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Spatial self-organization resolves conflicts between
individuality and collective migration
X. Fu 1,6, S. Kato1,7, J. Long1,2, H.H. Mattingly1, C. He3, D.C. Vural 1,8, S.W. Zucker4,5 & T. Emonet 1,2

Collective behavior can spontaneously emerge when individuals follow common rules of

interaction. However, the behavior of each individual differs due to existing genetic and non-

genetic variation within the population. It remains unclear how this individuality is managed

to achieve collective behavior. We quantify individuality in bands of clonal Escherichia coli cells

that migrate collectively along a channel by following a self-generated gradient of attractant.

We discover that despite substantial differences in individual chemotactic abilities, the cells

are able to migrate as a coherent group by spontaneously sorting themselves within the

moving band. This sorting mechanism ensures that differences between individual chemo-

tactic abilities are compensated by differences in the local steepness of the traveling gradient

each individual must navigate, and determines the minimum performance required to travel

with the band. By resolving conflicts between individuality and collective migration, this

mechanism enables populations to maintain advantageous diversity while on the move.
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Cells and larger organisms exhibit collective behaviors that
are often advantageous to the participating individuals1,2.
Many such collective behaviors dynamically emerge when

a large number of individuals follow the same rules to interact
with each other and the environment3,4. Prominent examples are
bird flocks4–6 and the collective migration of bacteria along
channels7–11 and on agar plates8,9,12. At the same time, pheno-
typic differences among even genetically identical individuals are
a ubiquitous feature of biology13. Phenotypic diversity can lead to
useful leader–follower structures within a traveling group. For
example, in migrating neural crest cells and in fish shoals, many
organisms may follow a few more informed individuals14. In
microbial communities, maintaining diversity in the population
can enable bet-hedging strategies to survive uncertain environ-
ments and resolve trade-offs13,15–18. However, heterogeneity can
also be disruptive, as is the case in simulated swarms where non-
aligners tend to be purged from the swarm19. This raises a
dilemma: although phenotypic diversity provides advantages, it
also tends to reduce coordination.

One of the simplest cases of collective behavior is exhibited by
bacteria: clonal populations of motile Escherichia coli cells col-
lectively migrate when placed at high density at the bottom of a
tube filled with nutrients8–11. This collective behavior is mediated
by the well-characterized chemotaxis system20, which enables the
bacteria to follow chemical gradients, in this case generated by
their consumption of attractant present in the medium (Fig. 1a).
However, populations of E. coli exhibit substantial cell-to-cell
variability in their swimming phenotypes13,21 and hence che-
motactic abilities, even when all cells are genetically identical22.
How bacterial populations manage phenotypic heterogeneity to
still allow coordinated collective migration remains largely
unknown, mainly because of the difficulties in measuring cellular
behavior at both the collective and the individual levels in the
same experiment21.

Although the migration of traveling waves or “bands” of bac-
teria has also served as a classic model for the theoretical study of
emergent phenomena and pattern formation in biology10,23, the
effect of non-genetic diversity on this process has scarcely been
examined. Previous studies examined how two populations may
travel together24,25; however, it was assumed that within each
population all of the individuals were identical. The mechanisms
by which a continuum of phenotypes can achieve coherent
migration have not been investigated.

Here we used a microfluidic system that enables precise
quantitative measurements at the individual and collective scales
to study the interplay of diversity and collective bacterial
migration. Our central finding is that within the traveling band,
cells spontaneously sort themselves such that their chemotactic
abilities are matched to the local gradient steepness, enabling
diverse cells to travel together with the same drift speed.
Extending the classic Keller–Segel model of traveling bands to
account for diversity predicts this spatial sorting and qualitatively
recapitulates the experimental results. Our second finding is a
novel mechanism that reduces the rate at which cells fall off the
back of the band: when attractant consumption depends on local
oxygen, oxygen limitation in the center of the band increases the
gradient of attractant at the back, helping cells there keep up.
Together, these two mechanisms enable populations of bacteria to
maintain diversity while migrating as a group.

