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Abstract We showed previously (Gorur-Shandilya et al., 2017) that Drosophila olfactory receptor

neurons (ORNs) expressing the co-receptor Orco scale their gain inversely with mean odor intensity

according to Weber-Fechner’s law. Here, we show that this front-end adaptation promotes the

reconstruction of odor identity from dynamic odor signals, even in the presence of confounding

background odors and rapid intensity fluctuations. These enhancements are further aided by

known downstream transformations in the antennal lobe and mushroom body. Our results, which

are applicable to various odor classification and reconstruction schemes, stem from the fact that

this adaptation mechanism is not intrinsic to the identity of the receptor involved. Instead, a

feedback mechanism adjusts receptor sensitivity based on the activity of the receptor-Orco

complex, according to Weber-Fechner’s law. Thus, a common scaling of the gain across Orco-

expressing ORNs may be a key feature of ORN adaptation that helps preserve combinatorial odor

codes in naturalistic landscapes.

DOI: https://doi.org/10.7554/eLife.45293.001

Introduction
Animals identify and discriminate odors using olfactory receptors (Ors) expressed in olfactory recep-

tor neurons (ORNs) (Joseph and Carlson, 2015; Buck and Axel, 1991; Clyne et al., 1999;

Vosshall et al., 1999). Individual ORNs, which typically express a single Or, respond to many odor-

ants, while individual odorants activate many distinct ORNs (Friedrich and Korsching, 1997;

Hallem and Carlson, 2006; Wang et al., 2010; Nara et al., 2011). Odors are thus encoded by the

combinatorial patterns of activity they elicit in the sensing periphery (Malnic et al., 1999;

Wang et al., 2010; Hildebrand and Shepherd, 1997; Hallem and Carlson, 2006; de Bruyne et al.,

2001; Friedrich and Korsching, 1997), and these patterns are decoded downstream into behavioral

response (Wilson, 2013; Davies et al., 2015). Still, ethologically relevant odors are often mixed with

background ones (Saha et al., 2013; Renou et al., 2015) and intensity can vary widely and rapidly

as odors are carried by the wind (Murlis et al., 1992; Weissburg, 2000; Celani et al., 2014;

Cardé and Willis, 2008). How are odors recognized reliably despite these confounds? In Drosophila

melanogaster, ORN dose response curves exhibit similar Hill coefficients but distinct power-law dis-

tributed activation thresholds (Hallem and Carlson, 2006; Si et al., 2019), which together with

inhibitory odorants enhance coding capacity (Si et al., 2019; Cao et al., 2017; Hallem and Carlson,

2006; Stevens, 2016). In antennal lobe (AL) glomeruli, mutual lateral inhibition normalizes popula-

tion response, reducing the dependency of activity patterns on odor concentration (Asahina et al.,

2009; Olsen et al., 2010). Further downstream, sparse connectivity to the mushroom body (MB)

helps maintain neural representations of odors, and facilitates compressed sensing and associative

learning schemes (Caron et al., 2013; Litwin-Kumar et al., 2017; Krishnamurthy et al., 2017;
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Dasgupta et al., 2017). Finally, temporal features of neural responses contribute to concentration-

invariant representations of odor identity (Brown et al., 2005; Raman et al., 2010; Gupta and Stop-

fer, 2014; Wilson et al., 2017).

Here, we examine how short-time ORN adaptation at the very front-end of the insect olfactory

circuit contributes to the fidelity of odor encoding. Our theoretical study is motivated by the recent

discovery of invariances in the signal transduction and adaptation dynamics of ORNs expressing the

co-receptor Orco. ORN response is initiated upon binding of odorant molecules to olfactory recep-

tors (ORs), opening the ion channels they form with the co-receptor Orco (Larsson et al., 2004;

Butterwick et al., 2018). Because of differences in odor-receptor affinities, the responses of ORNs

to diverse odorants of the same concentration differ widely (Hallem and Carlson, 2006;

Montague et al., 2011; Stensmyr et al., 2012). In contrast, downstream from this input nonlinear-

ity, signal transduction and adaptation dynamics exhibit a surprising degree of invariance with

respect to odor-receptor identity: reverse-correlation analysis of ORN response to fluctuating stimuli

produces highly stereotyped, concentration-invariant response filters (Martelli et al., 2013; Si et al.,

2019; Gorur-Shandilya et al., 2017).

These properties stem in part from an apparently invariant adaptive scaling law in ORNs: gain

varies inversely with mean odor concentration according to the Weber-Fechner Law of psychophys-

ics (Weber, 1996; Fechner, 1860), irrespective of the odor-receptor combination (Gorur-

Shandilya et al., 2017; Cafaro, 2016; Cao et al., 2016). This invariance can be traced back to adap-

tative feedback mechanisms in odor transduction, upstream of ORN firing (Nagel and Wilson, 2011;

Cao et al., 2016; Cafaro, 2016; Gorur-Shandilya et al., 2017), which depend on the activity of the

signaling pathway rather than on the identity of its receptor (Nagel and Wilson, 2011). The general-

ity of the adaptive scaling suggests it could be mediated by the highly conserved Orco co-receptor

(Butterwick et al., 2018; Getahun et al., 2013; Getahun et al., 2016; Guo et al., 2017), which has

been already been implicated in other types of odor adaptation, taking place over longer timescales

(Guo and Smith, 2017; Guo et al., 2017).

While in a simpler system such as E. coli chemotaxis (Waite et al., 2018), adaptive feedback via

the Weber-Fechner Law robustly maintains sensitivity over concentration changes, the implication

for a multiple-channel system – which combines information from hundreds of cells with overlapping

receptive fields – is less clear. Here, we combine a biophysical model of ORN adaptive response and

neural firing with various sparse signal decoding frameworks to explore how ORN adaptation with

Weber-Fechner scaling affects combinatorial coding and decoding of odor signals spanning varying

degrees of intensity, molecular complexity, and temporal structure. We find that this front-end adap-

tive mechanism promotes the accurate discrimination of odor signals from backgrounds of varying

molecular complexity, and aids other known mechanisms of neural processing in the olfactory circuit

to maintain representations of odor identity across environmental changes.

Results

Model of ORN sensing repertoire
To model ORN firing rates in response to time-dependent odor signals, we extended a minimal

model (Gorur-Shandilya et al., 2017) that reproduces the Weber-Fechner gain adaptation and firing

rate dynamics measured in individual Drosophila ORNs in response to Gaussian and naturalistic sig-

nals (code available on GitHub, Kadakia, 2019; copy archived at https://github.com/elifesciences-

publications/ORN-WL-gain-control).

We consider a repertoire of M ¼ 50 ORN types that each express one type of Or together with

the co-receptor Orco (Larsson et al., 2004). Within ORNs of type a ¼ 1; :::;M, Or-Orco complexes

form non-selective cation channels (Butterwick et al., 2018) (Figure 1A) that switch between active

and inactive conformations, while simultaneously binding to odorants i with affinity constants, K�
ai

and Kai, respectively (Nagel and Wilson, 2011; Gorur-Shandilya et al., 2017). For simplicity, we

only consider agonists, that is K�
ai>Kai, and assume receptors can only bind one odorant at a time.

The analysis can easily be extended to include inhibitory odorants, which increases coding capacity

(Cao et al., 2017). Dissociation (inverse affinity) constants are chosen from a power law distribution
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(a ¼ 0:35) recently found across ORN-odor pairs in Drosophila larvae (Si et al., 2019). For a handful

of ORNs, we choose a very large value for one of the K�
ai to mimic high responders to private odor-

ants relevant to innate responses (Stensmyr et al., 2012). These private odors do not affect the gen-

eral findings.

