary Information for more details about how these initial estimations are given).  

 

3. Executing the B-FRET algorithm  
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First, you need to add the folder, sample_code/B-FRET_functions, to the search path. This 
folder contains all the functions used in the B-FRET algorithm.   

cd(dir0)  

addpath './B-FRET_functions'  

We go to the "root directory" in which you saved the two definition files 
(define_analysis_params.m and define_model_functions.m). 

cd './analysis_results' 

Then, you organize some directory information into a structure dir_info. 

dir_info.root_dir = pwd;% Results are saved under this folder 

dir_info.sub_dir_base_name = 'data_';% The results from each sample is 
saved under the folder named, e.g., 'data_1'.  

Finally, execute the B-FRET algorithm. 

analyze_FRET_data(all_data,dir_info) 

Once you have analyzed all the data, you can remove the folder, sample_code/B-
FRET_functions, from the search path.  

cd(dir0) 

rmpath './B-FRET_functions' 

Note that B-FRET skips analyzing i-th data (e.g., those stored in i-th row in all_data.IAA, 
all_data.IDD, and all_data.IDA) if there is a corresponding folder (e.g., data_1) in the "root 
directory". So, you need to delete the files if you want to reanalyze the data.  

 

4. Interpreting B-FRET results: sanity check figures 

The B-FRET algorithm executed above generates numerical results saved in 
Bayes_FRET_result.mat and several sanity check plots in the folder named sanity_check 
for each data set. First, we look at the sanity check plots. 

cd(dir0) 

cd ./analysis_results/data_1/sanity_check/ 

openfig('./E.fig'); 

set(gcf,'Visible','on') 

This figure (SI Appendix, Fig. S6c) shows true values of 9 = 2
['#$#%&]

 in red, the median of the 

posterior distribution of	9 in blue and 2.27, 15.83, 84.13, and 97.73 percentiles (corresponding to 
one and two standard deviations of a Gaussian distribution) are shown in grey.  
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openfig('./initial_est_bleach_trend.fig'); 

set(gcf,'Visible','on') 

This top panel (SI Appendix, Fig. S6d) shows !'' and &' fitted to !'' (after appropriate rescaling 
of &') to roughly estimate the parameters of &'. The bottom panel (SI Appendix, Fig. S6d) shows 
!!! and &! fitted to !!! (after appropriate rescaling of &!) to roughly estimate the parameters of &!. 
The estimated parameters are used as an initial value for the optimization process conducted in 
the B-FRET algorithm. Therefore, the fitting results need to be reasonably good to successfully 
execute the B-FRET algorithm. 

openfig('./observables.fig'); 

set(gcf,'Visible','on') 

This plot (SI Appendix, Fig. S6e) shows raw observable data !!!, !'!, and !'' in magenta, green 
and blue respectively, and the prediction of those observables by the learned model (the median 
of the smoothing distribution in red and two standard deviations as grey shade). If the prediction 
is off from the observables, it suggests that there is a process (or processes) in the system that is 
not taken into consideration in the photophysical model.  

openfig('./posterior_prior_1.fig'); 

set(gcf,'Visible','on') 

This plot (SI Appendix, Fig. S6f) shows prior (blue) and posterior (yellow) distributions of the 
model parameters. Also, the initial rough estimations of the parameter values are shown in 
dashed lines. The code generates multiple figures when there are too many panels to fit in a 
single figure.  

 

5. Interpreting B-FRET results: numerical outputs 

All numerical outputs of the B-FRET algorithm are stored in Bayes_FRET_result.mat.  

cd(dir0) 

cd ./analysis_results/data_1/ 

load('./Bayes_FRET_result.mat') 

The structure array FRET_sgnl summarizes statistics of the posterior distributions of the FRET 
index 9 as well as the FRET index computed by the E-FRET formula. For example, one can plot 
(SI Appendix, Fig. S6g) the 15.87, 50, and 84.13 percentiles of the posterior distributions of 9 and 
the E-FRET result: 

figure; 

subplot(2,1,1);hold on; 
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plot(analyses_results.data.tDD, analyses_results.FRET_sgnl.E_med,'b-
','LineWidth',1); 

plot(analyses_results.data.tDD, 
analyses_results.FRET_sgnl.E_15p87,'Color',[0.5 0.5 
0.5],'LineWidth',0.5); 

plot(analyses_results.data.tDD, 
analyses_results.FRET_sgnl.E_84p13,'Color',[0.5 0.5 
0.5],'LineWidth',0.5); 

xlabel('Time');ylabel('\itE');title('B-FRET'); 

