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ABSTRACT 
 
To survive, insects must effectively navigate odor plumes to their source. In natural plumes, 
turbulent winds break up smooth odor regions into disconnected patches, so navigators encounter 
brief bursts of odor interrupted by bouts of clean air. The timing of these encounters plays a critical 
role in navigation, determining the direction, rate, and magnitude of insects’ orientation and speed 
dynamics. Disambiguating the specific role of odor timing from other cues, such as spatial 
structure, is challenging due to natural correlations between plumes’ temporal and spatial 
features. Here, we use optogenetics to isolate temporal features of odor signals, examining how 
the frequency and duration of odor encounters shape the navigational decisions of freely-walking 
Drosophila. We find that fly angular velocity depends on signal frequency and intermittency – the 
fraction of time signal can be detected – but not directly on durations. Rather than switching 
strategies when signal statistics change, flies smoothly transition between signal regimes, by 
combining an odor offset response with a frequency-dependent novelty-like response. In the 
latter, flies are more likely to turn in response to each odor hit only when the hits are sparse. 
Finally, the upwind bias of individual turns relies on a filtering scheme with two distinct timescales, 
allowing rapid and sustained responses in a variety of signal statistics. A quantitative model 
incorporating these ingredients recapitulates fly orientation dynamics across a wide range of 
environments and shows that temporal novelty detection, when combined with odor motion 
detection, enhances odor plume navigation. 
 
AUTHOR SUMMARY 

 
Olfactory navigation is essential for insects to find food and mates but challenging because 
complex wind flows break odor plumes up into discrete and intermittent packets. The timing of 
encounters with these packets is crucial for navigation, affecting when insects reorient. To 
decide where to reorient, insects extract directional information from the wind, the odor gradient, 
and the motion of the odor packets, by comparing signals between their two antennae. Here we 
ask how the frequency and duration of odor encounters drive reorientation. To isolate the role of 
odor timing we use a virtual reality setup in which freely walking flies experience a constant wind 
direction along with uniform flashes of light – virtual odor packets – that activate their odor 
sensors uniformly, thus removing all odor directional cues. We find that flies are much more 
likely to respond to an individual odor encounter if the time since the previous encounter is 
greater than ~2s. We show in simulations how this temporal novelty detection, when combined 
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with odor motion-sensing, enhances navigation. In turbulent plumes odor packets tend to arrive 
in clumps. Our findings suggest flies can respond differently to the beginning of a clump than to 
fluctuations within to enhance navigation.  
 
 
INTRODUCTION 
 
Olfactory navigation is a challenging task, owing to the complexity and variability of natural odor 
scenes. The distribution of odors in nature depends sensitively on the physical properties of the 
environment, such as airflow and proximity to surfaces and boundaries, creating a diversity of 
signals varying in their spatial and temporal statistics (1-3). Animals such as insects must extract 
relevant odor information from these complex landscapes, and use it to inform rapid behavioral 
decisions to progress toward the odor source.  
 
In diffusion-dominating odor environments such as near food-laden surfaces, animals can locate 
odor sources by sampling concentration gradients temporally (4-7) and spatially (8, 9). In stronger 
airflows, further away from boundaries, and above rough terrain such as rocks or trees, complex 
airflows break up smooth odor regions into discrete packets and filaments swept along by the 
wind (3, 10-16). As a result, animals experience discrete encounters with odor packets separated 
by blanks (moments when odor concentration is below detection threshold). The durations of 
these encounters can span a wide range of timescales (11). Under such conditions, insects 
navigate by orienting upwind within the odor and moving crosswind or downwind when the odor 
is lost, in an attempt to regain the plume (17). Similar behaviors (with some variations between 
species) are observed in laboratory experiments with walking and flying moths (10, 17-23) and 
fruit flies (24-27). We recently discovered that flies can also detect the direction of motion of odor 
signals, by resolving inter-antennal concentrations differences over time. Odor motion provides a 
directional cue complementary to the wind, and is especially useful in turbulent plume navigation 
(28). In sum, despite variations between species and locomotive regimes, the general picture of 
insect odor navigation is that the wind, along with odor gradients and the recently-discovered odor 
motion, indicate directions of interest, while the timing of odor encounters and the odor identity 
indicate when to turn and how much to bias the new orientation in the directions of interest. 
 
Careful analyses of moth turning responses following odor encounters have implicated the 
frequency of odor encounters as a key driver of upwind progress (21-23). Frequency-driven 
turning is also observed in walking flies navigating complex odor plumes when odor encounters 
are brief (~100 ms) and frequent (27). Conversely, flies experiencing longer and sparser odor 
encounters progress upwind by integrating the odor concentration over time – thus responding to 
odor intermittency-the fraction of time signal can be detected-or duration (26, 29, 30), rather than 
encounter onset time or frequency. Thus, insects are clearly able to sense and process various 
temporal features of the odor signal during plume navigation; moreover, this broad and versatile 
sensing capability has been shown theoretically to enable efficient source localization across a 
diversity of plume structures (31-33). Still, how these multiple features are precisely weighted 
within a single navigation strategy, and whether the strategy itself modulates as signal statistics 
change, remains unclear.  
 
In this study, we address these questions using an optogenetic assay developed in previous 
studies (27, 28). We present spatially uniform but temporally-structured fictive odor stimuli to 
freely-walking blind Drosophila melanogaster in a steady laminar flow. In addition to decoupling 
odor signal from wind, the spatially uniform stimulus removes both the effect of behavioral 
feedback on the received odor signal, and any bilateral differences between antennae in timing 
or intensity from the odor encounters (8, 9, 28). Thus, no directional information from the odor 
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signal (odor gradient and odor motion) is available to the flies, which must navigate using the 
temporal features of the odor signals and the fixed wind direction alone.  
 
Our main findings are the following. i) Fly angular velocity is controlled by the frequency and 
intermittency of odor encounters, but not their duration. ii) Flies demonstrated a “temporal novelty 
detection” in turn rate and turn speed: they responded more strongly to signal onset when the 
prior period without stimulus was longer than ~2 seconds. As in previous studies (26) we also 
observed an “offset response” in turning behavior, which peaks both at the end of a long odor 
encounter or a block of many encounters at high intermittency. Importantly these two features 
combine to smoothly transition the behavioral response of the flies between low and high 
frequency regimes. iii) The upwind bias of turns (likelihood to orient upwind when turning) was 
independently modulated by frequency and intermittency of the signal. This dependency resulted 
from a rapid increase in upwind bias at the onset of odor pulses, followed by a slower decay at 
the offset, and allowed for strong upwind responses across a wide range of temporally diverse 
odor environments. We incorporated these findings into a model combining temporal novelty and 
offset responses together with a two-timescale integrator. This versatile but parsimonious model 
could recapitulate turn rate, turn speed, and upwind bias across the full spectrum of temporally 
diverse environments, thus unifying results from previous studies into one framework (26, 27, 31). 
Finally, we show in agent-based simulations how the temporal novelty detection response can be 
combined with odor motion sensing to improve navigation performance in more complex odor 
environments.   
 
RESULTS 
 
An optogenetic setup to examine the olfactory response of free-walking flies to the 
temporal features of odor signals  
 
To investigate how fly navigation decisions depend directly on the temporal features of odor 
signals, we created an optogenetic stimulus (henceforth referred to as a ‘fictive’ plume) that had 
only a temporal component yet drove clear navigational responses. Using the wind tunnel walking 
assay previously described (27) (Fig 1A), we presented a temporally variable but spatially uniform 
optogenetic odor stimulus (Fig 1B) to freely-walking blind flies that expressed Chrimson in their 
olfactory receptor neurons (ORNs) (w;+;Orco-GAL4, w;gmr-hid;UAS-20XChrimson), from here 
referred to as Orco>Chr mutants. The stimulus was presented in a 15s ON block, where the entire 
arena was illuminated with a uniform red light stimulus (same intensity as in (28)) and flashed 
regularly at a frequency of 2 Hz and duration of 0.05s (consistent with naturalistic complex plumes 
(27)), followed by a 15s OFF block with no stimulus. A steady unidirectional laminar wind was 
used as a directional cue for flies to follow. Wind speed was 150 mm/s, matching the wind speed 
in (27).  
 
In our previous study – which used an identical behavioral setup and genotype – we showed that 
optogenetically-active flies navigated straight ribbons and complex plumes similarly to real odors 
(28). Moreover, light-driven ORN firing responses were well-maintained within their expected 
physiological range (28). Many other studies have also successfully used optogenetic stimulation 
to evoke navigation behaviors (e.g. (34-36)). Here, to further confirm that our optogenetic stimulus 
drove responses similar to wildtype flies encountering a real odor plume, we examined fly 
orientation during stimulus presentation. We compared to previous studies in which wildtype 
Canton-S (CS) flies navigated two real odors: ethyl acetate (EA) and smoke (27). Indeed, flies 
responding to the optogenetic stimulus showed qualitatively similar navigational trends as flies 
experiencing real odor plumes, directing their orientation upwind (i.e. towards the fictive odor 
source) to a very similar degree (Fig 1C).  
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Fig 1: Optogenetic stimulation with high frequency fictive odor pulses drives similar navigation behaviors as 
real odor plumes. A. Top and side view of the fly walking assay. Red light (same intensity as in (28)) is projected 
from above as fictive odor stimuli, uniformly illuminating the entire arena with high temporal (< 6 ms) precision. Wind 
speed is 150 mm/s like in (27). B. Four sequential ON and OFF blocks are presented to flies (15 s per block). During 
the ON block, flashes of red light are presented with a given duration and frequency. No flashes are presented during 
the OFF block. C. Orientation of flies during the ON and OFF block, for odor plumes of ethyl acetate (EA; left column, 
orange) and smoke (middle column, blue) with turbulent wind (data from (27)) and fictive odor plume presentation at 
2 Hz, 0.1 s (right column, red) with laminar wind. Black: mean response over all trajectories. Grey shade indicates 
SEM. Only walking flies (ground speed > 2 mm/s) were included. Canton-S flies were used for both smoke (114-282 
trajectories per frame) and EA (243-582 trajectories per frame) plume presentation. w;gmr-hid/+;Orco-GAL4/UAS-
20XChrimson mutants (60-99 trajectories per frame) were used for fictive odor plume presentation. We reflected 
orientations greater than 180° so that orientations were always between 0° (directly downwind) and 180° (directly 
upwind). Thus, a uniform spread of orientations results in an average orientation of 90°. D. Mean orientation response 
across all trajectories during 3-12 s of ON block. EA: Canton-S flies in turbulent ethyl acetate plume; Smoke: Canton-
S flies in turbulent smoke plume. Orco>Chr: w; gmr-hid/+; Orco-GAL4/UAS-20XChrimson in fictive plume. NO ATR: 
Orco>Chr mutant without feeding all-trans retinal, in fictive plume. GAL4 parent: w;+;Orco-Gal4, in fictive plume. UAS 
parent: w;gmr-hid;UAS-Chrimson, in fictive plume. Ns are 918, 412, 144, 272, 126 and 114 trajectories respectively. 
E. Full range of optogenetic stimuli presented, varying in encounter frequency (0.2, 0.5, 1.0, 1.5, 1.75, 2, 2.5, 3, 4, 5 
Hz) and encounter duration (0.02, 0.05, 0.10, 0.25, 0.50, 1.00 s). Combinations of duration and frequency that 
created indeterminable flashes (i.e. intermittency >= 1) were excluded.  
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To confirm that Orco>Chr mutants were orienting upwind due to the fictive plume stimuli and not 
some other confounding factor, such as ambient lighting in the experimental arena, we obtained 
the mean orientation of all trajectories during the ON block (3-12 s) for each environment (CS in 
EA, CS in smoke, Orco>Chr in fictive plume), along with the parental controls of the 
optogenetically active line (w;+;Orco-GAL4, w;gmr-hid;20XUAS-Chrimson). Orco>Chr mutant 
responses were additionally measured in the absence of all-trans-retinal (ATR). We compared 
the mean orientation in these environments to the mean of uniformly distributed headings (which 

due to the way we reflect orientations results in a mean of 90-see Fig 1 caption) in both laminar 

and turbulent wind environments (S1 Fig). During the ON block, both CS flies in EA or smoke and 
Orco>Chr mutants in the fictive plume oriented more upwind than crosswind (one-sample t-test, 
EA: 115.7°±1.4°, pval < 1e-6, Smoke: 130.6°±1.7°, pval < 1e-6 Orco>Chr: 119.9°±2.9°, pval < 1e-

6) (Fig 1D). In comparison, the orientation of both the UAS-parental control line and the Orco>Chr 
mutant line without ATR did not differ from uniform orientation (UAS: 92.4°±3.5°, pval = 0.491, 
NO ATR: 92.2°±2.4°, pval = 0.343), (Fig 1D, grey, S2 Fig). Interestingly, the GAL4-parental 
control line oriented more downwind than expected (79.1°±2.9°, pval = 0.0002), which we 
attributed to a mild influence of background visual stimuli, since this parent was not blind. 
 