Assuming that odorant binding and conformation changes are faster than other reactions in the

signaling pathway, the fraction of channels of type a that are active at steady state is:

AaðtÞ ¼
C�

aþC�
aK

�
a � sðtÞ

C�
a þC�

aK
�
a � sðtÞþCa þCaKa � sðtÞ

: (1)

Ca and C�
a represent unbound channels in the inactive and active conformation. Here,
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Figure 1. Simple ORN model (Gorur-Shandilya et al., 2017). (A) Or/Orco complexes of type a switch between active C�
a and inactive conformations

Ca. Binding an exitatory odorant (S in the diagram) favors the active state. The active fraction is determined by the free energy difference between

inactive and active conformations of the Or/Orco complex in its unbound state, �aðtÞ (in units of kBT ), and by odorant binding with affinity constants

K�
a ¼ ðK�

a1; :::;K
�
ai; :::;K

�
aNÞ and Ka for the active and inactive conformations, respectively (Equations 1-2). Adaptation is mediated by a negative

feedback (Nagel and Wilson, 2011) from the activity of the channel onto the free energy difference �aðtÞ with timescale t. ORN firing rates raðtÞ are
generated by passing AaðtÞ through a linear temporal filter hðtÞ and a nonlinear thresholding function f . (B) Odors are represented by N-dimensional

vectors s ¼ ½s1; :::; si; :::; sN � , whose components si are the concentrations of the individual molecular constituents of s. (C) Step-stimulus firing rate of 50

ORNs to the N=150 possible monomolecular odorants s ¼ si, given power-law distributed afffinity constants (Si et al., 2019). (D) Temporal responses of

a representative ORNs to a pulse stimulus, for a single odorant at several intensities (left), or to many odorants of the same intensity (right). (E)

Representative ORN tuning curves (a single row of the response matrix in C, ordered by magnitude). Tuning curves are diverse, mimicking measured

responses (Hallem and Carlson, 2006). (F) Dose-response of an ORN before (black) and after adaptation to either a low (yellow) or high (magenta)

odor concentration. (G) Same, but the ORN was allowed to first adapt to one of various backgrounds of differing identities, before the foreground

(same as in F) was presented. Also shown is the specific case when the foreground and background have the same identity (dashed lines).

DOI: https://doi.org/10.7554/eLife.45293.002
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Ka � sðtÞ ¼
PN

i KaisiðtÞ, where siðtÞ is the time-dependent concentration of the i-th monomolecular

component of the odor signal sðtÞ at time t (Figure 1B). N ¼ 150 is the size of the molecular odorant

space (Figure 1B). Equation 1 can be rearranged as (derivation in Materials and methods):

AaðtÞ ¼ 1þ exp �aðtÞþ ln
1þKa � sðtÞ
1þK�

a � sðtÞ

� �� �� ��1

: (2)

The two terms in the exponential represent the change in the channel’s free energy due to the

binding of odorant i, and the free energy difference �a between the unbound states Ca and C�
a, in

units of kBT. Because K�
ai>Kai, a sudden increase in the concentration of excitatory odor results in an

increase in activity Aa.

Upon prolonged stimulation, ORNs adapt. At least one form of adaptation, which takes place

over short time scale, t ’ 250 ms (Gorur-Shandilya et al., 2017), involves a negative feedback of the

Or-Orco channel activity onto the channel sensitivity (Nagel and Wilson, 2011; Gorur-

Shandilya et al., 2017). To model this adaptation process, we assume that inward currents elicited

by activating Or-Orco channels eventually result in an increase of the free energy difference �aðtÞ,
possibly via a feedback onto Orco (Butterwick et al., 2018):

t

d�aðtÞ
dt

¼ AaðtÞ�A0a; (3)

where �L;a<�aðtÞ<�H;a. The lower bound �L;a determines the spontaneous activity of the channel. The

higher bound �H;a determines the concentrations of odors at which adaptation is unable to keep up

and saturation occurs (Gorur-Shandilya et al., 2017). Through these dynamics, �aðtÞ can compensate

for changes in free energy due to ligand binding (see Equation 2), returning the activity Aa towards

an adapted level A0a above the spontaneous activity. Since �a is bounded below, a minimum amount

of signal intensity is needed for adaptation to kick in. Finally, the firing rate is modeled by passing

the activity AaðtÞ through the derivative-taking bi-lobed filter hðtÞ and a rectifying nonlinearity

f (Gorur-Shandilya et al., 2017):

raðtÞ ¼ f hðtÞ
AaðtÞð Þ; (4)

where 
 is convolution. When deconvolved from stimulus dynamics, the shapes of the temporal ker-

nels of Drosophila ORNs that express Orco tend to be stereotyped for many odor-receptor combi-

nation (Martelli et al., 2013; Gorur-Shandilya et al., 2017; Si et al., 2019) (although there are

known exceptions such as super-sustained responses Montague et al., 2011). Moreover, adaptation

is not intrinsic to the receptor (Nagel and Wilson, 2011). Accordingly, for simplicity t, hðtÞ, and f are

assumed independent of receptor and odorant identities.

This minimal model reproduces the essential features of ORN response to odorant pulses

(Nagel and Wilson, 2011; Martelli et al., 2013; Cao et al., 2016). In the absence of stimulus, ORNs

fire spontaneously at rates (1–10 Hz) (Hallem and Carlson, 2006) set by the lower free energy bound

�L;a, which we choose from a normal distribution (Figure 1D). For sufficiently strong stimuli, adapta-

tion causes �a to increase, compensating for the drop in free energy difference due to ligand bind-

ing. This gradually reduces the firing rate to a steady state level rðA0aÞ ’ 30–40 Hz (Gorur-

Shandilya et al., 2017) (Figure 1D). The diversity of temporal firing responses and tuning curves

measured experimentally (Hallem and Carlson, 2006; Montague et al., 2011; Brown et al., 2005;

Gupta and Stopfer, 2014; Raman et al., 2010) arise naturally in the model due to the distribution

of chemical affinity constants and the nonlinearity of Equation 2 (Figure 1B-Figure 1E).

The model also reproduces Weber-Fechner scaling of the gain with the inverse of the mean odor-

ant intensity �si(Gorur-Shandilya et al., 2017; Cao et al., 2016). For small fluctuations Dsi around �si,

we have from Equation 2 that DAa=Dsi ’ Aa �sið Þ 1� Aa �sið Þð Þ=�si, whereby Weber’s Law is satisfied pro-

vided Aað�siÞ is approximately constant (derivation in Materials and methods). In our model, since the

rate of adaptation depends only on the activity of the ion channel (right hand-side of Equation 3),

then in the adapted state we have Aa �sið Þ ’ A0a, ensuring that the gain scales like 1=�si. This process

adjusts the sensitivity of the ORN by matching the dose responses to the mean signal concentration,

while maintaining their log-slopes (Figure 1F). However, for foreground odors mixed with
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background odors to which the system has adapted, the dose response curves now exhibit back-

ground-dependent shifts (Figure 1G).

While this phenomenological model could be extended to include further details – for example,

we could relax the quasi-steady-state assumption in Equation 2, use a more complex model for

channel adaptation and neural firing (Gorur-Shandilya et al., 2017), or consider feedforward mecha-

nisms in addition to negative integral feedback (Schulze et al., 2015) – this minimally parameterized

form captures the key dynamical properties of Orco-expressing ORNs relevant to our study: recep-

tor-independent adaptation (Nagel and Wilson, 2011) with Weber-Fechner scaling (Gorur-

Shandilya et al., 2017; Cafaro, 2016; Cao et al., 2016) that maintains response time independent

of mean stimulus intensity (Martelli et al., 2013; Gorur-Shandilya et al., 2017), along with a diver-

sity of temporal firing patterns in response to a panel of monomolecular odorants (Hallem and Carl-

son, 2006; Montague et al., 2011; Brown et al., 2005; Gupta and Stopfer, 2014; Raman et al.,

2010) (Figure 1D–1E).