Results
Cells of diverse chemotactic abilities migrate as a group. To
quantify collective behavior and diversity in the same experiment,
we designed a microfluidic device consisting of a long channel to
observe the traveling band11, followed by a large chamber to

quantify the distribution of phenotypes in the band (Fig. 1b and
Supplementary Fig. 1). Approximately 2 × 105 clonal E. coli cells
grown in M9 glycerol medium (M9 salts, glycerol, and casamino
acids; Methods) were introduced with fresh medium into the
device and concentrated at the end of the channel by cen-
trifugation (Methods). Following centrifugation, sequential bands
of cells collectively migrated along the channel at different but
nearly constant speeds (Fig. 1c), presumably consuming different
compounds within the undefined media, as demonstrated in early
studies8.

E. coli cells navigate by alternating straight “runs” with
“tumbles” that randomly reorient their swimming direction
(Fig. 1d). By transiently suppressing tumbles whenever attractant
signal increases, they perform a biased random walk that allows
them to move toward higher concentrations of attractant20. In the
absence of a gradient, the fraction of time a cell spends tumbling
—its tumble bias (TB)—remains approximately constant and
therefore can be used as a quantitative measure of the phenotype
of the cell. Importantly, using the same strain and microfluidic
channel depth, we previously demonstrated that the TB is a
strong determinant of chemotactic performance in liquid: lower
TB cells drift significantly faster up a static gradient than higher
TB cells22. To quantify the distribution of phenotypes in the
isogenic population that was introduced in the device, a low
density of cells was loaded into the microfluidic device without
centrifugation and individual cells were tracked to determine
their TB, as previously described21,22. TB was broadly distributed
in the population with some cells tumbling < 10% of the time (i.e.,
TB < 0.1) and others > 50% of the time (Fig. 1e black), consistent
with previous studies13,21,22. Given the functional consequences
of this non-genetic diversity, how can the same population of cells
migrate together as a coordinated group, as shown in Fig. 1c?

To answer this question, we first considered whether all
phenotypes or only a subset of them traveled in each band. We
used pressure valves to capture one band of cells at a time in the
wide chamber of our device (Fig. 1b and Supplementary Fig. 1b).
After trapping cells in the wide chamber, it was perfused with
fresh media to homogenize the environment and dilute the cell
density. We verified that perfusion of the wide chamber did not
affect the distribution of TBs (Supplementary Fig. 3). Dilution
enabled us to track individual cells. Homogenization ensured that
cells had adapted back to a uniform environment and were not
responding to an attractant gradient when we measured their
TBs. The distribution of TB was shifted toward lower TB in both
traveling bands compared with the original distribution (Fig. 1e),
suggesting that it was more difficult for high TB cells to
participate in collective migration. Selection against high TB cells
was stronger in the faster band (Fig. 1e, red) than in the slower
one (Fig. 1e, yellow). Cell density and number also varied between
the two bands (Fig. 1c), suggesting that there were interdepen-
dencies between the speed of the group, its size, and the diversity
of the individuals able to migrate with the group. We periodically
tracked cells after they were trapped and diluted in the wide
chamber and found that the original TB distribution was recov-
ered after growth (Fig. 1f). Thus, selection of low TB cells by the
collective migration was not due to genetic heterogeneity. In
addition, it is unlikely that cell growth affected the TB selection
while cells were traveling in a band, because the duration of the
experiment (30 min) was shorter than the cell doubling time
(~ 55 min, Supplementary Fig. 4).