 

subplot(2,1,2); 

plot(analyses_results.data.tDD, analyses_results.FRET_sgnl.Ecorr,'b-
','LineWidth',1); 

xlabel('Time');ylabel('\itE');title('E-FRET') 

Samples drawn from the posterior distributions of 9 and 3 are stored in the structure array 
state_posterior. For example, one can plot (SI Appendix, Fig. S6h) a trajectory of 9 drawn 
from the posterior distribution:  

figure; 

plot(analyses_results.data.tDD, 
analyses_results.state_posterior.E(1,:)); 

xlabel('Time');ylabel('\itE'); 

By generating large numbers of samples from the posterior distributions of 9 and 3, one can 
compute any statistics of these distributions. The numbers of samples are set by 
anl_params.Laplace_nsamples (in define_analysis_params.m) when the MCMC 
sampling method is not used (anl_params.do_MCMC = 0) and by anl_params.nsamples when 
the MCMC sampling method is used (anl_params.do_MCMC = 1).    

In the structure array param_posterior, samples drawn from the posterior distribution of the 
model parameters are stored as a matrix, param_posterior.samples. This matrix size is X (= 
number of samples set by, e.g., anl_params.Laplace_nsamples in 
define_analysis_params.m) by Y (= number of parameters) . Y is organized in the same 
order as the following: 

fields(analyses_results.inputs.prior) 

So, if you want to look at the joint posterior distributions of DT ([0#$#%&]; 4th entry) and AT ([*#$#%&]; 
8th entry), you can do (SI Appendix, Fig. S6i): 

figure; 
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plot(analyses_results.param_posterior.samples(:,4),analyses_results.par
am_posterior.samples(:,8),'LineStyle','None','Marker','o'); 

xlabel('[D_{total}]');ylabel('[A_{total}]'); 

Other numerical results concerning the posterior distribution of the model parameters are also 
stored in param_posterior. They are: 

analyses_results.param_posterior.BIC; % Bayesian information criterion 
for model selection 

analyses_results.param_posterior.log_mu; % Mode of the posterior 
distribution of log(parameters) (only if anl_params.do_MCMC ~= 1) 

analyses_results.param_posterior.mvnsigma; %Variance-covariance matrix 
of the distribution of log(parameters) (only if anl_params.do_MCMC ~= 
1) 

analyses_results.param_posterior.nearestSPD; % This is 1, only if the 
direct numerical estimation of variance-covariance matrix of the 
Gaussian disribution is replaced with the nearest positive definite 
matrix.  

analyses_results.param_posterior.p_MAP_vec; %MAP of the parameters 
(only if anl_params.do_MCMC ~= 1) 

Predictions from the learned model about the observables (medians of the smoothing 
distributions) are stored in analyses_results.obs_pred. To compare the actual observables 
and the predictions of the model, one can do (SI Appendix, Fig. S6j):  

figure; hold on; 

l1 = plot(analyses_results.data.tDD,analyses_results.data.IDD(1,:),'c-
','LineWidth',1); 

l2 = plot(analyses_results.data.tDD,analyses_results.obs_pred.IDD,'k-
','LineWidth',2); 

l3 = plot(analyses_results.data.tDD,analyses_results.data.IDA(1,:),'g-
','LineWidth',1); 

plot(analyses_results.data.tDD,analyses_results.obs_pred.IDA,'k-
','LineWidth',2); 

l4 = plot(analyses_results.data.tAA,analyses_results.data.IAA(1,:),'m-
','LineWidth',1); 

plot(analyses_results.data.tAA,analyses_results.obs_pred.IAA,'k-
','LineWidth',2); 

xlabel('Time');ylabel('Fluorescence intensity'); 

lh = legend([l1, l3, l4, l2],'I_{DD}','I_{DA}','I_{AA}','Pred.'); 
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set(lh,'Location','NorthEast'); 

 

6. Other data sets 

Other than data_sinusoids.mat we analyzed above, there are two other data sets 
data_steps.mat and data_random.mat in the folder sample_code/data. They are both 
synthetic data and the dynamics of the FRET index 9 follow step functions and random (Ornstein-
Uhlenbeck) process, respectively. They can be analyzed by the B-FRET algorithm in exactly the 
same way as described above.  