Front-end Weber-Fechner adaptation preserves odor coding among
background and intensity confounds
The identity of an odor is encoded by the pattern of ORN firing responses. However, when a novel

foreground odor is presented atop an existing background odor, this pattern may depend also on

the background odor, rendering ORN responses less informative about foreground odor identity. To

understand how front-end Weber-Fechner adaptation might help encode novel foreground odors in

the presence of background odors, we considered environments containing various combinations of

foreground odors s and background odors �s, and asked how similar are the ORN responses r to a

given s but different �s.

Since it is not possible to visualize the 50-dimensional space of ORN responses, we projected

ORN responses onto a two-dimensional space using t-distributed stochastic neighbor embedding (t-

SNE) (van der Maaten and Hinton, 2008). Like principle component analysis (PCA), t-SNE allows a

visualization of high-dimensional objects in such a way that desirable features of the original dataset

are preserved (Figure 2A). PCA, for example, retains much of the data variance. t-SNE retains the

proximity of an object to its nearest neighbors. Specifically, it constructs a probability distribution

QH based on pairwise distances between nearby objects, assigning higher probability to closer

objects. It then determines where the objects would live in a lower dimensional space, such that the

analogous distribution QL in this space is most similar to QH. t-SNE is widely used to cluster objects

(in our case, ORN responses r to different foreground odors on top of diverse background odors) by

similarity (here, foreground odor identity). However, because t-SNE uses local information from only

nearest neighbors, global distances and scales are not preserved (Zhou and Sharpee, 2018). Thus,

we use t-SNE only for visualization. To more rigorously quantify how foreground identity is preserved

in ORN activity, we calculate the mutual information (MI) between foreground odor s and ORN firing

rates r in the 50-dimensional space (Materials and methods). The MI quantifies how much informa-

tion a response contains about the stimulus. High MI means that responses exhibit larger variability

for different stimuli than for repeated presentations of the same stimulus. In our case, this would be

true if r were uniquely defined for different foregrounds s, irrespective of the background �s. Con-

versely, the MI would be low if responses varied more by background �s than by foreground s.

We first examined how an adaptive or non-adaptive ORN repertoire encodes odor identity in an

odor environment that contains a foreground odor s atop a background odor �s (Figure 2B). Both

odors are sparse mixtures, with K � N odorants of similar concentrations, odor ‘identity’ being the

particular set of odorants in the mixture. In the adaptive case, we assume that the system has fully

adapted to the background �s before the foreground s is presented. This is enacted by calculating

the firing response to the foreground odor rðsÞ only after having set the �a in Equation 2 to their

steady state values in response to the background odor �s:

�að�sÞ ¼ ln
1�A0a

A0a

� �

� 1�bað Þ ln 1þKa ��s
1þK�

a ��s

� �

; (5)

where we have introduced the new parameter ba to allow us to control the scaling of gain adapta-

tion: for ba ¼ 0 the system exactly follows Weber-Fechner’s law, while for ba ¼ 1 there is no adapta-

tion. For small but nonzero ba, the inverse gain scales sub-linearly (see Materials and methods), and
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the adapted activity Aað�sÞ increases weakly with background �s. In experiments, small deviations from

the strict Weber-Fechner scaling on the order of b’ 0:1 are observed (see extended figures in

Gorur-Shandilya et al., 2017).

With Weber-Fechner’s law in place for all ORNs (ba ¼ 0) responses cluster by the identity of fore-

ground odor, showing that the repertoire of ORNs appropriately encodes the identity of novel odors

irrespective of background signals – once these backgrounds have been ‘adapted away’

(Figure 2B). This is the case regardless of whether A0a is identical or different across neurons (Fig-

ure 2—figure supplement 1). In contrast, when the system is non-adaptive, (ba ¼ 1), the responses

exhibit weaker separations by odor identity (Figure 2B). Similarly, responses across different odor

intensities are well separated by odor identity in the adaptive system, but less so in the non-adaptive

A                                             B

                                                 

                                               C

D                                            E

M
u
tu

a
l 
in

fo
rm

a
ti
o
n
 (

b
it
s
)

s1

background 

odor identity

s2

s3

..
.fo

re
g
ro

u
n
d

o
d
o
r 

id
e
n
ti
ty

id
e
n
ti
ty

AdaptiveNon-adaptive

intensity

t-SNE 1

Odor

ORN

O1 O2 ...

t-
S
N

E
 2

Firing rate 

(Hz)

Deviation from Weber-Fechner scaling

s1

s2

s3

..
.

...

fi
ri
n
g
 r

a
te

s
 (

H
z
) ba

ck
gr

ou
nd

ba
ck

gr
ou

nd

+
 f
or

eg
ro

un
d

diverse 

ORNs

MI = 0.62               MI = 1.55

c

MI = 0.64               MI = 2.28

t-S
N

E
 2

t-SNE 1

Figure 2. Front-end adaptation maintains representations of odor identity across background and intensity confounds. (A) Example t-SNE projection of

the 50-dimensional vector of ORN firing rates to two dimensions. Each point represents the firing response to a distinct odor. Nearby points exhibit

similarities in corresponding firing rates. (B) t-SNE projection of ORN firing rates, where each point represents the response to foreground odor s (point

color) on top of a background odor �s (point size). In the adaptive system, �a are set to their steady state values given the background odor �s alone

according to Equation 5 with b ¼ 0. We assumed A0a ¼ A0 for all a (we obtain similar results when A0a are randomly distributed; Figure 3—figure

supplement 1). Clustering by color implies that responses cluster by foreground odor identity. Since global distances are not preserved by t-SNE,

distances between plots cannot be meaningfully compared, and so we do not label the axes with units. Mutual information, in bits, is indicated below

the plots. (C) Similar to (B), but now for odors whose concentrations span four decades (represented by point size). Here, the background odor identity

is the same for all concentrations. (D) Performance of odor coding as a function of b, the magnitude of the deviation from Weber-Fechner’s law (b ¼ 0:

Weber-Fechner’s scaling; b ¼ 1: no adaptation; see Equation 5). Performance is quantified by the mutual information between foreground odor and

ORN responses in bits (Materials and methods). Line: same scaling ba ¼ b for all ORNs. Dashed: ba is uniformly distributed between 0 and 2b<1 (i.e.

has mean b). (E) Distribution of ORN responses and t-SNE projections for b ¼ 0; 0:10; 0:22; 0:40 in (D).

DOI: https://doi.org/10.7554/eLife.45293.003

The following figure supplements are available for figure 2:

Figure supplement 1. t-SNE projections when background adapted activity level A0a depends on ORN.

DOI: https://doi.org/10.7554/eLife.45293.004

Figure supplement 2. Front-end adaptive feedback preserves information capacity of the ORN sensing repertoire.

DOI: https://doi.org/10.7554/eLife.45293.005
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system (Figure 2C). Calculating the mutual information between odor and ORN response in time

shows that the adaptive system retains coding capacity as it confronts novel odors (Figure 2—figure

supplement 2), whereas the non-adaptive system maintains coding capacity in a far more limited

range of odor concentration.

To what extent do the benefits of front-end adaptation for odor coding depend on the precise

Weber-Fechner scaling? We repeated the analysis from Figure 2B for increasing values of ba ¼ b

between zero (Weber’s law) (perfect adaptation) and one (no adaptation). To generalize Figure 2B,

we now let the intensities range over two decades. As b increases, the capacity of the system to clus-

ter responses by odor identity degrades (Figure 2D). Introducing diversity among ORNs by distrib-

uting ba’s uniformly between 0 and 2b (so that the mean is b) slightly increases performance at high

b but reduces it at low b (Figure 2D). Overall, performance of odor coding degrades with b, as

poorly adapting ORNs begin to saturate (Figure 2D).