Collective migration selects against high TB cells. To determine
the relationship between the number of cells in the band, the
band speed, and diversity, we switched from casamino acids to a
defined M9 glycerol buffer containing aspartate (Asp) as the
only limited chemoattractant (Methods). In this condition, a
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single band formed (Fig. 2a) and its speed could be tuned by
changing the concentration of supplemented Asp12 (Fig. 2b). To
measure band speed and density, cells expressing mRFP1 were
mixed with unlabeled cells at ratios of 1:20, 1:50, or 1:100 (for 50,
100, and 200 μM Asp, respectively), and their positions were
detected at various time points (Fig. 2a and Methods11,26). Band
speed, number of cells in the band, and density profiles were
stable over time with a slow decay due to cells falling off at the
back of the band (Fig. 2b, c, d and Supplementary Fig. 5).
Although there were variations across experimental replicates due
to variations in the number of cells introduced in the device, the
relationship between Asp concentration and band parameters was
consistent. Specifically, as the concentration of Asp increased, the
speed of the band decreased (Fig. 2b), the number and peak

density of cells in the band increased (Fig. 2c, d), and the dis-
tribution of TB within the band shifted toward higher TB
(Fig. 2e). In general, collective migration selected against high TB
cells, with selection being stronger in faster bands (Fig. 2e, f). It is
noteworthy, however, that diversity was not eliminated—all
bands still exhibited a range of TBs. Thus, although collective
migration selected against high TB cells, it was still possible for a
diverse group to travel together.

Extending the Keller–Segel model to account for diversity. To
better understand how collective migration selects TB, we
extended the classic Keller–Segel mathematical model describing
traveling bands of bacteria10 to include phenotypic diversity
(Methods Eqs. 1–3). In this model, cells consume the diffusible
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Fig. 1 Collective migration of a phenotypically-diverse clonal population. a When concentrated at the bottom of a nutrient channel, motile E. coli cells
emerge from the high cell density region and travel in bands along the channel by following gradients of attractant produced by their consumption. b
Microfluidic device used to quantify the band migration and the phenotypic diversity within the band. Control gates along the channel (black vertical lines)
are initially open (top) and later closed to capture different bands of cells in the observation chamber (bottom), where single cells are tracked to quantify
the distribution of phenotypes within the band (Supplementary Fig. 1). c Time-lapse imaging of E. coli cells expressing the fluorescent protein
mRFP1 showing the collective migration of bands in M9 glycerol medium (M9 salts, glycerol, and casamino acids; Methods). In this undefined medium,
several bands emerge that travel at different speeds (red: 0.68mmmin−1, yellow: 0.23 mmmin−1)8. We verified that labeling cells did not affect band
speeds nor tumble bias distributions (Supplementary Fig. 2). Scale bar, 0.6 mm. d The tumble bias (color)—average probability to tumble—of individual
cells was quantified by tracking a cell for 2 min in a uniform environment (no gradient) and detecting tumbles (black dots) as previously described21, 22.
Scale bar, 200 μm. e Collective migration selects against high TB cells. Tumble bias distributions from the first (red) and second (yellow) bands (n= 3),
and from the population that was introduced in the device (black; n= 3). f The tumble bias distribution of the cells in the first wave (red in e) gradually
shifted back toward the original distribution (black) during growth in the perfused chamber. Fresh M9 glycerol medium was supplied every 30min. The TB
distribution was measured every 20min
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attractant Asp, which generates a traveling gradient that the cells
follow by biasing their random walk (Fig. 3a). Faster consump-
tion, more cells, or less Asp all lead to a faster traveling gra-
dient10. The motion of a phenotype i depends on two parameters:
its effective diffusion coefficient, μi= μ(TBi), which results from
the cells’ random walk, and its chemotactic coefficient, χi= χ
(TBi), which quantifies how effective that phenotype is at biasing
its motion27–29 to follow the perceived amount of Asp, f. Theory
and tracking of individual E. coli cells swimming in a static gra-
dient of α-methylaspartate (non-metabolizable analog of Asp)
have shown that μ and χ are decreasing functions of the TB (note
that for very low values of TB < ~ 0.05, χ increases with TB;

indeed, for TB= 0 the cell is just diffusing and χ= 0;
Methods)21,22. Thus, in a gradient of attractant, cells with higher
TB do not diffuse as much and climb slower than cells with lower
TB. The dependency of f on Asp concentration has been char-
acterized as well30. Moreover, we conducted high-performance
liquid chromtography (HPLC) experiments to verify that the
chemotaxis response to Asp dominated that to amino acids
secreted as byproducts of Asp metabolism. Experiments con-
ducted with mutants lacking the oxygen receptor aer or both
aer and tsr indicated that aerotaxis was not essential and Tar
response to Asp was sufficient for band migration31 (Methods
and Supplementary Fig. 6).