The similarity in gross behaviors between wildtype flies navigating real odors and optogenetically 
stimulated flies navigating fictive odors indicates that spatially uniform, dynamic optogenetic 
stimuli can drive upwind naturalistic plume navigation. This is consistent with previous results that 
used real odors (26), though an added benefit here is that bilateral information is entirely removed 
by using full-field optogenetic flashes. Temporal signal variation alone is enough to drive 
persistent upwind navigation, emphasizing the importance of temporal stimuli features in the 
absence of spatially-variable concentrations or local gradients. 
 
Upwind heading correlates with signal frequency and intermittency, but not duration 
 
Next, we asked how frequency, duration and intermittency modulate upwind heading. We 
generated 45 fictive odor environments with pulse durations between 0.02s and 1s, and pulse 
frequency between 0.2 Hz and 5 Hz (Fig 1E). Intermittency is equal to frequency multiplied by 
duration, and varied between 0.004 and 0.875 (intermittency is bounded between 0 (signal is 
never present) and 1 (signal is always present)).  
 
Average upwind heading exhibited common trends across environments (Fig 2A). At ON block 
onset, flies oriented toward the upwind direction (180o) when the odor was present, and went 
downwind at odor offset, similar to behavior in real odor plumes (see Fig 1). For low frequencies, 
where there was sufficient time between encounter onsets to distinguish individual encounter 
responses (i.e. 0.2Hz, 0.5Hz), flies oriented upwind at each encounter onset, maintained their 
upwind orientation for the duration of the encounter, then oriented downwind at the end of the 
encounter. Beyond 1Hz, individual encounter responses were largely indistinguishable, but we 
observed that flies drove their orientation upwind for the duration of the ON block, and turned 
downwind at ON block offset. For low frequencies, average upwind orientation increased with 
duration, but this effect tapered beyond ~1Hz. Meanwhile, for a given pulse duration, mean 
orientation increased with frequency up to around 3Hz, before decreasing at very high 
frequencies. This aligns with previous studies that have shown that olfactory receptor neurons 
can respond to high frequencies (37). These trends in mean orientation were observed in both 
laminar and complex wind conditions (S3 Fig). 
 
To quantify how the frequency, duration, and intermittency of odor encounters influence upwind 
bias, we calculated the instantaneous angular velocity as a function of orientation at each time 
point during the ON block (Materials and Methods) (Fig 2B). Here, angular velocity was signed 
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such that upwind turns were positive and downwind turns were negative. Average angular velocity 
was nearly zero when flies were oriented upwind or downwind, but became increasingly positive 
with signal frequency for those oriented crosswind, up to around 3 Hz. Similar trends were found 
with intermittency, but not duration (S4 Fig). Since these trends were most apparent when flies 
were oriented crosswind (grey region in Fig 2B), we pooled  
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Fig 2: Flies use the frequency and intermittency of odor signals to navigate upwind across temporally diverse 
fictive odor environments. A. Population mean orientation response across 45 fictive odor environments. Each 
environment projected stimuli with a fixed duration and frequency. Each row represents a different tested frequency: 
0.2 Hz, 0.5 Hz, 1 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.5 Hz, 3 Hz, 4 Hz and 5 Hz, from top to bottom. Each column represents 
a different duration: 0.02 s, 0.05 s, 0.1 s, 0.25 s, 0.5 s and 1 s from left to right. Red bars denote the signal 
simultaneously encountered by all flies within an experiment (Materials and Methods). Upwind is 180°, downwind is 0°. 
Grey-blue dashed line: crosswind direction (90°). Black: Population mean orientation; orientation was flipped over 180° 
as before. Grey shading: SEM for each time point (recording rate = 60 Hz). Between 176 and 407 trajectories were 
recorded per environment. Between 72 and 237 trajectories were recorded per time point across all environments. B. 
Instantaneous angular velocity of flies as a function of their orientation during the ON block (0-15 s). Upwind is at 180°, 
downwind at 0°. Orientation was split into 8 bins with width 22.5°. Vertical dashed line indicates crosswind orientation 
90°. Positive (negative) angular velocities correspond to upwind (downwind) turning. Black horizontal line at 0 °/s 
indicates no change in orientation. Color indicates environment frequency; yellow: low frequencies (0.2 Hz, 0.5 Hz), 
orange: medium frequencies (1 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.5 Hz, 3 Hz), red: high frequencies (4 Hz, 5 Hz). C. Mean 
angular velocity of individual flies oriented within the crosswind range (90°± 22.5°; grey shading in B) over duration of 
ON block (0-15 s) as a function of environment frequency (left), duration (middle) and intermittency (right). Each point 
represents a different environment with defined frequency and duration. Error bars: SEM for that environment. Dotted 
grey line represents no mean change in orientation. ρ value is the Pearson’s correlation coefficient between mean 
angular velocity and the temporal feature (frequency, duration, intermittency), obtained from linear least-squares 
regression. Correlations with environment frequency and intermittency were significantly different from 0 (frequency: 
ρ=0.63, p < 0.001; intermittency: ρ=0.55, p < 0.001). Correlation with duration was not significantly different from 0 
(ρ=0.07, p = 0.633).  
 
the angular velocities over all instances in which flies were oriented within a 45° sector around 
the crosswind (90°) direction, and calculated correlations with signal frequency, duration, or 
intermittency (Fig 2C). We found a significant positive correlation between angular velocity and 
either frequency (Pearson’s correlation coefficient, R=0.59, p<0.001) or intermittency (R=0.55, 
p<0.001), but not duration (R=0.10, p=0.496). This result indicated that flies use odor frequency 
and intermittency to drive upwind motion, prompting us to examine behavioral models that 
respond to these particular signal features. 
 
Turn dynamics exhibit a temporal novelty response and offset response 
 
Fly orientation results from the cumulative effect of individual turns. To understand how temporal 
features of the odor signal drive turn dynamics, we first explored how the average angular speed 
(the magnitude of the angular velocity) was modulated during the signal block across 
environments (Fig 3A). For clarity, we focus on four example odor environments chosen from the 
45 environments shown in Fig 2. We chose these 4 cases to illustrate the different signal and 
response regimes present in the full dataset (S5 Fig).  
 
In low frequency and intermittency environments (e.g. 0.2Hz, 1s), where responses to individual 
odor encounters could be clearly resolved, the mean angular speed was dynamic and peaked at 
each encounter onset (Fig 3A, S5 Fig). For higher frequency environments >~1.5 Hz, angular 
speed peaked sharply only at the onset of the ON block, rather than at each individual encounter. 
It quickly dropped towards the pre-stimulus baseline and remained roughly steady for the 
remainder of the ON block. We first wondered whether this was because in higher frequency 
environments, flies had maintained their upwind orientation upon receiving new pulses and hence 
did not need to reorient upwind. However, we found that in higher frequency environments, even 
flies facing crosswind or downwind at the onset of later pulses did not show large changes in 
mean angular speed (S6 Fig). This suggests a type of “temporal novelty response”, where angular 
speed will spike at the onset of a new encounter provided the previous odor encounter was in the 
sufficiently distant past. In high intermittency environments e.g. 3 Hz, 0.25 s, we observed a 
second large, sharp peak in angular speed at the end of the ON block, which was also seen at 
the end of individual, long duration encounters (e.g. 0.2Hz, 1s) similar to previous observations 
(26). These data suggest that turn dynamics exhibit temporal novelty detection and offset-
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response, and that they are modulated by both odor frequency and intermittency. While odor 
offset responses have been seen and quantified before (26), the “temporal novelty response” 
following an unexpected odor encounter has not yet been characterized, though it is also 
observable in previous studies (see Fig 1F, 2A in (26) and Fig 2, supplement 1B in (27)). 
 
To unravel the decisions underlying these angular speed dynamics, we turned from population  
 

Fig 3: Flies change orientation in discrete turn events modulated by the signal. A. Population mean angular 
speed during stimulus presentation for four conditions – 0.2 Hz, 1 s (left), 0.5 Hz, 0.25 s, (middle-left), 1.5Hz, 0.1s 
(middle right) and 3 Hz, 0.25 s (right) – obtained from the instantaneous absolute angular velocity of tracked flies 
(Materials and Methods). Black line: population mean at each time point. Grey shading: SEM at each time point. Red 
bars: stimulus. 0.2 Hz, 1 s, n=93-154 trajectories per time point. 0.5Hz, 1s, n=86-130 trajectories. 1.5Hz, 0.1s, n=72-
120 trajectories.  3 Hz, 0.25 s, n=105-181 trajectories. B. Definition of turn and fixation events. Black: angular speed of 
an individual fly. Turns must have a minimum angular speed of 25 deg/s (green dotted line) and a minimum duration of 
0.18 s (see S7 Fig). C. Distribution of fixation durations across all 45 frequency-duration experiments at different times 
during the experiment. Fixation durations are roughly exponentially distributed with a rate (slope) that depends on signal 
timing (see S8 Fig). Orange: turn rate during ON block onset (0-0.4 s). Pink: turn rate at OFF block onset (from tlast to 
tlast+0.5 s) where tlast is the time at the end of the last stimulus of a ON block. Purple: baseline turn rate during OFF 
block (20-25 s). Lines are PDFs. Light shade indicates standard error estimated using bootstrapping (repeats = 1000). 
D. Same as C but for the distribution of turn durations. Turn duration distributions do not vary much over time E. 
Distribution of mean angular speed during turns across all 45 frequency-duration experiments at different times. Colors 
and shading are the same as in C. The shifting mean indicates that turns are faster during ON block onset and offset 
as compared to the baseline turn speed when no stimulus is present. 

 
 
averages to individual trajectories. At the level of individual trajectories, changes in angular speed 
exhibited large, discrete jumps (Fig 3B), that occurred both during ON and OFF blocks across all 
odor environments. Angular speed also underwent small fluctuations that we posited to occur 
from the fly’s walking gait (38) and measurement noise. Following previous work (27, 34, 39, 40), 
we attributed the large angular changes to turn events, i.e. intentional, large-scale reorientations 
that align the navigator’s heading to the direction of interest. We defined turn events by setting a 
threshold on angular speed. Events above threshold were called “turns”, those below threshold 
were called “fixations”. The threshold (25 deg/s) was chosen to remove small fluctuations that 
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contribute little to the overall change in heading, but keep large angular changes that drive 
navigation behaviors. We also set a minimum turn duration of 0.18s to remove very short 
fluctuations in angular speed that were potentially artefacts of the tracking (S7 Fig and Materials 
and Methods).  
 
Having defined turn and fixation events, we examined how the rate, duration, and angular speed 
of these discrete events, which modulate total angular speed, are influenced by signal statistics. 
To obtain the turn rate, we note that >95 % of fixation events (times between turns) lasted less 
than 1.5s (S8 Fig), and within this range, the distribution of fixation events appeared 
approximately exponential (S8 Fig), suggesting that turn events obeyed a Poisson process. The 
slope of the distribution, i.e. the turn rate, changed with time (Fig 3C). It was high at the onset 
(4.92 ± 0.18 turns/s) and offset (4.18 ± 0.09 turns/s) of ON blocks, but lower (3.19 ± 0.02 turns/s) 
during OFF blocks. Turn durations also appeared exponentially distributed, but with a rate that 
varied less over time (Fig 3D). Finally, the mean turn speed exhibited a unimodal distribution that 
resembled a Gamma distribution with mean that strongly depended on the signal (Fig 3E): higher 
at the onset and offset of the ON block, and lower otherwise. Together, this suggested that angular 
speed dynamics depended more on changes in turn rate and turn speed than on temporal 
variations in turn duration.  
 
To get a qualitative understanding of how turn rate and speed depend on the signal, we plotted 
them as a function of time (Fig 4A). In low frequency signals, turn rate and turn speed appeared 
strongly modulated by each odor encounter (Fig 4A left four panels), as previously seen in 
experiments that used real odors pulses of low frequency (26). In contrast, in high frequency 
signals, turn rate and turn speed responded much more strongly to the first and last pulse of each 
block, while being only weakly modulated by individual odor pulses within the blocks (Fig 4A right 
four panels), as previously observed in flies navigating complex plumes where odor encounters 
continuously occurred at high frequency (27). Closer examination of the data shows a similar 
temporal novelty response and offset response as we observed for angular speed (Fig 3A): turn 
rate and turn speed spiked at each pulse onset, however for the higher frequencies the responses 
were stronger at the onset of the ON block than for the subsequent odor encounters. At high 
intermittencies there was also an off-response at the offset of the ON block (Fig 4A grey, S9 Fig, 
S10 Fig, grey). We conclude that turn dynamics are mainly controlled by signal-driven 
modulations of the turn rate and turn speed, which exhibit both a novelty-response and offset-
response. 
 
To model turn rate and turn speed at signal offset, we defined an intermittency-dependent offset 
response OFF(t) analogous to the OFF response reported by (26), who used real odors to 
stimulate flies in a setup similar to ours. The OFF(t) function computes the difference between 
two integrative filters which decay at different timescales, one long and one short, producing a 
transient spike after long duration encounters or higher intermittency signals (Fig 4B) (Materials 
and Methods). This makes it a good candidate for modeling the observed offset behavior in turn 
rate and angular speed.  
 