Interestingly, besides this general trend, we find that for b very close to zero, a small deviation

from Weber-Fechner’s law instead improves odor coding. This arises because of the nonlinearity in

the onset of adaptation: adaptation kicks in only when the strength of stimulus is sufficient for the

response Aa to exceed A0a, so that the right hand-side of Equation 3 is positive. The minimum back-

ground intensity �s required for this to happen is given by �L;a ¼ �að�sÞ, which, according to equation

Equation 5, increases with b. This initial effect increases odor coding performance, as the firing rates

can distribute more broadly across the dynamical range of the ORNs, before adaptation is effected

(Figure 2E). Note that this effect is not specific to our model. A similar enhancement would be

observed if Weber’s Law were maintained, but kicked in only above a minimum signal intensity.

Thus, while Weber-Fechner scaling largely preserves the representation of foreground odor identity

amid backgrounds, in some cases it may benefit from a slight relaxation so that the full dynamical

range of the ORNs can be exploited.

Front-end adaptation enhances odor decoding in complex
environments
Given that front-end adaptation helps maintain combinatorial odor codes in the presence of back-

grounds, we wondered how it affects the capability to decode odor signals from ORN response.

One potentially complicating factor is the disparity between sensor dimension and stimulus dimen-

sion: while Drosophila only express ~60 Or genes (Vosshall et al., 2000), the space of odorants is

far greater (Krishnamurthy et al., 2017). An N-dimensional odor signal would naively need N sen-

sory neurons to decode it – one for each odorant. However, naturally occurring odors are sparse,

typically comprised of only a few odorants. Enforcing sparsity of the signal during decoding greatly

restricts the number of possible odors consistent with a given ORN response, suggesting that such

high-dimensional signals might be inferred from less than N ORNs. Indeed, the decoding of suffi-

ciently sparse signals from lower dimensional responses is rigorously guaranteed by the theory of

compressed sensing (CS) (Donoho, 2006; Candès et al., 2006). It is unknown whether CS is imple-

mented in the Drosophila olfactory circuit (Pehlevan et al., 2017). Here, we use this framework

mainly as a tool to quantify how front-end adaptation potentially affects odor decoding, later verify-

ing our conclusions with other classification techniques that incorporate the known architecture of

the olfactory system.

CS is performed as a constrained linear optimization. The constraints in the optimization are

r ¼ Ds, where s is the stimulus to be estimated, D is the response matrix, and r is the vector of

ORN responses. The cost function to be minimized, C ¼ P

i jsij, enforces sparsity by driving the esti-

mate of each odorant component to zero; the constraints balance this tendency by simultaneously

enforcing information from the ORN firing rates. The result is a reconstructed odor signal ŝ that is as

sparse as possible, consistent with the ORN responses. In practice, one uses a linear optimization

routine to numerically minimize
P

i jsij over si, subject to r ¼ Ds. The result is an estimate of the

magnitude of each signal component si. Thus, both the identity and the intensity of the odor signal

are estimated.

To incorporate this linear framework of CS into our nonlinear odor encoding model, we treat the

nonlinear odor encoding exactly, but approximate the decoding to first order around the back-

ground concentration (Figure 3A). Specifically, we use Equations 2-4 to generate ORN responses r

for sparse odors s having K � N nonzero components si ¼ �si þ Dsi, where the mean concentration is
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Figure 3. Front-end adaptation promotes accurate odor decoding in static and naturalistic odor environments. (A) Odor stimuli produce ORN

responses via odor-binding and activation and firing machinery, as described by Equations 2-4. Odors are then decoded using compressed sensing

optimization. Odors are assumed sparse, with K nonzero components, K � N. (B) Decoding accuracy of foreground odors in the presence of

background odors, for a system without Weber Law adaptation. (C) Same as (B), with Weber Law adaptation. (D) Recorded trace of naturalistic odor

signal; whiffs (signal > 4 a.u.) demarcated by purple bars. This signal is added to static backgrounds of different intensities and complexities. (E)

Individual plots show the percent of accurately decoded odor whiffs as a function of background odor intensity, for the non-adaptive (blue) and

adaptive (red) systems, for different tM (line shades).

DOI: https://doi.org/10.7554/eLife.45293.006

The following figure supplements are available for figure 3:

Figure supplement 1. Decoding accuracy for system with ORN-dependent adaptive timescales t.

DOI: https://doi.org/10.7554/eLife.45293.007

Figure supplement 2. Decoding accuracy for system with ORN-dependent adapted firing rates.

DOI: https://doi.org/10.7554/eLife.45293.008

Figure supplement 3. Decoding accuracy for receptors with multiple binding sites.

DOI: https://doi.org/10.7554/eLife.45293.009

Figure supplement 4. Preservation of restricted isometry property in CS shows how decoding accuracy is maintained by adaptation.

DOI: https://doi.org/10.7554/eLife.45293.010

Figure supplement 5. Odor decoding accuracy using the iterative hard thresholding algorithm for nonlinear compressed sensing.

DOI: https://doi.org/10.7554/eLife.45293.011

Figure supplement 6. Whiff duration distribution in naturalistic stimulus.

DOI: https://doi.org/10.7554/eLife.45293.012
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�si. To estimate signals using CS, we minimize
P

i jDsij while enforcing the constraints r ¼ DDs, where

D is the linearization of Equation 2 around �si (details in Materials and methods). The perturbations

are chosen as Dsi ~Nðs0=3; s0=9Þ, where �si ¼ s0. This linearization simplifies the CS decoding – namely

it enforces a single, global minimum – but it is not critical for our general results; see

Materials and methods and Figure 3—figure supplement 5. We perform the minimization using the

sequential least squares algorithm, producing an estimate of the concentration Dsi of each individual

odorant. The matrix D depends on �a, and as above, we assume precise adaptation by setting �a to

their steady state values in response to the background odor alone (via Equation 5 with b ¼ 0). In

the nonadaptive case, �a are held at their minimum values �L;a.

We first examine how foreground odors are recognized when mixed with background odors of a

distinct identity but similar intensities, quantifying decoding accuracy as the percentage of odors

correctly decoded within some tolerance (see Materials and methods). Without adaptation, accuracy

is maintained within the range of receptor sensitivity for monomolecular backgrounds but is virtually

eliminated as background complexity rises (Figure 3B). The range of sensitivity is broader in the

adaptive system and is substantially more robust across odor concentration and complexity

(Figure 3C).

In realistic odor environments, the concentration and duration of individual odor whiffs vary

widely (Celani et al., 2014). We wondered how well a front-end adaptation mechanism with a single

timescale t could promote odor identity detection in such environments. As inputs to our coding/

decoding framework, we apply a naturalistic stimulus intensity recorded from a photo-ionization

detector (Gorur-Shandilya et al., 2017) (Figure 3D), to which we randomly assign sparse identities

from the N-dimensional odorant space (odor concentration fluctuates in time, but identity is fixed).

To mimic background confounds, we combine these signals with a static odor background of a dif-

ferent identity. We decode the odor at each point in time using CS optimization. To assess perfor-

mance, we consider decoding accuracy only during odor whiffs, rather than blanks, where the

concentration is too low to be perceived. We assess performance by the percentage of correctly

decoded whiffs (signal must be fully decoded at some point during the whiff), and average our

results over distinct choices of foreground and background identity. Finally, we assume the decoder

has short-term memory: detected odor signals are only retained for tM seconds in the immediate

past, bounding the amount of past information utilized in signal reconstruction.

Without ORN adaptation, sufficiently strong backgrounds eliminate the ability to reconstruct the

identity of individual odor whiffs, irrespective of the complexity of either the foreground or back-

ground odor (Figure 3E, blue lines). In the adaptive system, this is substantially mitigated (red lines

in Figure 3E), provided the memory duration tM is at least as long as the adaptation timescale t

(darker red lines). The memory tM must be long enough so that information about the background

concentration �si, which is needed for decoding, can be acquired over a window at least as long as

the adaptation timescale. Because short-term adaptation depends on the activity of the Or-Orco

channel rather than on the identity of the receptor (Nagel and Wilson, 2011; Martelli et al., 2013;

Gorur-Shandilya et al., 2017), the values of t and A0a were assumed the same for all ORNs; still, our

results hold if these invariances are relaxed (Figure 3—figure supplement 1 and Figure 3—figure

supplement 2).