0.5

0.3

0.2

0.1

0

M
ig

ra
tio

n 
sp

ee
d

(m
m

 m
in

–1
)

50

50

C
el

l n
um

be
r 

in
 th

e 
ba

nd

105

c

b e

da

f

104

n = 5

n = 4
n = 5

100

100

Simulation

Simulation

F
ol

d 
en

ric
hm

en
t

Tumble bias

Tumble bias

Relative coordinate, z (mm)
Position (mm)

P
D

F

*p = 0.0076

*p = 0.0017

*p = 0.0034

*p = 0.004

150

150 0.1

1/4

1/2

1

2

2

4

4

6

0.1
0

0 3.5 7
–1.5 –1 –0.5 0.5 1.510

0
3
5
8

11
13
16
19

T
im

e 
(m

in
)

0

5

10

×109

C
el

l d
en

si
ty

 (
m

l–1
)

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5200

200

Asp conc. (µM)

Asp conc. (µM)

0.4

Fig. 2 Relationship between band speed, density, and phenotypic diversity. a Time-lapse coordinates of cells (black dots) traveling in M9 glycerol buffer
(Methods) with 200 µM aspartate. Only one band forms in each experiment. Cells (1:100) were labeled with mRFP1 and their coordinates detected
(Methods). Scale bar, 0.6 mm. In remaining panels, colors are aspartate concentration in the buffer: 200 µM (blue; 1:100 cells labeled), 100 µM (yellow;
1:50 cells labeled), 50 µM (red; 1:20 cells labeled) (Methods). b Band speed decreased with aspartate concentration in the buffer. Circles: experiments in
which tumble bias was measured, used in e, f. Diamonds: tumble bias was not measured. Dashed: simulations (Methods and Supplementary Fig. 5).
p-value: one-sided, two-sample t-test assuming unequal variances, t-value= 4.1, df= 5.4 between 50 μM and 100 μM, t-value= 4.2, df= 3.8 between 100
μM and 200 μM. c Number of cells traveling in the band increased with aspartate concentration. Circles, diamonds, and dashed: same as in b. p-value: one-
sided, two-sample t-test assuming unequal variances, t-value=− 3.9, df= 6.5 between 50 μM and 100 μM, t-value=− 4.6, df= 6.4 between 100 μM and
200 μM. d Cell density profiles averaged over time and experiments (Supplementary Fig. 5). Line: average over n= 5 (red), n= 4 (yellow), n= 5 (blue)
replicate experiments. Shade: SD. For each experiment, nine profiles were measured at 1.3 min intervals. Dashed: simulations. e Tumble bias distribution of
the cells that traveled with the band. Lines: average over experiments; shading: SD; dashed lines: simulations. f Ratio between the distribution of tumble
bias in the traveling band (Fig. 2e, colored lines) and that of the original population (Fig. 2e, black) quantifies the enrichment of tumble bias. Lower
aspartate concentrations enrich more for lower tumble bias. Solid lines: mean of the measurements from experiments; shading: standard error of the mean;
dashed: simulations

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04539-4

4 NATURE COMMUNICATIONS |  (2018) 9:2177 | DOI: 10.1038/s41467-018-04539-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