For the frequency-dependent novelty detection, we defined the function N(t) that would spike at 
pulse onsets and then decay until the next pulse onset. The height of a spike increases with the 
time since the last pulse onset (i.e. when a pulse has more “novelty” to it):  

𝑁(𝑡) = 𝐴(𝑡) 𝑒
−

𝑡−𝑡𝐿
𝜏𝑑 , 

 
where 𝑡𝐿 is the time of the latest pulse onset, and 𝜏𝑑 is the decay timescale of the response to 

individual odor pulse. 𝐴(𝑡) controls the height of the response to each pulse. It is maximal (= 1) 

(1) 
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for the initial odor encounter but decays for successive encounters that occur within a novelty 
timescale 𝜏𝑁 (see Materials and Methods). Odor encounters that occur after a time much larger 

than 𝜏𝑁 are treated as novel signals and elicit maximal response again (Fig 4B).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Temporal novelty detection and offset response together can predict turn rate, angular speed given 
turning, and angular speed dynamics. A. Population mean turn rate (top) and mean turn speed (bottom) from four 
of the 45 odor environments: 0.2 Hz 1 s, 0.5 Hz 0.25 s, 1.5 Hz 0.1s s, 3 Hz 0.25 s. Grey shading: mean ± SEM. We 
used a 0.25s sliding window shifted by 1 frame (0.016s) to obtain turn rate and turn speed (see Materials and Methods). 
Pink line: mean predicted turn rate over time (𝜆(𝑡), top) and mean predicted turn speed over time (bottom). Parameters 

of equations (1-3) were estimated using Maximum Likelihood Estimation (Materials and Methods). Pink shading: 
standard deviation obtained from repeated simulation of model prediction (Materials and Methods and S9 Fig caption). 
Red bars:  fictive odor pulses. We had 8-103 turns per frame across all 45 odor environments. B. Model of turn 
dynamics. Flies initiate discrete turn events (green) with a defined mean turn speed. Turn initiations are modelled as 
an inhomogeneous Poisson process with rate  𝜆(𝑡) calculated as a linear combination of a baseline turn rate, a temporal 
novelty detector (N(t), blue), and an offset detector (Off(t), yellow) (Equation 2). Mean turn speed was modelled similarly 
(Equation 3). Fits and their errors are shown in pink in A. C. Grey: Mean angular speed of the flies. Grey shade: mean 
± SEM. Pink: model prediction for the mean, pink shade: mean ± SEM.  
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Given these two response functions, 𝑂𝐹𝐹(𝑡) and 𝑁(𝑡), we attempted to capture the dynamics of 
both the turn rate and turn speed by simple linear combination. We modeled the turn rate 𝜆(𝑡) as  

 
 
 

𝜆(𝑡) = 𝜆0 + 𝜆1𝑁(𝑡) + 𝜆2𝑂𝐹𝐹(𝑡) 
 
and the mean turn speed 𝜇(𝑡) as   
 

𝜇(𝑡) = 𝜇0 + 𝜇1𝑁(𝑡) + 𝜇2𝑂𝐹𝐹(𝑡), 
 
where 𝜆𝑖 and 𝜇𝑖 for 𝑖 = 0, 1, 2 are constant parameters. We note that turn duration was weakly 

modulated by the signal statistics (S11 Fig), but the modulation was much smaller compared to 
modulations in turn rate and turn speed. Thus, for simplicity, we treated turn duration as 
exponentially-distributed with fixed parameters determined from data (Fig 3D). We first estimated 
the parameters for 𝜆(𝑡) using maximum likelihood estimation (see Materials and Methods), 

carrying out the estimation by pooling data from all 45 stimulus environments. This fixed 𝜆0, 𝜆1, 

and 𝜆2, as well as the timescales involved in the 𝑁(𝑡) and 𝑂𝐹𝐹(𝑡) responses (Materials and 
Methods, Table 1). Then, holding the timescales fixed, we estimated the 𝜇 coefficients, again 

fitting to the data pooled from all 45 environments (Materials and Methods, Table 1). Our model 
captured both turn rate and turn speed well, albeit slightly underestimating both at lower 
frequencies (Fig 4A, pink, S9 Fig, S10 Fig, pink).  
 
Up to this point, our model captures how the stimulus modulates the rate and magnitude of 
discrete turn events. These two aspects, along with turn duration, which we held fixed, should 
predict angular speed across environments with diverse signal frequency and intermittency. To 
test this, we simulated virtual agents enacting our dynamic model. Agents executed turns via an 
inhomogeneous Poisson process following Equation 2. The mean angular speed of each turn was 
sampled from a Gamma distribution with signal-dependent mean (Equation 3 and Materials and 
Methods). The turn duration was sampled from a fixed exponential distribution (Materials and 
Methods). In our dataset there are at most 240 fly trajectories at any given time. Therefore, we 
simulated 240 agents in each of the 45 environments to get a population-averaged trace, and 
then repeated this process 10,000 times to get an estimate of the model-predicted mean and 
error. To quantify model accuracy, we calculated the ratio of the root-mean-square error of the 
model fit to the data standard deviation (NR score) across all environments (41, 42). An NR score 
of <1 indicates a model prediction within the noise of the data. The NR score across all 45 
environments was 0.16, indicating that the model recapitulates the dynamics of the fly angular 
speed well across experiments, albeit with some underestimation at the lowest frequencies (Fig 
4C; predictions for all 45 environments are shown in Fig 6 below).  
 
The model reproduces two important aspects of the turning dynamics and its dependency on 
signal frequency and intermittency: a varying turn rate at the onset and offset of longer odor 
encounters, and a roughly constant turn rate when the frequency of encounters is high (after the 
initial spike), both of which have been observed experimentally in separate paradigms 
investigating these distinct odor environments (26, 27). 
 
 
Upwind bias responds to odor signal with two timescales: a fast rise time and a slow decay  
 
Up until now, we are able to describe fly angular speed dynamics well, through a dynamic turn 
rate and turn speed. In order to describe fly orientation, we must also understand the direction of 

(3) 

(2) 



 13 

these turns, controlled by the upwind bias – the probability that a given turn is upwind (27). To 
illustrate how the upwind bias depends on signal, we plotted it in time (Materials and Methods), 
finding that in general it was dynamic and high during the ON block, but otherwise slightly below 
0.5 (Fig 5A, grey, S12 Fig, grey). Unlike the turn rate and turn speed, upwind bias also depended 
on fly orientation, and was largest for crosswind-facing flies (Fig 5B).  
 
Following our previous work (27), we model upwind bias 𝐵(𝑡) as a sigmoid (Fig 5C): 

 

𝐵(𝑡) =
1

1 + exp[−(𝑎0 + 𝑔 𝑢(𝑡)) ⋅ sin2 𝜃] 
 

 

where 𝑎0 represents a baseline bias (i.e. when no signal is present), and the sin2 𝜃 term ensures 

that the bias is maximal at crosswind angles (Fig 5C). 𝑢(𝑡) is the output of a signal processing 
model and 𝑔 is a gain factor controlling how much the signal affects upwind bias. To best capture 

the upwind bias, we consider four simple signal processing models 𝑢(𝑡) = 𝐼(𝑡), 𝐹(𝑡), 𝐻(𝑡), 𝑅(𝑡) 
hereafter called: intermittency sensing 𝐼(𝑡), frequency sensing 𝐹(𝑡), dual-frequency-intermittency 

sensing 𝐻(𝑡) and two-timescale integrator 𝑅(𝑡). The intermittency sensing model exponentially 
filters the binary signal 𝑆(𝑡) with timescale 𝜏: 

 

𝐼(𝑡) = ∫
1

𝜏
𝑒

−
(𝑡−𝑡′)

𝜏𝐼
𝑡

0
𝑆(𝑡′)𝑑𝑡′  

 
By construction, 𝐼(𝑡) responds uniquely to signal intermittency (31). The frequency sensing model 
𝐹(𝑡) was proposed in (27). Here, the duration of the signal is ignored, and the signal is converted 

to a time-series 𝑤(𝑡) of delta function spikes at the onset of each odor encounter. The onsets are 
exponentially filtered to produce the output, which is effectively a running estimate of odor 
encounter frequency: 
 

𝐹(𝑡)  =  ∫ 𝑒
−

(𝑡−𝑡′)
𝜏𝐹

𝑡

0

𝑤(𝑡′)𝑑𝑡′ 

 
The third model examined was a dual frequency and intermittency sensing model 𝐻(𝑡), outlined 

in (31). This model linearly combines 𝐼(𝑡) and 𝐹(𝑡), but the contributions of 𝐹(𝑡) and 𝐼(𝑡) are 
independently weighted: 
 

𝐻(𝑡) = 𝑔𝐼 ⋅ 𝐼(𝑡) +  𝑔2 ⋅ 𝐹(𝑡) 

 
Here 𝑔𝐼 and 𝑔𝐹 are gain factors. In this case the gain 𝑔 in Equation (4) is set to be 1 and the same 

timescale is assumed for 𝐼 and 𝐹. Finally, in the two-timescale integrator model, the response 

𝑅(𝑡) adapted to the signal with one timescale 𝜏𝑔 when the signal turned on, but another timescale 

𝜏𝑑 when the signal was lost. This is expressed mathematically as: 
 

𝑑𝑅

𝑑𝑡
=

1

𝜏𝑔
⋅ (𝑆(𝑡) − 𝑅(𝑡))  

when the signal is on and   
 

𝑑𝑅

𝑑𝑡
=

−1

𝜏𝑑
⋅ 𝑅(𝑡) 

 

(5) 

(6) 

(7) 

(8) 

(9) 

(4) 
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when no signal is present. This model always responds to signal intermittency, but also responds 

to frequency independently, up to frequencies of 
1

𝜏𝑑
, provided 𝜏𝑔 ≪ 𝜏𝑑 (see Materials and 

Methods). Equations (4-9) define 4 alternative models for the upwind bias. Together with the turn 
dynamics model described in the previous section, this provides us with 4 alternative models to 
predict fly orientation dynamics. 
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Fig 5: Comparison of flies’ orientations with simple models suggests that upwind bias is modulated over two 
timescales. A. Probability to turn upwind given turning (i.e. upwind bias) as a function of time for the same 4 
environments as in Fig 3A (grey) and predictions from a two-timescale integrator with an instantaneous rise timescale 
(purple). Experimental upwind bias is estimated using a 0.25s sliding window (Materials and Methods). B. Upwind bias 
vs orientation at two different signal times, across all 45 fictive odor environments. 0 degrees denotes downwind facing 
flies; 180 degrees denotes upwind facing flies. During the signal (times when the fictive odor flashes were on), turns 
tend to be oriented upwind with crosswind-facing flies showing the strongest bias (red). When there is no signal present 
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(20s-30s, i.e. last 10s of the OFF block), flies tend to turn downwind and the bias is strongest for crosswind-facing flies 
(black). Dashed purple: model fit for upwind bias vs orientation when there is no signal.  C. A model for turn bias 
suggested by the data. We use a sigmoidal form as in (27, 31) where the likelihood to turn upwind given turning 
increases with 𝑅(𝑡), the two-timescale integrating response with an instantaneous rise timescale and finite decay 

timescale, while the sin2 𝜃 factor ensures that the bias is maximal for crosswind orientations and suppressed at upwind 
or downwind orientations. D. Comparison of prediction from the four signal processing models in the same four odor 
environments as in panel A. Grey: mean fly orientation. Grey shading: the standard mean error of the experimental 
response data. Color: best prediction for each model (Parameters in Materials and Methods, Table 1). Yellow: best 
prediction of intermittency-sensing model 𝐼(𝑡), blue: best predition of frequency-sensing model 𝐹(𝑡), green: best 

prediction of dual intermittency and frequency sensing model 𝐻(𝑡), purple: best prediction of two-timescale integrating 
model 𝑅(𝑡). Black dashed line indicates crosswind orientation at 90°. Scales for time and orientation are given by the 
horizontal and vertical black solid bars respectively. NR scores are calculated using all 45 environments.  

 
 
 
To find out which of these 4 models best describes fly behavior, we fit all of them to data. To 
constrain 𝑎0 we took advantage of the fact that the upwind bias returns to baseline within a couple 

of seconds following the offset of the ON block (Fig 5A, grey, S12 Fig, grey). Accordingly, we 
estimate 𝑎0 by using the last 10s of the OFF block (Fig 5D, black) to fit Equation (4) with 𝑢(𝑡) = 0 
(Fig 5A, purple). To estimate the remaining parameters we simulated stochastic agents. Turn 
initiation, speed and duration were simulated as explained above using the best fit parameter 
values extracted from the analysis in the previous section. Turn bias parameters were estimated 
using Equation (4) to generate a stochastic turn direction for each turn executed by the agents. 
For each environment, 240 sample trajectories were generated. We constrained the turn bias 
parameters by minimizing the mean squared error between the mean orientation of agents and 
flies (Materials and Methods).  
 