Front-end adaptation enhances primacy coding
The primacy coding hypothesis has recently emerged as an intriguing framework for combinatorial

odor coding. Here, odor identity is encoded by the set (but not temporal order) of the p earliest

responding glomeruli/ORN types, known as primacy set of order p(Wilson et al., 2017). If the activa-

tion order of ORNs were invariant to the strength of an odor step or pulse, primacy sets would in

principle form concentration-invariant representation of odor identity. Although our coding frame-

work uses the full ORN ensemble in signal reconstruction, some of these responses may contain

redundant information, and a smaller primacy subset may suffice. To examine this, we apply our

model to a sigmoidal stimulus that rises to half-max in 50 ms, calculating decoding accuracy in time.

Since ORNs activate sequentially, the primacy set is defined by the ORN subset active when the

odor is decoded. For simple odors, a limited set of earliest responding neurons fully accounts for

the odor identity (Figure 4A), in agreement with primacy coding. As expected for more complex

odor mixtures, the full repertoire is required for accurate decoding. Primacy coding also predicts
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that for stronger stimuli, responses occur earlier, since the primacy set is realized quicker, which our

framework replicates (Figure 4—figure supplement 1).

Beyond mere consistency, however, front-end adaptation might also enhance primacy coding in

different environments, such as background odors, which could scramble primacy sets. To investi-

gate this, we considered again a sigmoidal odor step (odor A), now atop a static background (odor

B) to which the system has adapted. We compared the primacy sets of odor A for 1000 different

choices of odor B, finding that, with adaptation, primacy sets are highly consistent across back-

ground confounds for all but the smallest primacy orders (Figure 4B-Figure 4C). This also holds true

for backgrounds of different concentrations (Figure 4—figure supplement 1), suggesting a central

role for front-end adaptation in reinforcing primacy codes across differing environmental conditions.

Contribution of front-end adaptation for odor recognition within the
Drosophila olfactory circuit
Signal transformations in the sensing periphery are propagated through the remainder of the olfac-

tory circuit. How does front-end adaptation interact with these subsequent neural transformations?

ORNs expressing the same OR converge to a unique AL glomerulus, where they receive lateral inhi-

bition from other glomeruli (Olsen and Wilson, 2008; Asahina et al., 2009). This inhibition imple-

ments a type of divisive gain control (Olsen et al., 2010), normalizing the activity of output

projections neurons, which then synapse onto a large number of Kenyon cells (KCs) in the mushroom

body. To investigate how odor representations are affected by interactions between front-end ORN

adaptation and this lateral inhibition and synaptic divergence, we extended our ORN encoding

model by adding uniglomerular connections from ORNs to the antennal lobe, followed by sparse,
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Figure 4. Effect of front-end adaptation on primacy coding. (A) Decoding accuracy as a function of the number of

active ORNs, for different odor complexities. The primacy set consists of those ORNs required to be active for

accurate decoding. (B) Frequency of particular ORNs in primacy sets of an odor placed atop different

backgrounds. Individual plots show, for given primacy order p, the percentage of backgrounds for which the

primacy set of odor A contains a given ORN (dots). Those with purple borders are the p most highly occurring –

that is a nominal background-invariant primacy set for odor A. Points are jittered horizontally for visualization. (C)

Consistency of primacy sets across backgrounds, as a function of p, for the adaptive (solid) and non-adaptive

(dashed) system. Consistency is defined as the likelihood that an ORN in the nomimal primacy set appears in any

of the individual background-dependent primacy sets, averaged over the nominal set (average of the y-values of

the purple dots in B). 100% consistency means that for all backgrounds, the primacy set of odor (A) is always the

same p ORNs.

DOI: https://doi.org/10.7554/eLife.45293.013

The following figure supplement is available for figure 4:

Figure supplement 1. Additional results for primacy coding in the adaptive ORN model.

DOI: https://doi.org/10.7554/eLife.45293.014
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divergent connections to 2500 KCs (Keene and Waddell, 2007; Litwin-Kumar et al., 2017;

Caron et al., 2013). Inhibition was modeled via divisive normalization, with parameters chosen

according to experiment (Olsen et al., 2010). We quantified decoding accuracy by training and test-

ing a linear classifier on the KC activity output of sparse odors of distinct intensity and identity. We

trained the classifier on NID sparse odor identities at intensities chosen randomly over 4 orders of

magnitude, then tested the classifier accuracy on the same set of odor identities but of differing

concentrations.

With both ORN adaptation and divisive normalization, the accuracy of the classification by odor

identity remains above 85% for more than 1000 odor identities (NID>1000). Removing ORN adaption

while maintaining divisive normalization substantially reduces accuracy (down to 65% for 1000 odor

identities). Further removing divisive normalization gives similar results, apart for very large numbers

of odors identities (NID>1000), where divisive normalization provides benefits (Figure 5A). These

results strongly implicate front-end adaptation as a key player in maintaining odor identity represen-

tations, before signals are further processed downstream.

As a simpler task, we also considered binary classification, categorizing odors as appetitive or

aversive. For simplicity, odor signals of the same identity but differing intensity were assigned the

same valence. Classification accuracy degrades to chance level as NID becomes very large

(Figure 5B). When acting alone, either divisive normalization or ORN adaptation can help, although

the effect of ORN adaptation is slightly stronger. When both are active, accuracy improves further,

suggesting that these distinct adaptive transformations may act jointly at different stages of neural

processing in preserving representations of odor identity. As expected, these gains mostly vanish for

the same odors chosen from a narrower range of concentrations (Figure 5—figure supplement 1).

Previous simulation results have shown that divisive normalization aids identity decoding from PN

response to a stronger degree than we find here (Olsen et al., 2010). There, 19 distinct odor identi-

ties at three concentrations were classified more accurately with divisive normalization (80%) than

without (68%). In our case, we find about ~75% accuracy, with and without divisive normalization.

This discrepancy is not necessarily inconsistent. First, we decode mixtures, not single odorants, and

the combinatorics may reduce the benefit of divisive normalization. Second, we classify the

responses of 2500 KCs, rather than 50 PNs (or 24 PNs as in Olsen et al., 2010). Kenyon cell

responses follow a high degree of postsynaptic divergence from PNs, which could decorrelate neural

responses (Caron et al., 2013; Litwin-Kumar et al., 2017; Krishnamurthy et al., 2017) similarly to

divisive normalization, reducing the gains from the latter. Finally, the divisive normalization model is

a simple one in which glomeruli are all mutually inhibiting. A more complex model in which each
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Figure 5. Front-end adaptation enhances odor recognition by the Drosophila olfactory circuit. (A) Accuracy of

linear classification by odor identity, as a function of the number of distinct odor identities classified by the trained

network (concentrations span 4 orders of magnitude), in systems with only ORN adaptation, only divisive

normalization, both or neither. (B) Same as (A) but now classifying odors by valence. Odors were randomly

assigned valence. For a given odor identity, the valence is the same for all concentrations.

DOI: https://doi.org/10.7554/eLife.45293.015

The following figure supplement is available for figure 5:

Figure supplement 1. Binary classification for odors whose concentrations span a narrow range of concentration.

DOI: https://doi.org/10.7554/eLife.45293.016
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glomerulus inhibits only a subset of other glomeruli through local neurons might produce a larger

contribution.

In sum, these results indicate that ORN adaptation might contribute significantly to odor recogni-

tion by identity and valence, and that divisive normalization also contributes, although possibly more

to classification by valence than by identity. An intriguing possibility is that these two forms of gain

control play different roles in coding discrete odor categories versus odor identities.