 

SI Text 6: Details of FRET experiments 

Strains and plasmids for the bimolecular FRET experiment 

The E. coli strain used for the bimolecular FRET experiments is a derivative of E. coli K-12 strain 
RP437 (HCB33), and described in detail elsewhere10,11. In brief, the FRET acceptor-donor pair 
(CheY-mRFP and CheZ-mYFP) is expressed in tandem from plasmid pSJAB106  under an isopropyl 
β-D-thiogalactopyranoside (IPTG)-inducible promoter. The glass-adhesive mutant of FliC (FliC*) 
was expressed from a sodium salicylate (NaSal)-inducible pZR1 plasmid. The plasmids are 
transformed in VS115, a cheY cheZ fliC mutant of RP437 (gift of V. Sourjik). The crosstalk 
coefficient for spectral bleedthrough was measured using a strain expressing CheZ-YFP from a 
plasmid, and that for cross-excitation was measured using a strain expressing CheY-mRFP from a 
plasmid (SI Appendix, SI Text 3).  

 

Cell preparation and bimolecular FRET measurement in a microfluidic device 

Single-cell FRET microscopy and cell culture was carried out essentially as described 
previously6,10,11. In brief, cells were picked from a frozen stock at -80°C and inoculated in 2 mL of 
Tryptone Broth (TB; 1% bacto tryptone, 0.5 % NaCl) and grown overnight to saturation at 30°C 
and shaken at 250 RPM. Cells from a saturated overnight culture were diluted 100X in 10 mL TB 
and grown to OD600 0.45-0.47 in the presence of 100 μg/ml ampicillin, 34 μg/ml 
chloramphenicol, 50 μM IPTG and 3 μM NaSal, at 33.5°C and 250 RPM shaking. Cells were 
collected by centrifugation (5 min at 5000 rpm, or 4080 RCF) and washed twice with motility 
buffer (10 mM KPO4, 0.1 mM EDTA, 1 μM methionine, 10 mM lactic acid, pH 7), and then were 
resuspended in 2 mL motility buffer. Cells were left for 2 hours before starting a measurement 
to let all fluorescent proteins mature. Cells in motility buffer do not synthesize new proteins due 
to auxotrophic limitation. All experiments were performed at 22-23°C. Microfluidic devices for 
the FRET experiments were constructed from polydimethylsiloxane (PDMS) and used to control 
stimulus levels delivered to cells following exactly the same protocol as before6,11.  

 

Single-cell bimolecular FRET imaging system 
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FRET imaging in the microfluidic device was performed using an inverted microscope (Eclipse Ti-
E; Nikon) equipped with an oil-immersion objective lens (CFI Apo TIRF 60X Oil; Nikon). YFP was 
illuminated by an LED illumination system (SOLA SE, Lumencor) through an excitation bandpass 
filter (FF01-500/24-25; Semrock) and a dichroic mirror (FF520-Di02; Semrock). The fluorescence 
emission was led into an emission image splitter (OptoSplit II; Cairn) and further split into donor 
and acceptor channels by a second dichroic mirror (FF580-FDi01; Semrock). The emission was 
then collected through emission bandpass filters (FF01-542/27 and FF02-641/75; Semrock) by a 
sCMOS camera (ORCA-Flash4.0 V2; Hamamatsu). RFP was illuminated in the same way as YFP 
except that an excitation bandpass filter (FF01-575/05; Semrock) and a dichroic mirror (FF593-
Di03; Semorock) were used. An additional excitation filter (59026x; Chroma) was used in front of 
the excitation filters. To synchronize image acquisition and the delivery of stimulus solutions, a 
custom-made MATLAB program controlled both the imaging system (through the API provided 
by Micro-Manager12) and the states of the solenoid valves. 