We found that the two-timescale integrator model 𝑅(𝑡) best fit the data across all environments 

(Fig 5D). The intermittency sensing model (𝐼(𝑡), overall NR = 0.27, optimal parameters  𝜏𝐼 = 0.04s, 
𝑔 = 12.6) predicted well the response for long encounters or lower frequencies, but 

underestimated responses at higher frequencies or lower durations, and overestimated the 
response at the highest intermittencies (Fig 5D, yellow). Conversely, the frequency sensing model 
(𝐹(𝑡), overall NR = 0.29; best fit parameters 𝜏𝐹 = 0.08s, 𝑔 = 9.3) exhibited the opposite trend: 

satisfactory fits for frequencies > ~1.5 Hz, but clear underestimates for lower frequencies (Fig 5D, 
blue). This suggested that a simple sum of these models might resolve these individual failure 
modes. Indeed, the dual-frequency-intermittency model was more accurate overall (𝐻(𝑡), NR = 
0.25), and with optimally fit gains 𝑔𝐼 = 2.7, 𝑔𝐹 = 3.2 and timescale 𝜏𝐻 = 0.1s, captured the mean 

and dynamics the orientation response across a range of odor environments (Fig 5D, green). Still, 
it underestimated the response at low frequencies < 1.5 Hz. The two-timescale integrator model, 
however, predicted the mean orientation responses across all panels better (𝑅(𝑡), NR = 0.20) 

than the than the dual-frequency-intermittency model. The optimally fit rise time for the response 
at signal onset was almost instantaneous (𝜏𝑔 = 0.01s—Materials and Methods for details about 

this value), whereas the decay timescale was much longer (𝜏𝑑 = 1s).  We also verified that the 

two-timescale integrator models with best-fit parameter values reproduces upwind bias in the data 
(Fig 5A, purple, S12 Fig, purple).  
 
We conclude that models that combine frequency and intermittency sensing to determine upwind 
bias fit the data better than single-sensor models (31). However, a linear combination of the 
frequency and intermittency sensors is not sufficient. The data is better reproduced by sensor that 
responds to these features through integrating the odor signal over two different timescales.  
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A single model captures general trends in angular speed and orientation across a broad 
spectrum of temporally diverse fictive odor environments  
 
To better examine the limits of our model, we now plot mean angular speed and orientation 
predictions on top of the data across all 45 environments. As mentioned above, angular speed is 
predicted well across most environments (Fig 6, NR=0.16) and the model captures the variation 
of the turning dynamics with respect to signal frequency and intermittency, recapitulating 
differences previously seen between experiments that explored different signal parameter 
regimes (26, 27).  
 
The model also captures the general trend in orientation (Fig 7, NR=0.20), albeit less well than 
for angular speed. This is to be expected given the cumulative effect that errors in the prediction 
of angular speed and turning bias have on orientation. Maxima in mean fly angular speed and 
orientation were underestimated at low frequencies, but overall general trends across all 45 
panels were captured.  
 
We conclude that flies navigate diverse temporal statistics by: 1) modulating their turn decisions 
and turn speed via a frequency-dependent novelty detector and an intermittency-dependent offset 
detector of odor signals; and 2) biasing the orientation of these turns using a response function 
that integrates the signal over two timescales, a very fast rise timescale (tens of ms) and a slow 
decay timescale (seconds).  
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Fig 6: A single model with fixed parameters captures general trends in angular speed across a spectrum of 
temporally diverse fictive odor environments. Population mean angular speed (grey) and model predictions 
(pink). Grey shading denotes standard error of the mean while pink shading denotes simulated standard deviation 
(see Materials and Methods). Trends in population angular speed, which is modelled as the result of dynamic turn 
rates and mean turn angular speeds (Equations 2 and 3, respectively), are well captured by the model across all 45 
experiments.  
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Fig 7: A single model with fixed parameters captures general trends in orientation across a spectrum of 
temporally diverse fictive odor environments. Population mean orientation (grey) and standard error (grey 
shading) along with model predictions (purple) and estimated model errors (purple shading). 180 degrees is upwind, 
90 degrees is crosswind and 0 degrees is downwind. Dashed blue line indicates 90 degrees. Model orientation is the 
result of simulated turns occurring with dynamic rates (Equation 2) and average angular speeds (Equation 3) as well 
as a dynamic bias towards the upwind direction (Equation 4). We see that general trends and mean values across all 
45 different environments are well-approximated by our model. Number of trajectories per time point is the same as in 
Fig 2A.  

 
 
Temporal novelty detection can be combined with odor motion sensing to aid navigation 
in low frequency environments 
 
Finally, we wondered whether the features of our temporally driven model, when combined with 
other known sensory modalities, enhance navigation of more complex odor environments. Of the 
key features of our model mentioned above, the effect of the offset response has been explored 
previously (26). Furthermore, we show in Materials and Methods that the two-timescale 
integrating response increases with both intermittency and frequency. Together with our results 
from (31) this implies that the two-time scale response would aid in navigation across a range of 
temporally diverse olfactory environments. However, we were curious to see how the temporal 
novelty response affects navigation, especially when combined with the newly-discovered odor 
motion sensing (28).  
 
To address these questions, we first added odor motion sensing to the model described in 
previous paragraphs. Following (28) agents can sense the wind direction and compute an odor 
motion direction at each timepoint, using a Hassenstein-Reichardt correlator (43) (Materials and 
Methods). Agents initiate turns with rates and speeds in accordance with our model (Equations 2 
and 3). If an agent is turning and the odor motion signal is above a set threshold at the time of 
turn initiation, then the agent turns towards the vector sum of the upwind and against-motion 
directions (Fig 8A, Materials and Methods). If the odor motion signal is below the threshold then 
the turn is biased as in Fig 5C.  
 
The odor plume was generated as described in (28) following the approach detailed in (44): odor 
packets are released from a source at a Poisson rate and advected downwind by a constant 
velocity while simultaneously performing a correlated random walk in the perpendicular direction 
to model turbulent dispersion (45). Odor packets also diffuse around their center of mass 
according to molecular diffusion (Fig 8B and Materials and Methods). Given that the novelty 

response is not strong in environments where the frequency is much larger than 
1

𝜏𝑁
≈ 0.5 Hz, we 

first tested this navigation model in an environment where odor encounter frequency was ≤ 0.5 

Hz in the bulk of the plume (Fig 8C, top). We simulated 100,000 agents for each condition. We 
quantified success by calculating the fraction of agents that reach a 25mm by 25mm target region 
around the source (Fig 8B). To examine how performance depends on the different features of 
the model we normalize success with that of the full model (Fig 8D). 
 
Full model agents were able to get close to the odor source (Fig 8D) much more than in a control 
simulation where no odor signal was presented (Fig 8D right most bar). Removing novelty 
detection by replacing the novelty response 𝑁(𝑡) in turn rate or turn speed, or both, by its average 
across the 100,000 agents, significantly reduced performance by about 20%. However, in agents 
that did not have odor motion sensing capability, the removal of novelty detection had only a minor 
effect (Fig 8D). This suggests that temporal novelty detection might be most useful for navigation 
when combined with motion sensing ability.  
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Finally, to test our hypothesis that novelty modulation is more helpful in lower frequency 
environments, we simulated agents navigating plumes with different encounter frequencies 
(Materials and Methods), ranging from 0.2 Hz averaged across the plume in the low frequency 
plume (Fig 8B, top) to 0.8 Hz (Fig 8B, bottom). For each plume we simulated 100,000 agents 
with and without novelty modulation, replacing as above 𝑁(𝑡) for both turn rate and turn speed 

modulation by its average value across the agents with novelty modulation. We found that at lower 
frequencies the success rate of agents with novelty modulation was higher than that of agents 
without novelty modulation. But as expected, the benefit of temporal novelty detection dropped 
as encounter frequency increased (Fig 8E, blue). Furthermore, across all environments, the 
relative value of novelty detection was significantly diminished for agents that did not have odor 
motion-sensing capability (Fig 8E, grey). Together, these findings suggest that temporal novelty 
detection aids olfactory navigation in environments where encounter frequency is less than 1/𝜏𝑁 

(which using our experimentally fit value comes out to 0.5 Hz), provided agents are also able to 
sense odor motion.     
 

 
 
Fig 8: Novelty detection combined with odor motion sensing improves navigation performance in low 
frequency environments. A. Illustration of how odor motion sensing is combined with our model. If a turn is being 
initiated and motion signal is above threshold, then agents turn against the vector sum of wind and motion directions. 
Otherwise, agents execute the model summarized in Figs 6 and 7. B. Snapshot of an odor plume simulation. Red box 
denotes success region. Orange X denotes source location. Orange circles denote simulated Gaussian packet 
locations and sizes. Orange dotted lines show plume envelope, set by the ratio of crosswind speed to downwind speed. 
Purple curve denotes example successful simulated trajectory. C. Example odor concentration time series in two 
simulated plumes. Dashed red line indicates odor detection threshold. D. Normalized fraction of successful simulated 
agents in the low frequency plume. Simulation conditions (x-axis) are distinguished by which features are modulated 
by the novelty detection response (see Equations 2 and 3) and whether motion sensing is present. As a control we also 
show performance of agents when no odor is present (right-most bar). In the low frequency plume and with motion 
sensing capability, there is a statistically significant improvement in performance when novelty detection is present. 
100,000 agents were simulated for each condition. Significance calculated using a 2-proportion Z-test. Error bars 
obtained by bootstrapping (Materials and Methods). E. Ratio of navigation success rate of agents with turn rate and 
turn speed novelty modulation to agents without novelty modulation, in different plumes. Plumes are distinguished by 
average encounter frequency. Blue (grey) curve is for agents with (without) odor motion sensing. 100,000 agents were 
simulated in each plume for each condition. Error bars for D and E obtained by bootstrapping (Materials and Methods).  
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DISCUSSION 
 
It is well-known that animals from crabs (46) to moths (23) and Drosophila (25, 47) use various 
temporal features of olfactory stimuli to modulate navigation. Previous studies in walking flies 
have shown that turns can be modulated by the frequency of odor encounters in complex plumes, 
and by encounter duration in low frequency environments (26, 27, 31). Here we carefully 
examined the transition between these two regimes. To isolate temporal features from spatial 
information such as the spatial structure of odor encounters, local odor gradients, and turbulent 
wind structure, we used optogenetics. This allowed us to probe a broad range of odor frequencies 
and durations.  
 
A key finding of this study is that a model incorporating both a frequency-dependent novelty 
response (this study) and a previously observed intermittency-driven offset response (26) can 
successfully describe the dynamics of turns across the spectrum of temporally diverse 
environments studied. This single model predicts that in environments with high odor intermittency 
and low frequency, the turn rate is dynamic and spikes at onset and offset of each odor encounter, 
as seen in (26), whereas in environments of high frequency odor encounters, the turn rate remains 
roughly constant, as seen in (27), after the initial response to the first encounter. This temporal 
novelty response was mostly not observed in (27) (although it was present in Fig 2, Supplement 
1B of that  study). In our current study, such a feature is likely highlighted due to all flies receiving 
identical and step-like odor stimuli simultaneously.   
 
The novelty response reveals that after ~2s of no stimulus a fly is very likely to execute a large 
turn in response to a new odorant encounter, whereas more frequent encounters are not as likely 
to trigger such a deterministic response. In turbulent odor plumes, times between encounters 
(blank times) are power-law distributed and odor packets tend to arrive in clumps (2, 3, 11, 13). 
Thus, within natural plumes a fly may not experience any odor packet for an extended period of 
time. Furthermore, our temporal novelty response suggests that flies may respond differently to 
the beginning of a clump than to fluctuations within the clump. It would thus be interesting to 
compare this novelty timescale with the distribution of blank times and clumps durations in natural 
plumes. Flying flies also experience very different signal statistics from walking flies, which begs 
the question of whether this novelty timescale is the same in flying flies. The observed spikes in 
turn rate and turn speed are also transient, decaying with a timescale of about 0.5s. Probing the 
basis of this novelty response and how these observed timescales emerge from the neural 
circuitry could be a fruitful avenue for future study.  
 
Our final simulations show that temporal novelty response enhances navigation in lower 

frequency (≤
1

𝜏𝑁
≈  0.5 Hz) environments, particularly when combined with odor motion sensing. 

This suggests that the novelty response allows agents to capitalize on odor motion signals and 
turn against odor motion in low frequency environments, which helps localizing the plume center-
line (28). However, odor motion signals are also present and useful in much higher frequency 
environments (28). Why would flies not turn against the direction of each odor encounter in higher 
frequency environments as well? One possible answer is that turning at higher and higher 
frequencies means that it would take longer for flies explore their environment, as in general the 
diffusion coefficient of such an agent is inversely proportional to its reorientation rate (48). It is 
also possible that in higher frequency environments, flies can average over several hits to get 
more reliable estimates of signal statistics or motion and hence do not need to turn in response 
to each hit. In general, our findings suggest that it would be interesting to investigate what 
temporal novelty timescales are optimal for navigation in different environments and how this 
depends on the odor motion signals in the environment as well.  
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Furthermore, our model was simplistic in that it assumed that agents weight the upwind and 
against-motion direction equally when a sufficiently strong motion signal is present. It would be 
interesting to investigate more carefully the relative weighting of the upwind and against-motion 
directions of turning Drosophila and how this might depend on the temporal statistics of the odor 
plume.  
 