Discussion
Weber-Law adaptation at the very front-end of the insect olfactory circuit (Gorur-Shandilya et al.,

2017; Cafaro, 2016; Cao et al., 2016) may contribute significantly to the preservation of neural rep-

resentations of odor identity amid confounding odors and intensity fluctuations. Drawing on experi-

mental evidence for a number of ORN-invariant response features (Nagel and Wilson, 2011;

Martelli et al., 2013; Stevens, 2016; Gorur-Shandilya et al., 2017; Si et al., 2019), we have found

that this mechanism of dynamic adaptation confers significant benefits in coding fidelity, without the

need for ORN-specific parameterizations. Still, our results hold when these invariances such as adap-

tation timescale or baseline activity are relaxed (Figure 3—figure supplement 1 and Figure 3—fig-

ure supplement 2). In the olfactory periphery, front-end Weber Law adaptation therefore appears

fairly robust, a consequence of controlling gain via feedback from channel activity (Waite et al.,

2018; Nagel and Wilson, 2011; Gorur-Shandilya et al., 2017), rather than through intrinsic, recep-

tor-dependent mechanisms.

Our results also suggest that a slight breaking of Weber scaling may aid combinatorial coding, by

spreading firing rates more fully over the ORN dynamic range, while still preventing saturation. The

degree of this breaking would manifest as a correction to the Weber scaling exponent,

~ ð1=sÞ1 ! ~ ð1=sÞ1�b, which could in principle be measured experimentally for individual ORNs.

Such small deviations from the strict Weber-Fechner scaling have been observed (see extended fig-

ures in Gorur-Shandilya et al., 2017).

While our framework incorporates many observed features of the Drosphila olfactory system –

Weber-Law adaptation, power-law distributed receptor affinities, temporal filter invariance, connec-

tivity topologies – it is minimal. We considered only one of the chemoreceptor families expressed in

the fly antenna (Joseph and Carlson, 2015) and ignored possible contributions of odor binding pro-

teins (Vogt and Riddiford, 1981; Menuz et al., 2014), inhibitory odorants (Cao et al., 2017), and

odorant-odorant antagonism (Reddy et al., 2018), which could further boost coding capacity and

preserve representation sparsity. Useful extensions to our nonlinear-linear-nonlinear model might

incorporate ephaptic coupling between ORNs housed in the same sensillum (Su et al., 2012), global

inhibition in the mushroom body (Papadopoulou et al., 2011), and the effects of long-term adapta-

tion (Guo et al., 2017).

Previous studies have characterized various neural mechanisms that help preserve combinatorial

codes. Lateral inhibition between glomeruli helps tame saturation and boost weak signals

(Olsen et al., 2010). The sparse degree of connectivity to either the olfactory bulb (vertebrates) or

mushroom body (insects) may also be precisely tuned to optimize the capacity to learn associations

(Litwin-Kumar et al., 2017). In this work, we find that some of these downstream features act in

concert with front-end dynamic adaptation in maintaining representations of odor identity.

Other studies have implicated the unique temporal patterns of neural response as signatures of

odor identity (Raman et al., 2010; Gupta and Stopfer, 2011; Brown et al., 2005; Gupta and Stop-

fer, 2014). ORN and projection neuron time traces form distinct trajectories in low-dimensional pro-

jections, and cluster by odor identity, much as we have found here for static responses at different

concentrations (Figure 2). In locusts PNs, the trajectories elicited by foreground odors when pre-

sented in distinct backgrounds exhibit some degree of overlap; although partial, these overlaps

were nonetheless sufficient to maintain background-invariant decoding from Kenyon cell responses

(Saha et al., 2013). It was therefore suggested that background filtering likely occurs at the level of

ORNs themselves (Saha et al., 2013). Likewise, in our framework, temporal coding is implicit:

because the input nonlinearity depends on the diversity of binding affinities, odor signals are natu-

rally formatted into temporal patterns that are both odor- and ORN-specific (Figure 1D-Figure 1E).

Further, the short required memory timescales (tM ~ t ~ 250ms) suggest that only brief time windows

are needed for accurate odor identification, consistent with previous findings (Brown et al., 2005;

Kadakia and Emonet. eLife 2019;8:e45293. DOI: https://doi.org/10.7554/eLife.45293 12 of 21

Research advance Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.45293


Saha et al., 2013). Moreover, we find that front-end adaptation enhances the robustness of other

combinatorial coding schemes, such as primacy coding (Wilson et al., 2017), which relies on the

temporal order of ORN activation but not absolute firing rate (Figure 4).

In the well-characterized chemosensory system of bacterial chemotaxis, Weber Law adaptation is

enacted through a feedback loop from the output activity of the receptor-kinase complexes onto

the enzymes modifying receptor sensitivity (Waite et al., 2018). It is interesting that some aspects of

this logic are also present in ORNs: although the molecular players are different (and still largely

unknown, although likely involving calcium channel signaling, Cao et al., 2016), it has been shown

that transduction activity feeds back onto the sensitivity of Or-Orco ligand-gated cation channels,

enabling the Weber-Fechner relation (Nagel and Wilson, 2011; Gorur-Shandilya et al., 2017;

Cao et al., 2016). That this adaptation mechanism appears to act similarly across ORNs (Gorur-

Shandilya et al., 2017; Martelli et al., 2013; Cao et al., 2016) suggests the possible involvement of

the universal co-receptor Orco, whose role in long-term adaptation has recently been reported

(Getahun et al., 2013; Getahun et al., 2016; Guo et al., 2017). Further, the identification of four

subunits comprising the Orco-Or ion channel suggest that generic Or/Orco complexes may contain

multiple odorant binding sites, which when included in our model supports our general findings (Fig-

ure 3—figure supplement 3).

Weber Law ensures that sensory systems remain in the regime of maximum sensitivity, broaden-

ing dynamic range and maintaining information capacity (Wark et al., 2007). For a single-channel

system, this requires matching the midpoint of the dose-response curve to the mean ligand concen-

tration (Nemenman, 2012), a strategy which may fail in multi-channel systems with overlapping tun-

ing curves: adaptation to one signal could inhibit identification of others, if the signals excite some

but not all the same sensors, as in Figure 1G. Our results show that this strategy is still largely func-

tional. In CS decoding, this can be traced to the observation that accuracy is guaranteed when suffi-

ciently distinct odor identities produce sufficiently distinct ORN responses, a condition known as the

restricted isometry property (Candès et al., 2006). Indeed, the Weber-Fechner scaling increases the

likelihood that this property is satisfied, beyond that in the non-adaptive system (SI text and Fig-

ure 3—figure supplement 4 - Figure 3—figure supplement 5). Still, restricted isometry does not

require that response repertoires are invariant to environmental changes. That is, even if the subset

of active ORNs were concentration-dependent, odors could still in principle be fully reconstructible

by CS. Nonetheless, our results in t-SNE clustering (Figure 2), primacy coding (Figure 4B–4C), and

odor classification (Figure 5) suggest that some signature of response invariance emerges as a natu-

ral byproduct of front-end adaptation. Together, this implies that Weber Law adaptation, whether

required by the olfactory circuit for precise signal reconstruction (as in CS) or for developing odor

associations (as in classification), can play an integral part in maintaining combinatorial codes amid

changing environmental conditions.

Materials and methods

Adaptive ORN model
We model an odor as an N-dimensional vector s ¼ ½s1; :::; sN �, where si>0 are the concentrations of

individual volatile molecules (odorants) comprising the odor. The olfactory sensory system is mod-

eled as a collection of M distinct Or/Orco complexes indexed by the sub index a ¼ 1; :::;M, each of

which can be bound with any one of the odorant molecules, and can be either active (firing) or inac-

tive (quiescent). At first, we assume there is one binding site per complex; this will be generalized to

many sites. We consider the binding and activation processes to be in equilibrium, assigning each

state a corresponding Boltzmann weight, where the zero of energy is set by the unbound, inactive

state Ca. These weights are:

Ca 1

C�
a expð�b�aÞ

Ca : si expð�bð�Eai ��iÞÞ
C�

a : si expð�bð�ðE�
ai � �aÞ��iÞ;

(6)

where �a (assumed positive) is the free energy difference between the active and inactive
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conformation of the unbound receptor, and Eai and E�
ai are the free energy differences (assumed

positive) between the unbound and bound state for the inactive and active receptor, respectively.