To metabolize Asp, E. coli consumes oxygen32. Introducing a
fluorescent oxygen sensor33 in the M9 glycerol buffer revealed
that oxygen availability is reduced in the center of the traveling
band where cell density is high (Supplementary Fig. 7a-f). This
results in a dependency of the average consumption rate of Asp
on cell density (Supplementary Fig. 7h). We modeled this effect
such that the Asp consumption rate depended linearly on oxygen
concentration and constrained the related parameters by
measuring oxygen and Asp consumption rates in batch cultures
(Supplementary Fig. 7g). For simplicity, we ignored possible
phenotypic diversity in the Asp consumption rate, as well as the
possible dependence of the diffusion coefficient on cell density34,
which was found previously to be negligible in similar
experiments11. We also omitted possible contributions of
hydrodynamics35 and physical interactions between cells, which
can become important when bacteria swarm over surfaces36.
The resulting model (Methods and Table 1) qualitatively
reproduced the main features of our experiments, including the
dependency on Asp concentration of the band speed (Fig. 2b), cell
number and density (Fig. 2c, d), TB distribution (Fig. 2e),
phenotypic selection (Fig. 2f), and average Asp consumption rate
per cell as a function of cell number in the band (Supplementary
Fig. 7h).

Spatial sorting as a mechanism for inclusive migration. An
important feature of the experiments reproduced by the simula-
tions is the increasing selection against high TB cells as the
amount of Asp is reduced (Fig. 2f). What mechanism enables cells
with diverse chemotactic abilities to collectively migrate together
as one band, and what controls the upper bound on the TB
among those able to migrate together? For every phenotype that
travels with the band at constant speed c, the flux of cells must be
approximately invariant in time and equal to the chemotactic flux
minus that due to diffusion. Focusing on the partial differential
equation for the cell density of phenotype i and switching to the
moving reference frame z= x− ct (here x and t are absolute
position and time), two predictions emerge (Methods Eqs. 7–8).
First, the traveling phenotypes must distribute themselves spa-
tially within the band so that differences in local signal strengths,
the slope df

dz of the black line in Fig. 3a, compensate for differences
in the chemotactic abilities of each phenotype, χi, such that
c ¼ χi

df
dz zið Þ, where zi is the position of peak density of phenotype

i (Fig. 3a). Therefore, this spatial sorting places the better per-
formers (higher χi, lower TBi) in the front of the band, where the
gradient is shallower and more difficult to follow (Fig. 3a, red),
and the weaker performers (lower χi, higher TBi) at the back,
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where the gradient is steeper (Fig. 3a, blue). Furthermore, a
second prediction is that the gradient will reach a maximal
steepness (Fig. 3a dashed border of gray zone), determining the
weakest phenotype that can travel (lowest χi, upper bound on
TBi). Thus, we see the interplay between individuals i and the
effect of the community on the available resource f.

Analysis of simulations confirmed these analytical predictions
(Fig. 3b, c, d). The steepness of the perceived signal df

dz, which
emerges dynamically from the cells’ consumption, peaked at the
back of the traveling band (low z) and decayed toward the front
(high z) (Fig. 3c black). In contrast, the position zi of the peak
density of phenotype i increased with its chemotaxis coefficient χi
(Fig. 3c blue), revealing an ordering of the phenotypes within the
migratory band (Fig. 3b, c). Multiplying the two together gave a
nearly constant velocity throughout the band, thus providing an
explanation of how the various phenotypes might travel together
(Fig. 3d). The rightmost points in Fig. 3c (blue line) and Fig. 3d
(black line) correspond to the phenotype with the maximum
chemotactic coefficient in the band. Ahead of that location, there
are no more peaks in the cell density of any phenotype; however,
there are cells due to diffusion. At the back of the band, cells with
TB higher than the predicted upper bound rapidly fell off of the
band (Fig. 3a, d gray zones). Importantly, these predictions
emerged from just the dynamics of cell density (Methods Eq. 1)
and therefore hold true irrespective of whether oxygen is included
in the model.