In addition to the modulation of turn rate and turn speed, another important finding of this study is 
that the likelihood for a turn to be oriented upwind increases with a very fast timescale (fit to be 
roughly 10ms) at signal onset and decays with a slower timescale of roughly 1s. We show 
(Materials and Methods) that as a result, upwind bias increases independently with both signal 
frequency and intermittency, thus allowing for a sustained upwind bias across environments. The 
response to both frequency and intermittency is largely consistent with previous findings that 
intermittency dominates upwind motion in high-duration, low frequency environments whereas 
frequency dominates in low-duration, high frequency environments (26, 27, 31).  
 
The multiple timescale integration observed here in fly behavior is within the range of the fast and 
precise processing capabilities of the Drosophila olfactory circuit. Drosophila ORNs process 
signal as fast as 100 Hz (49). This information is preserved downstream where 2nd-order 
projection neurons (PNs) encode a broad range of signal frequencies via multiple post-synaptic 
currents (50) (37, 51, 52). Deeper downstream computations in the fly brain integrate odor 
information with wind direction (36) and drive motor actions (53), enabling rapid behavioral 
responses (on timescales of ~50ms) (54).  
 
A recurring theme in Drosophila temporal odor processing, both in behavior and circuitry, is the 
importance of two distinct timescales. At the first processing relay, ORNs synapse onto PNs with 
two kinetically distinct fast and slow postsynaptic currents which promote a wide range of 
frequency transmission (50) and promote robust navigation of simulated flies across 
environments with diverse temporal statistics (31). Our model of fly turning exhibits similar fast 
and slow timescales: the turning bias increases rapidly ~10ms at odor onset but decays slowly 
~1s at odor offset. Moreover, our mathematical analysis (Materials and Methods) shows that it is 
this asymmetry-a fast rise and slower decay-that enables a two-timescale integrator response to 
increase with intermittency and frequency independently.  
 
Drosophila ORNs adapt their activity to both the mean and variance of fluctuating odor stimuli 
(adults: (42, 55-57), larvae: (58)) which aids preservation of both response dynamics (42) and 
odor encounter timing in ORN spiking (55, 59). Here we used optogenetics to drive behavior, thus 
bypassing the part of the ORN adaptation dynamics that takes place upstream of the firing 
machinery (55, 57). In a previous paper that used the exact same experimental setup and light 
intensity, we verified that the type of stimuli used here drives ORN responses within their 
physiological range and that fly behavior resembles that in real odor plumes (28). 
 
While most parameters of the model are fit using Maximum Likelihood Estimation with a likelihood 
function that uses data from individual time points and trajectories (Materials and Methods), we 
only verify our model’s predictions against the average behavior of flies. However, there is 
considerable individual variability between fruit flies, arising from factors such as genetic 
differences and varied internal states (e.g. hunger levels) (60). It would be interesting to study to 
what extent the features and parameters of our model vary between individuals and how they are 
affected by these factors. This would require measuring individual flies for much longer than the 
individual trajectories we could obtain here.  
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Other aspects of olfactory navigation have not been considered in this study. As we wanted to 
focus solely on orientation dynamics, we did not factor changes in ground speed or transitions 
between stops and walk bouts into our predictive models, although these locomotory behaviors 
are known to be modulated by odor encounter timing and duration (26, 27, 34). In our dataset, 
the walking speed exhibited a small modulation around a mean of 10 mm/s with drops at the 
offset of higher intermittency signals (Panel A in S13 Fig), consistent with previous studies (26, 
27, 34). The stop-to-walk transition rate also showed modulation (Panel B in S13 Fig). 
Interestingly, the rate also exhibited temporal novelty detection (weaker than for orientation 
dynamics, see S9 Fig), spiking at each encounter in low frequency environments and notably at 
the onset of ON blocks in higher frequency environments, something we had not observed in 
(Demir et al., 2020). Modulation of the walk-to-stop rate was weaker. There are several possible 
explanations for these differences: in (Demir et al., 2020) odor packets had a moving spatial 
structure, which conveys directional information (28), and their borders were not as abrupt as 
the step function in light intensity we use here. Additionally, here all ORNs were stimulated. 
 
We acknowledge that this paradigm creates a simplistic odor landscape in which other sensory 
inputs such as visual cues are removed, which when present can improve navigation success 
(61, 62). Moreover, any information available to the fly from bilateral sensing was removed due 
to the spatially uniform signal. Doing so was important to isolate odor timing since insects respond 
to timing differences across antennae (63), use them to detect odor motion (28) and respond to 
bilateral concentration differences (9, 64). Since our fictive odor signal activated all Orco-
expressing ORNs, which is known to drive a broadly attractive behavior (34), we did not examine 
the effect of odor identity or valence on turning dynamics (65, 66). Mosquitos and fruit flies, for 
example, will go upwind in the presence of fluctuating carbon dioxide signals but not when the 
signal is homogeneous (67, 68). Conversely, mosquitoes will go upwind in the presence of 
homogenous skin odors but not filamentous skin odors (67). Moreover, appetitive and aversive 
memories in flies have been shown to modulate valence and upwind bias (69). It would thus be 
interesting to investigate how our observed behaviors and timescales might differ for specific 
odors or specific appetitive or aversive memories. 
 
We additionally did not investigate any potential effects of flies learning the structure of the odor 
scene during navigation (70, 71), as well as potential collective behavior that could improve odor 
environment recognition (72). 
 
We have demonstrated that processing odor signals over multiple timescales allows for 
temporally driven navigational behaviors across diverse environments. Further extensions of this 
work include investigating the neural bases for these different timescales, as well as how temporal 
information from individual odor encounters, combined with the overall spatial structure of an odor 
scene, can be exploited for successful navigation. 
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MATERIALS AND METHODS 
 
Flies/Handling 
 
All fly genotypes used were reared at 25˚C and 60% humidity on a 12 hr/12 hr light-dark cycle in 
plastic vials containing 10 mL standard glucose-cornmeal medium (Archon Scientific, NC). All 
flies used in experiments were female, aged 3-10 days old. 
 
To obtain our experimental genotype, we crossed w;gmr-hid;20X-UAS-CsChrimson (GMUCR) 
males with w;+;Orco-GAL4 (117) virgin females (F1: w; +/gmr-hid; Orco-GAL4/20X-UAS-
CsChrimson). Adults were removed from vials after 3 days, and the F1 females were collected 1-
3 days after eclosion. All F1 flies contained a copy of gmr-hid, which drives apoptosis (73) in the 
developing eye in Drosophila (74) and are thus blind, and expressed the channelrhodopsin 
Chrimson in their Orco-expressing olfactory receptors. 20-30 females were starved 72 hours prior 
to the experiment in empty plastic vials containing water-soaked cotton plugs at the bottom and 
top. 24 hours before the experiment, flies were fed 1 mM all trans-Retinal (ATR) (MilliporeSigma) 
dissolved in water. The vials were covered in foil for these last 24 hours to avoid ATR degradation. 
For control experiments without ATR (Fig 1D, S2 Fig), flies were instead given 1 mM deionized 
water.  
 
Behavioral apparatus 
 
The fly walking arena in this study is identical to that used in (28), based on (27). The arena was 
270 mm x 170 mm x 10 mm (length x width x height). The top and bottom surfaces were made of 
glass, and walls were acrylic. A plastic mesh was placed downstream of the airflow to prevent 
flies from escaping, near to which flies were aspirated into the arena through a sealable hole. The 
arena was illuminated using 850 nm IR LED strips (Waveform Lighting) placed parallel to the 
sidewalls. Note that although the experimental line is blind, two of the control lines (Canton-S and 
GAL4 parent) are not blind, thus we additionally shone green light using an LED (Luxeon Rebel 
LED 530 nm) throughout the arena to flood the visual response to simplify comparisons. All other 
light sources were removed. 
 
Dry air (Airgas) was passed into the arena through a stack of heavy duty plastic coffee stirrers 
(Mr. Coffee) to present laminarized wind with a flow rate at 150 mm/s. In all experiments, laminar 
wind was used. To present complex wind within the arena for wind control experiments (S1 Fig, 
S3 Fig) airflows perpendicular to the laminar flow either side of the laminar mesh were alternately 
turned on with 100 ms correlation time to perturb the wind structure.  
 
Experiments were recorded at 60 frames per second with a camera (FLIR Grasshopper USB 3.0) 
with an IR-pass filter. Optogenetic stimuli were delivered using a projector (DLP LightCrafter 
4500) mounted above the arena, with resolution 912 x 1140 pixels, which illuminated the entire 
walking arena with pixels of size 292 µm (along wind axis) x 292 µm (perpendicular to wind axis). 
Only the red LED (central wavelength 627 nm) was used throughout this study. All experiments 
used a 60 Hz stimulus update rate. The projector and camera were aligned by minimizing the 
least square difference between the two coordinate systems, as described in detail in (28). 
 
Stimulus protocol 
 
All stimuli were written using custom scripts in Python 3.6.5. All stimuli were delivered to the 
projector using the Python package PsychoPy, version 2020.2.4.post1. 
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During signal presentation, the entire arena was illuminated with a spatially uniform pulse of red 
light (“odor encounter”), presented at the maximum intensity (LED 255). Flies demonstrated 
similar albeit weaker responses to odor encounters with a lower intensity.  
 
Within one experiment, the stimulus paradigm was repeated four times. Each repeat consisted of 
an “ON block” and an “OFF block”. Odor encounters were presented only during the ON block, 
which lasted for maximum 15 s. Note that the end of the ON block (i.e. the offset of the last odor 
encounter) is dependent on the combination of encounter frequency and duration used and thus 
could be as short as 10.02 s (0.2 Hz, 0.02 s). Any signal that ended after 15 s (i.e. 1.75 Hz 0.25 
s, 1.75 Hz 0.5 s, 2.5 Hz, 0.25 s) was terminated at 15 s. The ON block was followed by a 15 s 
long OFF block, in which no odor was presented. Note that due to the variability in the end of the 
ON block means that the OFF block could last between 15 s and 19.98 s. Thus each repeat lasted 
for 30 s, and the entire experiment lasted 120 s. Laminar wind was presented continuously for 
the span of the experiment unless otherwise stated. Up to 10 experiments were presented to the 
same set of flies within one session, with a 60 s interval between experiments. The order of the 
experiments within a session were pseudo-randomized so that two consecutive experiments 
would not present same stimulus to avoid flies possibly learning from the environment. 
 
Experimental protocol 
 
Experiments were performed between 08:00 and 12:00 as Drosophila activity peaks during this 
time (75), in a temperature- and humidity-controlled environment (temperature: 22.2 °C ± 0.2 °C, 
humidity: 52.3 % ± 2.7 %). Female flies were aspirated into the arena and allowed to acclimatize 
to the new surroundings and the laminar wind flow for one minute. To ensure that the cross had 
been successful and that the F1 were healthy and correctly expressing Chrimson in their Orco-
receptors, we presented flies with three parallel static red fictive odor ribbons for 1 minute in 
laminar airflow. Responsive flies, when encountering the ribbon, tend to turn upwind and weave 
along the edges of the ribbon towards the expected odor source (27). Sets of flies that did not 
show this behavior were discarded. For each combination of encounter frequency and duration 
investigated, between 6 and 12 videos/experiments were recorded/performed with between 11 
and 27 individuals in one session. 
 
Fly tracking/data acquisition 
 
All tracking scripts were custom written by Nirag Kadakia in Python 3.7.4 and are described in 
detail in (28).  
 
Briefly, fly centroids were determined using the SimpleBlobDetector function in OpenCV, and 
assigned to a trajectory identity by matching to other nearby centroids. Centroids that could not 
be connected to existing trajectories within 30 frames were excluded, and subsequent detected 
centroids were thus marked as a new trajectory. Orientation was obtained using the canny 
function in scikit-image to determine fly “edges”, defined between 0 and 360. Measurement noise 
was removed using a Savitsky-Golay filter (4th order polymonial, window size of 21 frames (0.3 
s). The ground velocity in the individual x and y directions were defined by taking the analytical 
derivative of the fitted polynomials for x and y, and was used to resolve the head and rear of the 
fly (28). The angular velocity was determined in the same manner using the orientation. Any 
potential location bias in the arena due to physical constraints from the stimulus projection were 
removed by randomly selecting half of the trajectories from each odor environment and flipping 
the y coordinates and heading along the y axis (axis perpendicular to the airflow). Any trajectory 
where the fly’s mean speed across all the time it was tracked was less than 2mm/s was 
considered as a non-responsive individual and removed from all further analyses. For Fig 1 only 
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(and S1 Fig and S2 Fig), individual time points where the fly moved less than 2mm/s were 
additionally removed to ensure equal treatment of data for comparison with data taken from (27). 
 