�i ¼ �0þb�1 logðsi=s0Þ is the chemical potential for odorant species i in terms of a reference chemical

potential �0 at concentration s0, s0 expð�b�0Þ ¼ si expð�b�iÞ, which can be traded for the thermody-

namic-relevant disassociation constants K�1

ai ¼KD;ai ¼ s0e
bð�Eai��0Þ.

Adding up contributions from all i odorants, the active fraction is:

Aa ¼ C�
aþ
P

i
C�
a :si

C�
aþ
P

i
C�
a :siþCaþ

P

i
Ca:si

¼ 1þ Caþ
P

i
Ca:si

C�
aþ
P

i
C�

a:si

� �

¼ 1þ e�a
1þKa�sðtÞ
1þK�

a�sðtÞ

� ��1

;

(2)

where we have expressed free energies in units of kBT ¼ b�1 for notational convenience.

This expression can be generalized for the case of multiple, independent binding sites through

some simple combinatorial factors. Consider first an odorant i which can bind one of two locations

on receptor a. There are then four possible inactive states: both sites unbound, site one bound, site

two bound, both sites bound. Combined with the active states, there are therefore eight states for

odorant i and receptor a, with energies:

active f1; �Eai ��i;�Eai ��i;�2Eai� 2�ig
inactive f�a;�ðE�

ai � �aÞ��i;�ðE�
ai � �aÞ��i;�ð2E�

ai� �aÞ� 2�ig
(7)

In the active fraction, Equation 2, the Boltzmann factors combine through the binomial theorem,

giving (for a single odorant environment i):

Aaðodorant i;2 binding sitesÞ

¼ 1þ e�a
1þKa � sðtÞ
1þK�

a � sðtÞ

� �2
" #�1

:
(8)

This expression generalizes for an arbitrary number of odorants and independent binding sites

through the appropriate combinatorial factors, giving an active fraction of

AaðN odorants;R binding sitesÞ

¼ 1þ e�a
1þKa�sðtÞ
1þK�

a�sðtÞ

� �R
� ��1

:
(9)

To generate ORN time traces, Equations 2-3 are integrated numerically using the Euler method

with a 2 ms time step. For ORN firing (Equation 4), hðtÞ is bi-lobed (Martelli et al., 2013):

hðtÞ ¼ ApGamðt;a1;t1Þ�BpGamðt;a2;t2Þ, A¼ 190, B¼ 1:33, a1 ¼ 2, a2 ¼ 3, t1 ¼ 0:012, and t2 ¼ 0:016,

where pGam is the pdf of Gamma(a, 1=t). Nonlinearity f is modeled as a linear rectifier with 5 Hz

threshold.

Derivation of ORN gain
Weber’s Law states that the gain, or differential response, of the receptor activity Aa scales with the

mean odor concentration �si. To show how this is satisfied in our model, we consider the response,

Equation 2, to a signal s ¼ �sþ Ds, where Ds consists of only a small fluctuation in the ith component

Dsi<j�sij about the mean. We derive the change in response to fluctuation Dsi for general b from 0

(Weber’s law) to 1 (no adaptation).

First we write the activity in the form:

Aa ¼ ð1þ eFa Þ�1; (10)

where

Fa ¼ �að�sÞþ ln
1þKa � s
1þK�

a � s

� �

; (11)
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where �að�sÞ is given by Equation 5. Then, assuming 1=K�
a � si � 1=Ka, the change in response from

the adapted level Aað�sÞ is

AaðsÞ�Aað�sÞ ¼ DAa ¼ dAa

dFa

dFa

ds
j�sDsi

¼� eFa

ð1þeFa Þ2 j�s
�K�

ai

K�
a��s

� �

Dsi:

(12)

We use Equation 5 to evaluate eFa at �s, obtaining:

eFa
»

1�A0a

A0a

ðK�
a ��sÞ�b; (13)

whereby

DAa

Dsi
¼

1�A0a
A0a

ðK�
a ��sÞ�b

ð1þ1�A0a
A0a

ðK�
a��sÞ�bÞ2

K�
ai

K�
a��s

� �

¼ ð1�A0aÞA0aK
�
ai

½A0aðK�
a��sÞ

1þb
2 þð1�A0aÞðK�

a��sÞ
1�b
2 �2

:
(14)

For b¼ 0 (the fully adaptive case) and a single odorant, this expression for the gain reduces to

ð1�A0aÞA0a=si. For small b, and given A0a ’ 0:1 (corresponding to 30 Hz on a 300 Hz firing rate scale),

the denominator is dominated by the 1�A0a term, giving:

DAa

Dsi
jðb�1Þ ¼

A0aK
�
ai

ð1�A0aÞðK�
a ��sÞ1�b

: (15)

The implication of this is that the gain scaling of the inverse mean intensity, which is 1 for perfect

adaptation (gain ~ ð1=siÞ1), is now sublinear. Thus, when Weber’s Law is weakly broken, the gain still

reduces with mean odor intensity, but not as quickly.

t-SNE dimensionality reduction and mutual information
For t-SNE dimensionality reduction (van der Maaten and Hinton, 2008), ORN responses were gen-

erated for odor signal combinations consisting of 1 (among 10) distinct sparse foreground odors A

atop 1 (among 50) distinct sparse background odors B, for Figure 2B. Figure 2C plots responses for

10 odors at 40 concentrations spanning four decades, atop a random sparse background odor of

similar magnitude. For adaptive systems, �a were set to their fully adapted values to the background

odor, given by Equation 5, with b ¼ 0.

The mutual information (MI) between signal and response quantifies how many bits of information

a response contains about the stimulus. As we are interested in how much information ORN

responses r contain about novel foreground odors s, we calculate the MI between s and r. This cal-

culation requires the conditional response distribution PðrjsÞ, where the probability distribution is

over different background odors �s. To get this distribution, we hold s fixed and generate r in the

presence of distinct backgrounds. To these responses r, we also add a small amount of Gaussian

noise (mean zero and variance 1 Hz), which allows a distribution to be defined when there is no back-

ground odor. We then bin the resulting r in units of Dr = 1 Hz to get a histogram representing PðrjsÞ
(The histogram is necessary, since a sum must be taken over r). If responses were completely back-

ground invariant, the resulting histogram would be highly peaked.

Using PðrjsÞ, the MI is defined as

MI¼Hresponse�Hnoise

where Hnoise is:

Hnoise ¼�
X

s;r

PðsÞPðrjsÞ log2PðrjsÞ

and Hresponse is
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Hresponse ¼�
X

r

PðrÞ log2PðrÞ

where

PðrÞ ¼
X

s

PðsÞPðrjsÞ:

The noise entropy Hnoise quantifies how much variability comes from the background odors, but is

not related to changes in foreground odor. The response entropy Hresponse quantifies how much vari-

ability comes from both background and foreground. The mutual information, which is their differ-

ence, is a measure of how responses differ by foreground alone.

Compressed sensing decoding of ORN responses
Compressed sensing (CS) addresses the problem of determining a sparse signal from a set of linear

measurements, when the number of measurements is less than the signal dimension. Specifically, it

is a solution to

y¼Dx; (16)

where x2RN and y2RM are vectors of signals and responses, respectively, and D is the measure-

ment matrix. Since measurements are fewer than signal components, then M<N, whereby D is wide

rectangular and so Equation 16 cannot be simply inverted to produce x. The idea of CS is to utilize

the knowledge that x is sparse, that is only K of its components, K �N are nonzero. Both the meas-

urements and sparsity are thus combined into a single constrained optimization routine:

x̂i ¼ argmin
X

N

i

jxij suchthaty¼Ds (17)

where x̂i are the optimal estimates of the signal components and the sum, which is known as the L1

norm of x, is a natural metric of sparsity (Donoho, 2006).