 

Plasmids and stable cell lines for the unimolecular FRET experiment 

The cAMP FRET biosensor (mTFP-Epac-mVenus) was developed based on the previous work13. 
This contains the human RAPGEF3 (EPAC) gene (corresponding to amino acids 149-881). The 
cDNA of the cAMP biosensor was inserted into the pCX4neo vector14, providing pCX4neo-mTFP-
Epac-mVenus. This vector was used for producing retrovirus for stable expression. The cDNAs 
for mVenus and mTFP were subcloned into pCAGGS vector15 generating pCAGGS-mVenus and 
pCAGGS-mTFP, respectively. The cDNA for DRD1 was subcloned into a tol2 transposon donor 
vector to generate pT2Apuro-DRD1.  

HeLa cells, a kind gift from Dr. Matsuda (Kyoto University, Japan), were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM) high glucose (Wako; nacalai tesque) supplemented with 10% 
fetal bovine serum (Sigma-Aldrich) at 37°C in 5% CO2. HeLa cells stable expressing cAMP FRET 
biosensor and R-GECO, a red Ca2+ sensor16, had been established in our previous study17. To 
express DRD1, the HeLa cells were further transfected with pT2Apuro-DRD1 and pCAGGS-T2TP, 
an expression vector for Tol2 transposase, by 293fectin transfection reagent (Thermo Fisher 
Scientific), and selected with puromycin, followed by single-cell cloning. 

 

Cell preparation for unimolecular FRET measurement 

HeLa cells were plated on CELLview cell culture dishes (glass bottom, 35 mm diameter, 4 
components: The Greiner Bio-One) one day before transfection. The cells were transfected with 
the plasmids pCAGGS-mVenus or pCAGGS-mTFP by 293fectin transfection reagent (Thermo 
Fisher Scientific). One day after the transfection, the medium was replaced with the imaging 
medium (FluoroBrite (nacalai tesque)/1x GlutaMAX (GIBCO)/0.1% BSA). For estimation of the 
optical parameters 4 and 6, the cells expressing mTFP or mVenus were imaged with a wide-field 
fluorescence microscope, respectively.  

For cAMP measurement, HeLa cells expressing cAMP FRET biosensor and DRD1 were plated on 
CELLview cell culture dishes one day before imaging. The medium was replaced with the imaging 
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medium (FluoroBrite (nacalai tesque)/1x GlutaMAX (GIBCO)/0.1% BSA) several hours before the 
imaging was started. For estimation of the optical parameters 7, 50 uM Forskolin and 100 uM 
IBMX, both of which were purchased from Wako (Osaka, Japan), were applied to the cells 10 
min after the start of time-lapse imaging. For cAMP response to dopamine, the cells were 
treated with 0.1 uM dopamine 10 min after starting imaging.  

 

Single-cell unimolecular FRET imaging system 

Images were acquired on an IX81 inverted microscope (Olympus) equipped with a Retiga 4000R 
cooled Mono CCD camera (QImaging), a Spectra-X light engine illumination system (Lumencor), 
an IX2-ZDC laser-based autofocusing system (Olympus), a UPLXAPO 60X NA1.42 oil iris objective 
lens (Olympus), a MAC5000 controller for filter wheels and XY stage (Ludl Electronic Products), 
an incubation chamber (Tokai Hit), and a GM-4000 CO2 supplier (Tokai Hit). The following filters 
and dichroic mirrors were used: for FRET, an FF01-438/24 excitation filter (Semrock), an XF2034 
455DRLP dichroic mirror (Omega Optical), an FF01-542/27 emission filter (Semrock), intensity 
level of 20 for Blue light in the Spectra-X light engine illumination system, 300 msec exposure 
time; for mTFP, an FF01-438/24 excitation filter (Semrock), an XF2034 455DRLP dichroic mirror 
(Omega Optical), and an FF01-483/32 emission filter (Semrock), intensity level 20 for Blue light 
in the illumination system, 300 msec exposure time; for mVenus, an FF01-475/28 excitation 
filter (Semrock), an XF2034 455DRLP dichroic mirror (Omega Optical), an FF01-542/27 emission 
filter (Semrock), intensity level of 255 for Cyan light in the illumination system, 1000 msec 
exposure time. Camera binning is 2x2, and images were obtained every 3 sec for 40 min. The 
microscopes were controlled by MetaMorph software (Molecular Devices).  