Defining turns 
 
To define a turn event, we sought to determine a threshold angular speed and minimum duration, 
above which the reorientation event would be classified as a turn. This method is robust against 
artificial detections of spurious events that may occur due to measurement fluctuations. However, 
arbitrarily setting the angular speed threshold too high will neglect large angular changes that 
likely drive changes in the overall heading. To determine a suitable minimum angular speed 
threshold for this dataset, we pooled trajectories across all 45 odor environments, and examined 
how changing the threshold angular speed for a turn event affected the distribution of the angular 
change for “fixation” events, i.e. the change in orientation for events where the angular speed was 
below threshold. We set the threshold at values between 5 deg/s and 150 deg/s. For each of the 
17 tested thresholds, we obtained the distribution of angular change magnitudes during fixation 
events, and extracted the 95th percentile to obtain a comparable measure representing the 
majority of angular changes made (Panel A in S7 Fig).  
 
A suitable threshold would have smaller angular changes during fixations, and larger changes 
during turns. We found that initially, as the threshold increased, smaller angular changes that are 
likely caused by trivial reorientations were classed as “fixations”, and thus would be disregarded 
as a turn event. Increasing the turn speed threshold beyond 25 deg/s led to much greater changes 
in orientation during fixation events, (Panel A in S7 Fig) (see also Fig 3B). Thus we set the 
minimum angular speed threshold for a turn event at 25 deg/s. 
 
We observed that the distribution of angular change magnitude for events above the 25 deg/s 
threshold angular speed was bimodal (Panel B in S7 Fig). The first peak indicates a proportion of 
events with small angular changes; the second peak centralized around much larger angular 
changes. We speculated that the distribution of smaller angular changes could be from very short, 
sharp changes in orientation, which were potentially artefacts of the tracking to be removed.  
 
We fit a Gaussian mixture to the distribution and found that the standard deviation of the low-
mean Gaussian was approximately 4.5°. A navigating agent is more likely to regulate the duration 
of its turn, rather than the magnitude of the angular change and thus we instead set a minimum 
duration for turn events. With a minimum angular speed of 25°/s, and a minimum angular change 
of 4.5°, we get a minimum turn duration of 0.18 s. We removed all above angular speed threshold 
events with an event duration of less than 0.18 s; the resultant angular change distribution for turn 
events was no longer bimodal (Panel C in S7 Fig).  
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Plotting turn quantities as a function of time 
 
To estimate the turn rate as a function of time, at any time point we considered trajectories where 
flies were in a fixation state or had just transitioned from fixation to turn at that time point. 
Assuming an inhomogeneous Poisson process, the probability to transition from fixation to turn 
at a timepoint 𝑡 is given by 𝜆(𝑡) ⋅ Δ𝑡, where Δ𝑡 is the time-step resolution of our data, 1/60s. Thus 
the fraction of all considered trajectories that had just transitioned from fixation to turn, divided by 
Δ𝑡, provides an estimate of 𝜆(𝑡). We smoothed this estimate with a rectangular smoothing window 
of width 0.25s, sliding the window across each time step, and plotted the results in Fig 4A, grey, 
and S9 Fig, grey. Errors bars were estimated by bootstrapping the data 500 times at each time 
point. 
 
We estimated mean turn speed, mean turn duration and upwind bias as a function of time in the 
following way. We defined a 0.25s wide window and considered all turns that started in this 
window. For each turn, we then computed its mean angular speed, its duration and whether it 
was upwind (+1) or downwind (0). We then averaged these quantities to get an estimate of the 
mean turn speed, mean turn duration or upwind bias, respectively, for that window. As for the turn 
rate, we slid the window across each time step and plotted our results against the center of the 
time window. Error bars were estimated by resampling the data with replacement 1000 times at 
each time point, generating 1000 traces, which we then smoothed and computed the standard 
deviation for at each time point. 
 
Modeling fly turning behavior 
 
The OFF function is defined as  
 

𝑂𝐹𝐹(𝑡) = max (0, 𝐼𝑠𝑙𝑜𝑤 − 𝐼𝑓𝑎𝑠𝑡), 

 
analogously to how it was defined in (26). Here 𝐼𝑠𝑙𝑜𝑤  and 𝐼𝑓𝑎𝑠𝑡  are defined as in Equation 5, with 

characteristic timescales 𝜏𝑠𝑙𝑜𝑤 > 𝜏𝑓𝑎𝑠𝑡. At signal offsets, 𝐼𝑠𝑙𝑜𝑤  decays slower than  𝐼𝑓𝑎𝑠𝑡  , so their 

difference (and thus OFF) is positive for some time. At signal onset or presence, 𝐼𝑓𝑎𝑠𝑡  rises faster 

and is greater in value than 𝐼𝑠𝑙𝑜𝑤 , thus the max operation ensures that OFF is 0. Due to the 
integrative nature of the I filters, this OFF function reaches a higher peak after high intermittency 
signals. 
 
The novelty function N(t) was defined as  
 

𝑁(𝑡) = 𝐴𝑡𝑒
−

𝑡−𝑡𝐿
𝜏𝑁𝑑 , 

 
where 𝑡𝐿 is the time of the latest pulse onset. For the time between the onsets of the first and 

second pulse, 𝐴𝑡 ∶= 1. Otherwise, 𝐴𝑡 = 1 − 𝑒−(𝑡𝐿−𝑡𝐿
′ )/𝜏𝑁, where again 𝑡𝐿 is the time of the latest 

pulse onset and 𝑡𝐿 ′ is the onset time of the pulse before the latest pulse. For a square wave signal, 

𝑡𝐿 − 𝑡𝐿 ′ becomes 𝑇 =
1

𝑓
 , i.e. the period of the signal. Thus at first pulse onset, N spikes to 1 and 

decays with timescale 𝜏𝑁𝑑 . At subsequent pulses, N spikes to a height of 𝐴𝑡  before decaying with 

timescale 𝜏𝑁𝑑. The 𝜏𝑁 timescale defines the time required between pulses to induce a strong 
response—if 𝑇 ≪ 𝜏𝑁, 𝐴𝑡 ≈ 0 and the novelty response is suppressed. On the other hand if 𝑇 ≫
𝜏𝑁, 𝐴𝑡  ≈ 1 and the novelty response is maximal. 
 
  

(10) 

(11) 
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Parameter Estimation 
 
To estimate parameters for turn rate (Equation 2), we considered time points where flies were in 
fixations (i.e. not turning) or had just transitioned from fixation to turn. We excluded fixations that 
lasted longer than 1.5s, as more than 95% of fixations were shorter than 1.5s and beyond this 
duration, fixation durations were no longer exponentially distributed (S8 Fig). For a time point 𝑡, 

the probability to not initiate a turn at that time point is 𝑒−𝜆𝑡Δ𝑡 where Δ𝑡 is our sampling time (1/60s) 
and 𝜆𝑡 denotes the turn rate from Equation 2 at that time point. The probability to initiate a turn at 

that time point is 1 − 𝑒−𝜆𝑡Δ𝑡 . We then constructed a likelihood function: 

 

𝐿 = Πfixations𝑒−𝜆𝑡⋅Δ𝑡Πturn starts(1 − 𝑒−𝜆𝑡⋅Δ𝑡) 

 
and minimized the negative log of this likelihood using scipy.optimize.minimize with the standard 
L-BFGS-B method for minimization with bounds. All subsequent log-likelihood functions were 
minimized similarly. Note that for all timescales we estimated the log of the inverse timescale, i.e. 
the log of the ‘rate’ and then converted that back into a timescale. 
 
To estimate turn speed parameters, we calculated the mean angular speed for each turn and 
subtracted our minimum turn speed of 25 deg/s (this is added back later when simulating the 
turns). The distribution of the resultant mean angular speeds was assumed to be a Gamma 
distribution with fixed shape parameter 2, based off the observations in Fig 3. The mean of this 
Gamma distribution was assumed to depend on the signal and is given by Equation 3. Assuming 
individual turns are independent, we could then construct a likelihood function as the product of 
the likelihood of each mean turn speed: 
 

𝐿 = Πturns

1

(
𝜇𝑡
2

)
2 𝑥𝑡 ⋅ 𝑒

−
𝑥𝑡
𝜇𝑡
2   

where 𝑥𝑡 is the observed mean angular speed (after subtracting 25 deg/s) for the turn and 𝜇𝑡 is 

the predicted mean angular speed for a given set of parameters, using Equation 3. As the 
timescales for the N and OFF responses were already estimated from the turn rate analysis, only 
the three 𝜇 coefficients were estimated from this likelihood function, by minimizing its negative 
logarithm.  
 
For turn duration, for each turn we calculated its duration and subtracted the minimum turn 
duration, 0.18s (this is added back later when simulating turns). We then assumed an exponential 
distribution for these resultant turn durations and computed a likelihood function as  
 

𝐿 = Πturns𝜆𝑑𝑢𝑟𝑒(−𝑥𝑡𝜆𝑑𝑢𝑟) 

 
where here 𝑥𝑡 denotes the turn duration (after subtracting 0.18s). We found the constant 𝜆𝑑𝑢𝑟 that 
minimized the negative log-likelihood. The inverse of this constant is reported as 𝜏𝑑𝑢𝑟 in Materials 

and Methods, Table 1.  
 
For the turn bias (Equation 4), we first fit the 𝑎0 parameter as explained in the main text. Given 

that the elevated upwind bias returns to baseline within a couple of seconds of ON block offset 
(Fig 5C, grey, S12 Fig, grey), we assumed that the bias in the last 10 s of the OFF block (Fig 5D, 

black) had no remaining signal dependence and so takes the form 1/(1 + exp[−𝑎0 ⋅ sin2 𝜃]) . We 
then minimized the squared error between this functional form and the no-signal turn bias curve 
obtained from data (Fig 5D, black), using scipy’s optimize.least_squares routine and its default 

(12) 

(12) 

(13) 



 30 

method, the Trust Region Reflective algorithm. The remaining turn bias parameters (timescales 
and gain factors in Equations 4-9) were fit by simulating 240 flies (roughly how many trajectories 
were in the experiment) executing our full turning strategy (see below for simulation details) with 
all other parameters fixed to their fit value and minimizing the squared error between the observed 
mean 𝜃(𝑡) and predicted 𝜃(𝑡) over the first 20s of the experiment. The minimization was done 

with a brute-force search over the parameter space, where 𝑔 was discretized to 20 values linearly 
spaced between bounds shown in Materials and Methods, Table 1, while for the timescales we fit 
the log of the rates (i.e. 1/𝜏) by considering 20 values linearly spaced between the log of the 
minimum rate and log of the maximum rate, corresponding to fitting the timescales with 
logarithmic spacing. The parameters that minimized the mean squared error were used.  
 
Analysis of two-timescale integrating model 
 
Following our analysis of a single timescale integrator 𝐼(𝑡) in (31), we consider the response 𝑅(𝑡) 

to a binary square-wave signal with frequency 𝑓 and duration 𝐷. If we let 𝑅𝑛 denote the value of 
𝑅(𝑡) at the onset of the nth pulse, then by straightforwardly integrating Equations 8 and 9, we get 

the relation 
 

𝑅𝑛+1 = (𝑅𝑛 ⋅ 𝑒
−

𝐷

𝜏𝑔 + 1 − 𝑒
−

𝐷

𝜏𝑔 ) ⋅ 𝑒
−

1
𝑓−𝐷

𝜏𝑑   . 

 
Expanding and simplifying, we get  
 

𝑅𝑛+1 = 𝑘 ⋅ 𝑅𝑛 + 𝑘 ⋅ (𝑒
𝐷
𝜏𝑔 − 1) 

 

where we define 𝑘 = 𝑒
−

𝐷

𝜏𝑔 ⋅ 𝑒
−

1

𝑓𝜏𝑑 ⋅ 𝑒
𝐷

𝜏𝑑. We can then see that in general  

 

𝑅𝑛 = 𝑅0𝑘𝑛 + 𝑘 (𝑒
𝐷
𝜏𝑔 − 1) ⋅

1 − 𝑘𝑛

1 − 𝑘
 . 

 

Note that 
1

𝑓
= 𝑇, the period of the square wave and so 𝑘 = 𝑒

−
𝐷

𝜏𝑔 ⋅ 𝑒
𝐷−𝑇

𝜏𝑑 , which we can see is less 

than 1. If we denote the asymptotic value of 𝑅𝑛 as 𝑅𝑛
∗ , we get   

 

𝑅𝑛
∗ = (𝑒

𝐷

𝜏𝑔 − 1) ⋅
𝑘

1−𝑘
  .   

 
We can then compute the asymptotic average value of 𝑅(𝑡) over one period of the signal, which 

we denote as 𝑅̅ as  

 

𝑅̅ =
1

𝑇
⋅ [∫ 𝑅𝑛

∗
𝐷

0

⋅ 𝑒
−

𝑡
𝜏𝑔 + 1 − 𝑒

−
𝑡

𝜏𝑔  𝑑𝑡 +  ∫ (𝑅𝑛
∗ ⋅ 𝑒

−
𝐷
𝜏𝑔 + 1 − 𝑒

−
𝐷
𝜏𝑔 ) ⋅ 𝑒

−
𝑡

𝜏𝑑  𝑑𝑡

1
𝑓−𝐷

0

] . 