The L1 norm is a convex operation and the constraints are linear, so the optimization has a unique

global minimum. To incorporate the nonlinear response of our encoding model into this linear

framework, we assume that the responses are generated through the full nonlinear steady state

response, Equations 2- 4, but that the measurement matrix D needed for decoding uses a linear

approximation of this transformation. Expanding Equation 4 around �s ¼ s� Ds gives

DraðtÞ ¼ raðsðtÞÞ� rað�sðtÞÞ
DraðtÞ ¼

R t
dthðt� tÞPN

i
dAai

dsi
j�sDsi

(18)

where

raðs0Þ ¼
Z t

dthðt� tÞ
X

N

i

A0a (19)

and where dAai

dsi
j�s is given by the right-hand side of Equation 14 with b¼ 0. Equations 18 and 19

hold only for integrands above 5 Hz (and are zero below), as per the linear rectifier f . We assume

that the neural decoder has access to background �s, presumed learned (this assumption can be

relaxed; see below), and to the linearized response matrix, Equation 14, but must infer the excess

signals Dsi from excess ORN firing rates DraðtÞ. Thus, this corresponds to the CS framework (Equa-

tion 17) via Dr! y, Ds! x, and dAai=dsij�s !D. We optimize the cost function in Equation 17 using

sequential least squares programming, implemented in Python through using the scientific package

SciPy.

For our simulations, we let sparse components si be chosen as si ¼ �si þ Dsi, where �si ¼ s0 and

Dsi ~Nðs0=3; s0=9Þ. The measurement matrix D depends on the free energy differences �a. For static

stimuli, �a equals the fixed point of Equation 3 in response to the background stimulus with b ¼ 0.

For fluctuating stimuli, �a is updated in time by continuously integrating raðtÞ, via Equation 3 and 4;

thus, only knowledge of the response raðtÞ are needed by the decoder. To quantify decoding
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accuracy, we treat the zero and nonzero components of the sparse odor vector separately. We

demand that the K nonzero components ŝi of the estimated sparse vector are within 25% of their

true values si, and that the N � K zero components are estimated less than 10% of s0. Together, this

ensures that the odorants comprising the odor mixture are estimated sufficiently close to their con-

centrations, and that the remaining components are sufficiently small. Odor signals s are considered

correctly decoded if both of these conditions are satisfied for all components si. The relatively lax

accuracy demanded on the nonzero components is to prevent oversensitivity on the unavoidable

errors introduced by linearization. Qualitatively, our findings are robust to these choices.

The naturalistic odor signal (Figure 3D) was generated by randomly varying flow rates of ethyl

acetate and measuring the concentration with a photo-ionization detector (Gorur-Shandilya et al.,

2017). Statistics mirroring a turbulent flow (Celani et al., 2014) were verified (Figure 3—figure sup-

plement 6).

Iterative hard thresholding (IHT) and the restricted isometry property
in compressed sensing
The purpose of response linearization (Equation 18) is simply to apply compressed sensing recon-

struction directly using linear programming, without worrying about issues of local minima in Equa-

tion 17. This allows us to isolate the impact of Weber Law adaptation from the particularities of the

numerics. An alternate technique for compressed signal reconstruction, iterative hard thresholding

(IHT), does not minimize the constrained L1 norm directly, rather applying a hard threshold to an

iteratively updated signal estimate (Blumensath and Davies, 2009b). IHT can be generalized

straightforwardly to nonlinear constraints, and would actually dispense with the need for a learned

background �s, simply initializing the iterations from �s ¼ 0. Remarkably, this technique works quite

well even for non-linear measurements (Blumensath, 2013). We demonstrate the applicability of the

IHT algorithm to our odor decoding system in Figure 3—figure supplement 5, which reproduces

qualitatively the findings in the main text. For these calculations, no background odor was assumed,

each iterative decoding being initialized �s ¼ 0.

IHT provides an alternate computational technique of nonlinear CS, which could be used to both

extend and verify our results. Further, it allows us to illustrate why Weber Law adaptation maintains

signal reconstruction fidelity in our olfactory sensing model. Like CS using L1-norm minimization, IHT

exhibits amenable reconstruction and convergence properties under the guarantee of the so-called

restricted isometry property (RIP) (Candès et al., 2006). Loosely, RIP measures how closely a matrix

operator resembles an orthogonal transformation when acting on sparse vectors. The degree to

which RIP is satisfied can be understood in terms of the spectrum of a measurement matrix D. In

particular, if li are the eigenvalues of DT
i Di, where Di is any k � m submatrix of D, and

1� di � lmin � lmax � 1þ di (20)

is satisfied for some di, then D satisfies the RIP with constant di. Plainly, the RIP states that the eigen-

values of DT
i Di, when acting on k-sparse vectors, are centered around 1. Thus, to intuit why signal

reconstruction breaks down in the non-adaptive sensing system, we can investigate the eigendecom-

position of various linearizations of the measurement matrix. We do this now, starting with a brief

description of the IHT.

In the linear setting, IHT seeks sparse signals via the following iterative procedure

(Blumensath and Davies, 2009b):

siþ1 ¼HKðsi þ�DTðsiþðy�DsiÞÞÞ (21)

where si is the ith estimate of the sparse signal s, � is a step size for the iterations, and y, D are as

defined above. Hkð�Þ is a thresholding function which sets all but the largest K values of its argument

to zero. The nonlinear extension to IHT is (Blumensath, 2013):

siþ1 ¼HKðsi þ�DT
si
ðsiþðy�DðsiÞÞÞÞ; (22)

where D is a nonlinear sensing function and Dsi is a linearization of D about the point si. Reconstruct-

ibility for k-sparse signals is guaranteed if Dsi satisfies RIP for all si and all k-sparse vectors

(Blumensath and Davies, 2009b). To get a sense of how this is preserved in the adaptive system,
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we calculate the eigenvalues for 1000 choices of si, acting on random signals of given sparsity K

(Figure 3—figure supplement 4). Since the RIP is sensitive to constant scalings of the measurement

matrix (while the actual estimation problem is not), we scaled all columns of Dsi to norm unity

(Blumensath and Davies, 2009a). This normalizes the eigenvalues of DT
si
Dsi to center near unity

before calculating the eigendecomposition, allowing us to assess the degree to which the RIP is sat-

isfied. This scaled matrix can be used directly in Equation 22 (Blumensath, 2013; Blumensath and

Davies, 2009a). The spectra of these matrices indicates that the RIP becomes far more weakly sati-

sifed in the non-adaptive system than in the adaptive one, for sufficient odor complexity and

intensity.

Network model and classification
For the network model, the AL-to-MB connectivity matrix J1, is chosen such that each KC connects

pre-synaptically to seven randomly chosen AL glomeruli (Litwin-Kumar et al., 2017; Caron et al.,

2013). The results shown in Figure 5 are an average of 10 distinct instantiations of this random

topology. The Z ¼ 2500 KCs are then connected by a matrix J2 to a readout layer of dimension Q,

where Q ¼ 2 for binary and Q ¼ NID for multi-class classification. Both AL-to-MB and MB-to-readout

connections are perceptron-type with rectified-linear thresholds. The weights of J1 and J2 are cho-

sen randomly from ~Nð0; 1=
ffiffiffi

7
p

Þ and ~Nð0; 1=
ffiffiffi

Z
p

Þ, respectively. Only the J2 and the MB-to-output

thresholds are updated during supervised network training, via logistic regression (for binary classifi-

cation) or its higher-dimensional generalization, the softmax cross entropy (for multi-class

classification).
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