 

Image Analysis  

To accurately segment dense monolayers of HeLa cells, we trained a machine learning model to 
predict the outline of each cell. We used a convolutional neural network (CNN) based on the U-
Net architecture18 to transform the original microscopy images into maps of cell outlines. To 
train the network, we created binary masks of all cell outlines in multiple 1024x1024 pixel 
images and augmented these datasets using geometric transformations such as scaling, 
translation, and rotation. We then transformed each frame of every experiment using the CNN 
without any post-processing of the images. The CNN returns a unique 1024x1024 pixel output 
matrix for each image where cell outlines contain high scores while cell bodies and the image 
background contain nearly zero or zero scores. In experiments where images of the same field 
of view were acquired at multiple wavelengths, we used images from the brightest channel to 
segment the cells. The CNN output matrices were further processed by thresholding using the 
Otsu algorithm and removing small clusters of unconnected pixels, effectively setting only the 
pixels corresponding to cell outlines to unity and every other pixel to zero. Then, by employing a 
generalized Hough transform, we detect cells as circular objects. For each cell, we define its 
radius and the x- and y- coordinates of its centroid. The centroid is then tracked across all 
frames of the same experiment by assuming that the inter-frame movement cannot exceed 1 



 
 

44 
 

pixel in both the x- and y- coordinates. We then calculate the median radius of the cell across all 
frames and generate a circular cell mask with a radius 30% in size of the median radius and a 
centroid with identical coordinates to the cell’s centroid for each frame. We use these masks to 
extract the fluorescent intensity of every cell across all frames. This method ensures that the cell 
mask size does not change throughout the experiment and that the mask adapts to cellular 
movement, hence ensuring that the total number of fluorescence proteins within each mask is 
conserved. Finally, we extract the local background intensity of each cell and for every frame by 
making a 2D interpolation of the cell-subtracted image and averaging the total background 
intensity within a circular mask with a radius 300% in size of the median radius of each cell. 

 

 

 

 

 

  



 
 

45 
 

 
 
Figure S1. Prior and posterior distributions of the model parameters for the random and step 
FRET data shown in Fig. 2a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 1 Prior and posterior distributions of the model parameters for the random 
and step FRET data shown in Fig. 2a.
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Figure S2. B-FRET, combined with model selection, automatically selects a model best evidenced 
by data. Three synthetic FRET data sets with oscillatory (left), random (middle) and step-like 
(right) FRET dynamics were analyzed by B-FRET, assuming Gaussian (top) and Non-Gaussian 
(bottom) process noise (Materials and Methods). True signal (magenta), estimated signal (grey), 
and 95% credible intervals (grey shade) are shown. For Non-Gaussian process noise, we used the 
Student’s t-distribution, which has one more parameter and contains Gaussian distribution as a 
special case (Materials and Methods). For the oscillation and random data, the Bayesian 
information criterion (BIC) selects Gaussian process noise, implying the extra parameter of the 
Student’s t-distribution does not contribute to inferring the FRET signals but only increases the 
complexity of the model. On the other hand, for the step data, the BIC selects the Non-Gaussian 
model because it captures the abrupt changes in the FRET signal while the Gaussian model fails 
to do so. Lower BIC values are highlighted in red.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 2 B-FRET, combined with model selection, automatically selects the model best evidenced 
by data. Three synthetic FRET data sets with oscillatory (left), random (middle) and step-like (right) FRET dynamics 
were analyzed by B-FRET, assuming Gaussian (top) and Non-Gaussian (bottom) process noise. True signal 
(magenta), estimated signal (grey), and 95% credible intervals (grey shade) are shown. For Non-Gaussian process 
noise, we used the Student’s t-distribution, which has one more parameter and contains Gaussian distribution as a 
special case (Online Methods). For the oscillation and random data, the Bayesian information criterion (BIC) selects 
Gaussian process noise, implying the extra parameter of the Student’s t-distribution does not contribute to 
inferring the FRET signals but only increases the complexity of the model. On the other hand, for the step data, the 
BIC selects the Non-Gaussian model because the Non-Gaussian model captures the abrupt change in the FRET 
signal while the Gaussian model fails to do so. Lower BIC values are highlighted by red.  