 
If we note that 𝑓 ⋅ 𝐷 = 𝐼𝑛𝑡, the intermittency of the signal, we get  
 

(18) 

(14) 

(15) 

(16) 

(17) 

(19) 
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𝑅̅ =

𝑒
𝐼𝑛𝑡
𝑓𝜏𝑔 ⋅ (𝐼𝑛𝑡 ⋅ (𝑒

𝐼𝑛𝑡
𝑓𝜏𝑑 − 𝑒

1
𝑓𝜏𝑑

+
𝐼𝑛𝑡
𝑓𝜏𝑔 ) + 𝑓 ⋅ (𝑒

𝐼𝑛𝑡
𝑓𝜏𝑑 − 𝑒

1
𝑓𝜏𝑑) ⋅ (𝑒

𝐼𝑛𝑡
𝑓𝜏𝑔 − 1) ⋅ (𝜏𝑑 − 𝜏𝑔))

(𝑒
𝐼𝑛𝑡(

1
𝜏𝑑

+
1

𝜏𝑔
)

− 𝑒
−

1
𝑓𝜏𝑑

+
2𝐼𝑛𝑡
𝑓𝜏𝑔 )

 . 

 
 
 
We can see here that the response depends independently on both the intermittency and 

frequency of the signal. Since the response is integrating the signal (Equations 8 and 9), 𝑅̅ 
increases with signal intermittency. To see how it depends on frequency, we consider the 
difference between the timescales. Firstly, note that if 𝜏𝑔 = 𝜏𝑑 then we just have a single 

timescale integrator and 𝑅̅ = 𝐼𝑛𝑡, as we would expect from (31). For the case where 𝜏𝑔 ≪ 𝜏𝑑 

and can be approximated as 0 (as in our fits), one can readily compute 𝑅̅, noting that 𝑅(𝑡) is 1 
when the signal is present and decays with timescale 𝜏𝑑 when the signal is absent. We get  

 

𝑅̅ = 𝐼𝑛𝑡 + 𝑓𝜏𝑑 (1 − 𝑒
𝐼𝑛𝑡−1

𝑓𝜏𝑑 ) 

 
which we can see grows with 𝑓 until 𝑓 ≫ 1/𝜏𝑑 at which point it levels off. 
 
On the other hand, if 𝜏𝑑 ≪ 𝜏𝑔 and is taken to be 0 instead, we get  

 

𝑅̅ = 𝐼𝑛𝑡 + 𝑓𝜏𝑔 (𝑒
−𝐼𝑛𝑡
𝑓𝜏𝑔 − 1) 

 
and in this case decreases with increasing frequency, before leveling off. Thus we see that a 
short rise timescale and longer decay timescale are necessary for a positive response to both 
intermittency and frequency.  
 
Table 1-All Fit Parameters 
 

Parameter Explanation Estimation Bounds Fit value 

𝜏𝑁 novelty detection 
timescale 

 

0.01-1200s 2.04 s 

𝜏𝑁𝐷 novelty response 
decay timescale 

 

0.01-1200s 0.55 s 

𝜏𝑓𝑎𝑠𝑡  off response fast 
timescale 

 

0.01-1200s 0.19 s 

𝜏𝑠𝑙𝑜𝑤  off response slow 
timescale 

 

0.01-1200s 0.22 s 

𝜆0 base turn rate 
 

-infinity to infinity 3.06 /s 

(20) 

(21) 
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𝜆1 turn rate novelty 
response coefficient 

 

-infinity to infinity 2.80 /s 

𝜆2 turn rate off response 
coefficient 

 

-infinity to infinity 45.14 /s 

𝜇0 base mean turn 
speed* (see below) 

 

-infinity to infinity 68.1 deg/s 

𝜇1 mean turn speed 
novelty response 

coefficient 
 

-infinity to infinity 47.1 deg/s 

𝜇2 mean turn speed off 
response  

 

-infinity to infinity 582.0 deg/s 

𝜏𝑑𝑢𝑟 turn duration 
timescale* (see 

below) 
 

0.01-1200s 0.18s 

𝑎0 upwind bias baseline 
shift 

 

-infinity to infinity -0.49 

𝑔 for 𝐼(𝑡) 

 

upwind bias 
response gain using 
intermittency-sensing 

model 
 

0-16 12.6 

𝜏𝐼 

 

intermittency-sensing 
model integration 

timescale 
 

0.01-5s 0.04s 

𝑔 for 𝐹(𝑡) 
 

upwind bias 
response gain using 
frequency-sensing 

model 
 

0-16 9.3 

𝜏𝐹 
 

frequency-sensing 
model integration 

timescale 
 

0.05-5s 0.08s 

𝑔𝐼 for 𝐻(𝑡) 

 

intermittency sensor 
gain for dual 

frequency and 
intermittency sensing 

model  
 

0-4 2.7 

𝑔𝐹 for 𝐻(𝑡) 
 

frequency sensor 
gain for dual 

frequency and 

0-4 3.2 
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intermittency sensing 
model  

 

𝜏𝐻 

 

dual frequency and 
intermittency sensing 

model integration 
timescale  

 

0.05-5s 0.1s 

𝑔 for 𝑅(𝑡) upwind bias 
response gain using 

two-timescale 
integrator 

 

0.15-3 1.5 

𝜏𝑔 upwind bias rise 
timescale for two-

timescale integrator 
 

0.01-5s 0.01s** 

𝜏𝑑 upwind bias decay 
timescale for two-

timescale integrator 
 

0.05-5s 0.97 s 

 
*Note that to fit turn speed and turn duration, we first subtracted the minimum turn speed (25 
deg/s) and minimum turn duration (0.18s) set by our thresholding method. These values (𝜇0 and 

𝜏𝑑𝑢𝑟) represent the addition to the minimum threshold values set, that were fit. Thus in the 
absence of signal the mean turn speed is actually 25 + 68.1 = 93.1 deg/s and the mean turn 
duration is 0.18 + 0.18 = 0.36s: the mean turn duration beyond the minimum duration 
coincidentally was also fit to 0.18s. 
 
**Note that the found value of 10ms for 𝜏𝑔 was on the edge of the minimization bounds. We did 

not probe shorter timescales as the time-resolution of our data was ~16ms. However we verified 
that even for an instantaneous rise timescale the cost was higher than the cost for 10ms but within 
3% of its value. The same was true for a 𝜏𝑔 of 20ms. For values greater than 20ms the cost started 

to grow more significantly. Hence we concluded that the rise timescale was between 0-20ms.    
 
Simulating Fly Turning Dynamics 
 
To simulate flies executing our turn model, we first determined whether a simulated fly would 
initiate a turn or not by taking the probability to initiate a turn in a time step Δ𝑡 as 𝜆(𝑡) ⋅ Δ𝑡, where 

𝜆(𝑡) is given by Equation 2. If a fly was not turning its angular velocity was assumed to be 0. If a 
turn was initiated, its duration in excess of 0.18s was sampled from an exponential distribution 
with timescale 𝜏𝑑𝑢𝑟, and added to 0.18s to get the total turn duration. The mean angular speed of 

the turn in excess 25 deg/s was sampled from a Gamma distribution with shape parameter 2 and 
mean given by Equation 3, then added to 25 deg/s to get the total mean angular speed. We 
assumed a turn had a parabolic angular speed profile (see Fig 3B). Given the mean value and 

duration (i.e. time between two zeros) of this parabola, we could compute |𝜃̇| for the duration of 

the turn as |
6𝜇

𝑑2 (𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡)(𝑡 − (𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑑))| where 𝑡𝑠𝑡𝑎𝑟𝑡  is the start time of the turn, 𝜇 is the mean 

angular speed of the turn, 𝑑 is the duration of the turn and the factor in front ensures that the 

average angular speed over the turn is equal to 𝜇. To determine the sign of the turn, we 

determined whether it was upwind or downwind by simulating a Bernoulli variable with probability 
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given by Equation 4. Once 𝜃̇ was specified for the whole turn, we could use Euler integration with 

timestep Δ𝑡 = 1/60s (the frame rate of our experiments) to evolve a simulated agent’s heading. 
Values for response functions 𝑢(𝑡) except for 𝐹(𝑡) were computed by Euler integration with a 

step-size of 1/10th our sampling rate and then resampled for agent simulation. 𝐹(𝑡) was computed 

as in (31). Agents were initialized with headings sampled from the distribution of experimental 
flies’ initial headings for that environment and initialized to all not be turning for simplicity (thus 
the first 0.1s of our simulated total angular speed is not shown in Fig 5C and 6 as the comparison 
with data would not be fair).   
 
Agent-Based Simulations in Complex Environments 
 
To simulate odor plumes, we followed the procedure described by (44) and used by us in (31) 
where odor plumes are simulated as Gaussian concentration packets that are released at a 
Poisson rate, advected by a mean downwind velocity 𝑣𝑑, grow due to the effects of molecular 

diffusivity and small eddies and are typically perturbed in the crosswind direction by an eddy 
diffusivity. In our case, to account for correlated motion (45), we treated crosswind perturbations 
as a telegraph process, where packets’ crosswind velocities would switch between +𝑣𝑐 and −𝑣𝑐 
at a Poisson rate 𝜆𝑐. Thus the period of time that a packet would sustain its crosswind velocity 

before switching was distributed exponentially with parameter 𝜆𝑐. We used 𝑣𝑑 as 90mm/s, 𝑣𝑐 as 
30mm/s and 𝜆𝑐 as 2/s. The packet release rate for the low frequency plume was 0.75/s.  

 
To generate plumes of increasing frequency in Fig 8E, all that was varied was the release rate. 
The following release rates were used: 0.75/s, 1.0/s 1.25/s, 1.5/s, 1.75/s, 2.0/s, 3.0/s, 5.0/s, 7.0/s. 
All other parameters were set as in (31) so that a concentration value of 1(a.u) was a reasonable 
detection threshold. To compute the mean plume frequency in these environments, we computed 
odor concentration (details below) at 10,000 points uniformly distributed in a circular sector with 

apex at the odor source and half angle arctan (
1

3
), set by the ratio of 𝑣𝑐/𝑣𝑑. The radius of the 

sector was 250mm, which was the maximum downwind distance from the source where agents 
could be initialized.  
 
To compute odor concentration values in these simulated environments, we assumed agents 
sensed odor in an elliptical region with semi-major axis of 0.75mm and semi-minor axis of 
0.25mm, as in (27) and (31), with the major axis perpendicular to the agent’s heading direction. 
Within this region individual points to sample odor concentration were chosen with a spacing of 
6.5 points per mm, as this would match the spatial resolution of video smoke plumes that we have 
used in the past. This region was then evenly divided into a left region and a right region and odor 
signal for each region was computed by averaging the contribution from all packets, (where each 
packet’s concentration decayed as a Gaussian with distance from the packet centroid) over the 
points in that region. We denote the left concentration as  𝐶𝐿 and the right concentration as 𝐶𝑅 . 

The odor signal was then computed as 
𝐶𝐿 +𝐶𝑅

2
.  

 
The odor motion signal was computed as 𝐶𝐿(𝑡 − Δ𝑡) ⋅ 𝐶𝑅(𝑡) − 𝐶𝐿(𝑡) ⋅ 𝐶𝑅(𝑡 − Δ𝑡), in accordance 

with a basic Hassenstein-Reichardt correlator and as used in (28). Δ𝑡 was taken to be one time 
step of the simulation. A motion signal threshold was set at 0.01. If the signal was above 0.01, it 
meant that motion had been detected from the left, and so the against-motion direction would be 
the agent’s current heading plus 90 degrees. Similarly, if the signal was below -0.01 it meant 
motion from the right and so the against-motion direction was the agent’s heading minus 90 
degrees. From this the bias direction was computed as shown in in Fig 8A.  
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For all simulations, agents’ initial positions were uniformly distributed in a region from x = 200mm 
to 250 mm and y = -60mm to 60mm, where x denotes the downwind direction and y the crosswind 
direction (see Fig 8C). Agents’ orientations were uniformly initialized between 90 degrees and 
270 degrees (where 180 degrees was the upwind direction). The source position was x = 10mm 
and y = 0mm. The simulation time was set to 75s with time step of 1/60s. The success region as 
denoted in Fig 8C was a square region from x = 0 to x = 25mm and y =  -12.5mm to y = 12.5mm.   
 
To compute error bars in Fig 8D and 8E, once a binary success vector was obtained from 
simulation (so a vector of size 100,000 that was 1 if the agent at that index reached the source 
region in the simulation time and 0 otherwise), it was resampled with replacement to generate 
1000 other such vectors. The standard deviation in the mean of these vectors is reported as the 
error. To compute the error of the ratios in Fig 8E, a similar procedure was used except that two 
sets of 1000 resampled vectors were generated (one set for agents with novelty modulation, the 
other for agents without) and from this, 1000 estimates of the ratio of success rates were 
computed. The standard deviation of these 1000 ratios was reported as the error. Raw success 
rates ranged from around 3.5% in the low frequency plume to 25% in the highest frequency plume. 
The success rate in the no odor control was around 0.5%.  
 