Comparing simulations with and without the oxygen-
dependent consumption rate revealed that the oxygen depen-
dency reduces leakage of the highest-TB cells located at the back
of the band (Supplementary Fig. 8b). The higher concentration of
oxygen at the back relative to the center of the band locally
increases the rate of consumption, and hence the slope of the
traveling gradient of Asp, helping the cells there stay longer with
the band (Methods Eq. 9). Thus, oxygen dependency has a similar
cohesive effect as the secretion of a self-attractant, which also
helps reduce the leakage of cells11,25,37.

Cells in the band are spatially sorted by TB. To experimentally
test the prediction of spatial sorting in the band by phenotype, we
measured the relative position of two populations of cells with
different mean TB within the traveling band. The distribution of
TB in the population was controlled by manipulating the level of
expression of the phosphatase CheZ, which deactivates the che-
motaxis response regulator CheY (Supplementary Fig. 9a). We
generated multiple populations with different TB distributions of
varying mean TB (〈TB〉) (Fig. 4a). In each population, we labeled
1 in 50 cells of the same genetic background and induction level
by ectopically expressing either mRFP1 or YFP. The inducer was
washed away when cells were resuspended in buffer before
starting the migration experiment. TB distributions are stable for
more than an hour in buffer21. When cells from the lowest (red)
and highest (cyan) TB distributions were mixed in equal parts
and introduced in the device, spontaneous spatial order emerged,
with cells from the low (high) TB distribution located at the front
(back) of the traveling band (Fig. 4b, c and Supplementary Fig. 9b
for replicates). The distance between the peaks of the density
profiles of the two populations remained nearly constant over the
duration of the experiment, indicating that the two populations
traveled together at the same speed (Fig. 4e). We verified that the
distance between the peak densities of the two populations was
stable in longer experiments (Supplementary Fig. 9d). Mixing
populations with closer TB distributions caused the peaks of the
two traveling populations to be closer (magenta and green in
Fig. 4a, d and Supplementary Fig. 9c for replicates), suggesting
that distance between peaks increases with difference in 〈TB〉 as a

result of spatial sorting. Due to experimental limitations, we could
not measure the TB distributions of all four strains in each of the
experiments reported in Fig. 4a-e. To better quantify the rela-
tionship between peak separation and difference in 〈TB〉 value,
we instead mixed pairs of populations using only fluorescent
strains induced with different levels of anhydrotetracycline (aTc).
For each pair, we measured the TB distributions right before
loading cells in the device, and then measured the distance
between the fluorescence peaks in the resulting traveling band
(Fig. 4f). This confirmed that there is a monotonic relationship
between peak separation and difference in 〈TB〉 values. Therefore,
cells of various phenotypes appear to spontaneously sort them-
selves along the traveling band according to their TB, enabling
them to migrate collectively despite phenotypic differences.

Discussion
How do organisms maintain collective behavior despite the
potential conflicts created by phenotypic diversity among indi-
viduals? We studied this question using traveling bands of che-
motactic E. coli, which collectively migrate at the same speed
despite differences in chemotactic abilities of individuals in the
band. Our key result is that spontaneous spatial organization of
phenotypes within a traveling band helps resolve the conflicts
between phenotypic diversity and collective migration. By
matching individual abilities to the local difficulty of the navi-
gation task within the band, this sorting mechanism ensures
consistent migration speed across the band. This process also
determines the minimum chemotactic performance required to
keep up with the band, therefore explaining how diversity can
become limited by collective behavior. Thus, the mechanism
reported here enables a continuum of phenotypes to migrate
coherently.

In the traveling band, there is always a slow leakage of cells off
the back of the band because of the finite sensitivity of the cells for
the attractant they are chasing38–41. High TB cells, in particular,
which are localized at the back of the wave, are at risk of falling
off. We discovered that this leakage can be reduced (but not
eliminated) if the consumption rate of the attractant is lower in
the center of the band than at the back, where the consumption
rate determines the local gradient steepness and chemotactic drift.
In our case, this arises because Asp consumption depends on
oxygen, which becomes limited in the center of the band where
cell density is high. This mechanism provides an alternative to
other mechanisms known to reduce cell leakage, such as the
secretion of an attractant by the traveling cells11,25,37. Note that
the spontaneous sorting mechanism discussed above helps com-
pensate for differences in chemotactic abilities, irrespective of the
presence of such auxiliary mechanisms (oxygen or self-
attractant).