Random StepOscillation

Gaussian
process noise

Non-Gaussian
process noise
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Figure S3. Optical parameters for the unimolecular FRET system. (a) Single-cell fluorescence 
intensities from a strain that only express the acceptor (mVenus), obtained through the 
acceptor channel !AA(A)	and the FRET channel !DA(A). The slope gives an estimate of the 
cross-excitation coefficient 4	=	0.2029	(0.1942	−	0.2115; 95% confidence interval). (b) Single- 
cell fluorescence intensities from a strain that only express the donor (mTFP), obtained through 
the donor channel !DD(D)	and the FRET channel !DA(D). The slope gives an estimate of the 
bleedthrough coefficient 6	=	0.6938	(0.6848	−	0.7029). (c) Changes in the donor fluorescence 
signal Δ!DD	and the (negative) change in the sensitized emission −ΔΩc	before and after a 
stimulus (50 uM Forskolin and 100 uM IBMX ) application, obtained from a strain that expresses 
the unimolecular FRET probe harboring the donor and acceptor. The slope gives the parameter 
7	=	1.284	(1.257	−	1.312).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 

Supplementary Figure 3 Optical parameters for the unimolecular FRET system. (a) Single-cell fluorescence intensities from a 
strain that only express the acceptor (mVenus), obtained through the acceptor channel !!!(!) and the FRET channel !$!(!). The 
slope gives an estimate of the cross-excitation coefficient " = 0.2029 (0.1942 − 0.2115; 95% confidence interval). (b) Single-
cell fluorescence intensities from a strain that only express the donor (mTFP), obtained through the donor channel !$$($) and 
the FRET channel !$!($). The slope gives an estimate of the bleedthrough coefficient , = 0.6938 (0.6848 − 0.7029). (c) 
Changes in the donor fluorescence signal Δ!$$ and the (negative) change in the sensitized emission −Δ4% before and after a 
stimulus (50 uM Forskolin and 100 uM IBMX ) application, obtained from a strain that expresses the unimolecular FRET probe 
harboring the donor and acceptor. The slope gives the parameter 5 = 1.284 (1.257 − 1.312). 
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Figure S4. Gaussian approximation of the posterior distributions of the model parameters 
reduces the computational cost without affecting the results significantly. (a) The exact 
evaluation of the posterior distribution `(=|T, 	ℳ) by a Markov chain Monte Carlo (MCMC) 
method is computationally costly, so we approximated the posterior distribution by a log-
normal distribution (Laplace approximation) by computing the Hessian matrix at the mode of 
the distribution (see SI Appendix, SI Text 2). The extracted FRET index 2 by B-FRET with (top) and 
without (bottom) the approximation are shown. The difference between the two method is 
practically negligible, validating the usage of the approximation. (b) True values (black) and 
prior(grey) and posterior (green) distributions of the parameters obtained by the Laplace 
approximation are shown (same as Fig. 1c). (c) Same as b except the posterior distributions 
(green) are obtained by a MCMC sampling method.      
 