Estimating Stopping and Walking Rates 
 
A stop was defined as a period of time where a fly’s walking speed was less than 2mm/s for more 
than 100ms. A walk was when walking speed was greater than 2mm/s for more than 100ms. The 
rates for transitioning from stopping to walking and walking to stopping were then estimated and 
smoothed in the same manner as the turn rate, where the fraction of flies transitioning in a single 
timestep Δ𝑡 was taken to be 𝜆Δ𝑡, where 𝜆 denotes the relevant rate. The uncertainty is computed 
by bootstrapping in the same way as for the turn rate estimation. 
 
DATA AND CODE AVAILABILITY 
 
All fly trajectory information and software used for data analysis and figure generation in this 
study are available on Dryad at Jayaram, Viraaj et al. (2023), Data and software for "Temporal 
novelty detection and multiple timescale integration drive Drosophila orientation dynamics in 
temporally diverse olfactory environments", Dryad, 
Dataset, https://doi.org/10.5061/dryad.pzgmsbcrg (76) 
 
Fly lines are available upon request.  
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S1 Fig: In absence of fictive or real odor, flies orient on average crosswind in both laminar and complex wind. 
A. Population mean orientation of flies in absence of odor stimulus, in laminar (green) or complex (purple) wind. Wind 
was presented continuously for 5 minutes. Orco>Chr: w; gmr-hid/+; Orco-GAL4/UAS-20XChrimson (experimental line 
responsive to fictive odor stimulus). GAL4 PARENT: w;+;Orco-Gal4. UAS PARENT: w;gmr-hid;UAS-20XChrimson. 
Canton-S: wildtype (same as in (27)). Recorded at 60 fps, but presented by subsampling every 5 frames. Dashed line 
indicates orienting crosswind (90°). All flies that moved less than 2mm/s on average for their entire trajectory were 
removed. Orco>Chr: laminar, n=5-69 trajectories per time point across the entire 5 minute recording; complex, n=8-56. 
GAL4 PARENT: laminar, n=1-18; complex, n=1-17. UAS PARENT: laminar, n=1-13;complex, n=1-12. Canton-S: 
laminar, n=1-13; complex, n=1-12. B. Population orientation mean and SEM across all trajectories for laminar (green) 
and complex (purple) wind without odor stimulus over 5 minute recording. Any time points where the fly moved less 
than 2 mm/s were removed. Orco>Chr: laminar, 91.1° ± 1.1°, n = 678 trajectories; complex, 91.9° ± 1.4°, n = 519. GAL4 
parent: laminar, 84.1° ± 2.9°, n = 152, complex, 82.2° ± 3.3°, n = 119. UAS parent: laminar, 87.2° ± 3.7°, n = 102, 
complex, 89.8° ± 3.0°, n=114. Canton-S: laminar, 90.2° ± 4.4°, n = 120, complex, 90.3° ± 4.3°, n = 111.  
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S2 Fig: Parent flies and Orco>Chr flies without ATR do not respond to the fictive odor signal. Traces of mean 
orientation over time for control lines in presence of 2 Hz, 0.1 s fictive odor. Population mean orientation of GAL4 parent 
(left) and UAS parent (middle) genotypes of optogenetically active flies, and the optogenetically active line without 
feeding ATR (right). Black line is mean across all trajectories at that time point, grey shading indicates SEM. Dashed 
black line indicates crosswind orientation at 90°. Red bars indicate fictive odor presence. Any time points where the fly 
moved less than 2 mm/s were removed. GAL4 parent: 52-74 trajectories per frame, UAS parent: 50-89 trajectories per 
frame, Orco>Chr (no ATR): 108-159 trajectories per frame. 

 

 
 
 

 
 

 

 

 

 

 

 

 

S3 Fig: Population mean behavioral responses of flies navigating fictive odor stimuli are similar in laminar 
and complex wind. Mean population orientation response measured from flies navigating one of 6 from the 45 fictive 
odor environments: 0.2 Hz 1 s, 0.5 Hz 0.1s, 0.5 Hz 1s, 1 Hz 0.5 s, 2 Hz 0.1 s, 2 Hz 0.25 s (from left to right), in either 
laminar (green) or complex (purple) wind structure. 235-485 trajectories were recorded per odor and wind 
environment, and 104-242 trajectories were recorded per time frame (recording rate = 60 frames per second). Red 
bars indicate odor presence. 
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S4 Fig: Instantaneous angular velocity as a function of environment duration and intermittency. A. 
Instantaneous angular velocity of flies as a function of their orientation during the ON block (0-15 s). Upwind orientation 
is at 180°, downwind at 0°. Orientation was split into 8 bins with width 22.5°. Vertical dashed line at 90° indicates flies 
facing crosswind during ON block. Positive angular velocity represents turning upwind, negative represents turning 
downwind. Horizontal solid line at 0 °/s indicates no change in angular velocity, thus no change in orientation. Angular 
velocity is colored by environment duration. Blue: 0.02 s, indigo: 0.05 s, magenta: 0.1 s, red: 0.25 s, orange: 0.5 s, 
yellow: 1.0 s. The grey bar indicates the crosswind range (90°± 22.5°) over which the mean angular velocity during the 
ON block per odor environment was calculated in Figure 2C. B. Same as A but colored by environment intermittency. 
Blue: 0-0.05, purple: 0.05-0.2, red: 0.2-0.5, yellow: 0.5-0.875.  
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S5 Fig: Angular speed responses vary across stimulus frequency and intermittency. Population mean 
instantaneous angular speed, obtained from the absolute of the angular velocity, across 45 fictive odor environments, 
derived from the orientation (see Materials and Methods). Stimuli presented are the same as in Figure 2A. Red bars 
denote the signal simultaneously encountered by all flies within an experiment. Between 176 and 407 trajectories were 
recorded per environment. Between 72 and 237 trajectories were recorded per time point across all environments at 
60 fps. 
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S6 Fig: Angular speed response is consistent across fly orientations: Angular speed from 4 of the 45 odor 
environments (0.2 Hz 1 s, 0.5 Hz 0.25 s, 1.5 Hz 0.1s s, 3 Hz 0.25 s). Heading was split into three bins of 60 degrees; 
upwind facing (120°-180°, blue), crosswind facing (60°-120°, orange) and downwind facing (0°-60°, green). 
Orientation was flipped over 180° as before. Solid line: population mean angular speed of flies oriented within the 
corresponding 60° bin at each time point. Lighter shading: mean ± SEM at each time point. Red bars: fictive odor 
pulses. Between 170 and 305 trajectories were recorded per environment for each 60° heading bin. Between 9 and 
105 trajectories contribute to the data at each time point. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
S7 Fig: Defining turn events. A. The 95th percentile of the distribution of angular change magnitude during fixation 
events, Δ𝜃95, as a function of the angular speed threshold set to define a turn event. Thresholds tested ranged from 5 
deg/s to 150 deg/s. Red dashed line highlights the inflection point in the curve at ~25 deg/s, indicating that thresholds 
greater than 25 deg/s ignore larger angular changes that could contribute to changes in heading. B. After applying the 
25 deg/s threshold angular speed to turn events, the distribution of angular change during turns is bimodal: there is a 
shorter range distribution centralized around small mean angular changes, and a much wider distribution of angular 
changes around centralized around a larger mean angular change. The smaller changes are less likely to influence 
heading compared to the larger angular changes, thus we sought to exclude them. Distribution can be fit using a 
Gaussian mixture model with a low mean, low variance Gaussian and a high mean, high variance Gaussian. The 
standard deviation of the low-mean Gaussian is 4.5°, which we used to set a minimum turn event duration of 0.18 s, 
given a minimum turn angular speed of 25 deg/s. C. After applying the 0.18 s threshold duration for a turn event, the 
distribution of angular change is no longer bimodal, meaning that only turn events of significant magnitude are selected.  
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S8 Fig: Defining turn rate. A. Distribution of fixation durations (bin number = 60), having applied the turn speed and 
turn duration thresholds. Slope of the distribution (i.e. the turn rate) is non-linear; fixation durations can reach up to ~40 
s. B. Cumulative probability density function of fixation durations. Red line indicates 95th percentile of fixation durations. 
Vertical line indicates that more than 95 % of fixation events have a duration of less than 1.5 s. C. Distribution of fixation 
durations, for fixations lasting up to 1.5 s. These are exponentially distributed, allowing us to model turn rate as a 
Poisson process.
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S9 Fig: Turn rate is dynamic and well-predicted by the combination of novelty and offset responses. 
Experimental population turn rate estimated with a sliding 0.25s window (grey line) and bootstrapped error (grey 
shading) (see Materials and Methods) for all 45 fictive odor environments as well as model predictions (pink) and 
simulated error (pink shading) using Equation 2 and fit with one fixed set of parameters to all 45 environments using 
Maximum Likelihood Estimation (see Materials and Methods). Turn rate is dynamic and reasonably well-
approximated by the model. Each panel had ~150 trajectories contributing at any timepoint. To generate model 
predictions and error, for each panel we generated ~150 turn series (1 if a turn starts at that time point, 0 if not) and 
averaged and smoothed this data to get a single time-varying turn rate estimate. We repeated this process 10000 
times, taking the mean of all these as the model turn rate and the standard deviation as the model error. For more 
details see Materials and Methods. N = 8-103 turn events per time point for all 45 environments. 
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S10 Fig: Mean turn speed is also dynamic and well-predicted by the combination of novelty and offset 
responses. Experimental population mean angular speed given turning estimated with a sliding 0.25s window (grey 
line) and bootstrapped error (grey shading) (see Materials and Methods) for all 45 fictive odor environments as well 
as model predictions (pink) and simulated error (pink shading) using Equation 3 and fit with one fixed set of 
parameters to all 45 environments using Maximum Likelihood Estimation (see Materials and Methods), and using 
timescales for 𝑁 and 𝑂𝐹𝐹 responses extracted from the turn rate parameter estimates. Angular speed given turning is 

dynamic and reasonably well-approximated by the model. To generate model predictions and error, artificial turns 
were simulated occurring at the same times as the real turns. The speed of these turns in excess of the 25 deg/s 
threshold was sampled from a gamma distribution with time varying mean, given by Equation 3. Average turn speed 
on this simulated data was then calculated with the same sliding 0.25s window. We repeated this process 10000 
times, taking the mean of all these as the model turn angular speed and the standard deviation as the model error. 
For more details see Materials and Methods. Ns are the same as in S9 Fig. 
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S11 Fig: Mean turn duration is roughly constant in time for high frequency environments but shows a small 
signal dependency for low frequency long duration signal: Mean turn duration (grey) and estimated error (grey 
shading) vs. time for all 45 environments considered as well as the MLE estimate of a constant duration (pink line) 
and uncertainty (pink shading) (see Materials and Methods). We do see some signal modulation of turn duration, 
particularly at lower frequencies and often see an increase in turn duration at the offset of the ON block. However, the 
strength of this modulation is rather mild overall and the response at block offset is somewhat unpredictable and not 
well fit with the off response timescales found for turn rate. Thus, to keep our model as simple as possible we 
neglected modulations in turn duration. To generate model predictions and error, artificial turns were simulated 



 52 

occurring at the same times as the real turns. The duration of these turns in excess of the 0.18s threshold was 
sampled from an exponential distribution with fixed parameter. Average turn speed on this simulated data was then 
calculated with the same sliding 0.25s window. We repeated this process 10000 times, taking the mean of all these 
as the model turn duration and the standard deviation as the model error. For more details see Materials and 
Methods. Ns are the same as in S9 Fig. 
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S12 Fig: Turn bias is dynamic and well approximated by a two-timescale integrator with an instantaneous 
rise timescale. Probability to turn upwind given turning (i.e. upwind bias) vs time (grey) and estimated error (grey 
shading) for all 45 fictive odor environments along with model predictions (purple) and estimated error (purple 
shading) for a two-timescale integrating response (Equations 8-9) with instantaneous rise timescale and finite decay 
timescale (see Materials and Methods). Upwind bias was estimated by calculating the fraction of turns that were 
upwind in a sliding 0.25s window. We see that upwind bias generally rises during signal presence and otherwise is 
slightly less than 0.5, suggesting that in the absence of signal flies display a preference for downwind orientation. To 
generate model predictions and error, artificial turns were simulated occurring at the same times as the real turns, 
with the same initial orientations. The direction of these turns (upwind or downwind) was assigned according to the 
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probability given by the time varying bias, Equation 4. Turn bias on this simulated data was then calculated with the 
same sliding 0.25s window. We repeated this process 1000 times, taking the mean of all these as the model turn bias 
and the standard deviation as the model error. For more details see Materials and Methods. N = 8-103 turn events 
per time point for all 45 environments. 
 

 

 

 

 

 

S13 Fig: Walking speed and stopping behavior in temporally diverse fictive odor environments: A) Average 
walking speed of tracked agents in the different temporal environments. Here we exclude flies with speeds less than 
2mm/s since that is the threshold for being considered as stopped. Grey shading denotes SEM. Between 47 and 205 
trajectories contribute to each time point. B) Stop-to-walk transition rate (blue) and walk-to-stop transition rate 
(orange) as a function of time (Materials and Methods for more details on estimating these rates). Between 8 and 86 
trajectories contribute to the stop-to-walk rate at each time point and 37 and 208 contribute to the walk-to-stop rate, 
before smoothing. For A) and B) the red bars denote the fictive odor signal as in other figures.  
 