Laplace approximation

MCMC sampling

a

b c
Laplace approximation MCMC sampling

Supplementary Figure 4 Gaussian approximation of the posterior distributions of the model 
parameters. (a) The exact evaluation of the posterior distribution !(#|%,ℳ) by a Markov chain 
Monte Carlo (MCMC) method is computationally costly, so we approximated the posterior 
distribution by a log-normal distribution (Laplace approximation) by computing the Hessian matrix 
at the mode of the distribution (see Supplementary Note 2). The extracted FRET index ) by B-FRET 
with (top) and without (bottom) the approximation are shown. The difference between the two 
method is practically negligible, validating the usage of the approximation. (b) True values (black) 
and prior(grey) and posterior (green) distributions of the parameters obtained by the Laplace 
approximation are shown (same as Fig. 1c). (c) Same as (b) except the posterior distributions 
(green) are obtained by a MCMC sampling method.     
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Figure S5. Determining the relationship between the expected value of a fluorescence intensity 
and the variance of measurement noise. When the measurement noise is dominated by shot 
noise, the variance of shot noise is proportional to fluorescence intensity (SI Appendix, SI Text 3). 
The proportionality constant can be estimated by plotting the variance of shot noise, which is 
estimated from the autocorrelation function of a segment of fluorescence time series, against 
the average fluorescence intensity, and by computing the slope. Results for the bimolecular 
FRET system expressed in E. coli (a) and for the unimolecular FRET system expressed in HeLa 
cells (b) are shown. The slopes in the upper panels are: 0.872 (0.856 - 0.886) for !##, 0.801 
(0.789 - 0.811) for !#!, and 0.872 (0.854 - 0.889) for !!!. The slops in the bottom panels are 
0.1887 (0.1816 - 0.1959) for !##, 0.1804 (0.1726 - 0.1882) for !#!, and 0.1875 (0.182 - 0.193) for 
!!!. 95% confidence intervals are shown in parentheses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 5 Determining the relationship between the expected value of a fluorescence intensity and the 
variance of measurement noise. When the measurement noise is dominated by shot noise, the variance of shot noise is 
proportional to fluorescence intensity (Supplementary Note 3). The proportionality constant can be estimated by 
plotting the variance of shot noise, which is estimated from the autocorrelation function of a segment of fluorescence 
time series, against the average fluorescence intensity, and by computing the slope. Results for the bimolecular FRET 
system expressed in E. coli (a) and for the unimolecular FRET system expressed in HeLa cells (b) are shown. The slopes in 
the upper panels are: 0.872 (0.856 - 0.886) for !!! , 0.801 (0.789 - 0.811) for !!", and 0.872 (0.854 - 0.889) for !"". The 
slops in the bottom panels are 0.1887 (0.1816 - 0.1959) for !!! , 0.1804 (0.1726 - 0.1882) for !!", and 0.1875 (0.182 -
0.193) for !"" . 95% confidence intervals are shown in parentheses.
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Figure S6. Step-by-step guide to B-FRET analysis. (a) A representative synthetic data set. (b) 
Standard deviation of measurement noise. (c) Posterior distributions of the FRET index 2. (d) 
Initial estimations of the photobleaching curves <#(#) (top) and <!(#) (bottom) generated by 
fitting functions to !##(#) and !!!(#), respectively. (e) Observables and their predictions from 
the learned model. Two standard deviations of the measurement noise are shown in the shade. 
(f) Initial values, prior distributions, and posterior distributions approximated by Gaussian 
distributions (Laplace approximation) of model parameters. (g) Comparison between the FRET 
index 2 estimated by B-FRET (top) and E-FRET (bottom). (h) A sample drawn from the posterior 
distribution of the FRET index 2. (i) Joint posterior distribution of two model parameters 
[,'('%)] and [)'('%)]. (j) Observables and the predictions from the model.    

Supplementary Figure 6 Step-by-step guide to B-FRET analysis. (a) A representative synthetic data set. (b) Standard 
deviation of measurement noise. (c) Posterior distributions of the FRET index !. (d) Initial estimations of the 
photobleaching curves "!($) (top) and ""($) (bottom) generated by fitting functions to &!!($) and &""($), respectively. 
(e) Observables and their predictions from the learned model. Two standard deviations of the measurement noise are 
shown in the shade. (f) Initial values, prior distributions, and posterior distributions approximated by Gaussian 
distributions (Laplace approximation) of model parameters. (g) Comparison between the FRET index ! estimated by B-
FRET (top) and E-FRET (bottom). (h) A sample drawn from the posterior distribution of the FRET index !. (i) Joint 
posterior distribution of two model parameters [(#$#%&] and [*#$#%&]. (j) Observables and the predictions from the 
model.   
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