Traveling bands of bacteria have been studied for decades since
Julius Adler’s experiments in capillary tubes8,9. Adler reported the
formation of multiple traveling bands in complex media; we
observe the same in casamino acids (Fig. 1) and expect multiple
bands to be able to form when multiple consumable attractants
are present. Within a migrating band the cells respond to the
traveling gradient, some parts of which can be fairly steep.
Therefore, we expect the instantaneous TB of an individual cell to
be dynamically changing depending on its direction of motion
and position within the gradient, as previously reported11,29. Here
we showed that phenotypic (intrinsic) differences in adapted TB
between cells contribute significantly to spatial structure within
the traveling band. In future studies, we will separate the con-
tributions of phenotypic and dynamic diversity to group struc-
ture. It will also be interesting to examine the contribution of
initial conditions, dimensionality, and growth (necessary to
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maintain traveling cell density over long times41–43) to this
process.

Previous analysis of bacterial traveling bands assumed that the
population consisted of identical cells10,11,37,44,45 or at most
two phenotypes24,25. Here we extended these studies by taking
into account the continuum of phenotypes that is always present
in a population13,21,22. One study that considered how two
phenotypes might travel together made the theoretical assump-
tion that cells sense only the direction of the gradient, not its
magnitude25. This assumption causes the peak densities of the
two phenotypes in that model to coincide in space, contrary to
our experimental observations. In another theoretical study24, the
cells did respond to the gradient magnitude, and the two phe-
notypes in the traveling solution were spatially separated.
Although not discussed in the paper, the phenotype with the
higher chemotactic coefficient is in the front in that solution, in
agreement with our sorting mechanism. However, in that model,

the range of sensitivity was assumed to extend to vanishing
concentrations, as in the original Keller–Segel model10, which is
not biologically realistic27.

Following depletion of local resources, the spatial self-
organizing mechanism described here could enable populations
of bacteria to maintain diversity while traveling toward better
environments. This diversity increases the probability that a
phenotype well-suited to unexpected environments will be avail-
able if needed during travel until a destination is reached where
growth can replenish the population. As the range of phenotypes
allowed within a traveling group depends on the spatial profile of
the traveling gradient, this mechanism introduces important
feedback between the environment, cellular metabolism, and
phenotypic diversity, which together generate spatial patterns of
phenotypes according to functional capabilities. The same
mechanism might also enable different bacterial species to travel
together, thus enabling migration of small ecosystems.
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Fig. 4 Phenotypes spontaneously order themselves along the traveling band according to tumble bias. a The distribution of tumble bias in the population
can be controlled by manipulating the level of expression of the phosphatase CheZ, which deactivates the chemotactic response regulator CheY
(Supplementary Fig. 9a). b Time-lapse coordinates (colored dots) of an equal mixture of low (red in a) and high (cyan in a) TB cells traveling in 200 µM
aspartate M9 glycerol buffer (see Methods). Scale bar, 0.6 mm. c Corresponding density profiles (colors) together with total cell density (black). (Line:
mean over n= 34 time points measured at 40 s intervals for one experiment; shading: SD; five replicates are in Supplementary Fig. 9b). d Same as in c, but
for the magenta and green populations in a. Two replicates are in Supplementary Fig. 9c. e Peak positions as a function of time for the experiment in b. f
The distance between the fluorescence intensity peaks of the two populations traveling together in a single band increases with the difference between the
mean TB of the two populations. For each independent experiment, two populations labeled with different fluorescent proteins (mRFP1 or YFP) were
induced using different aTc levels to obtain distributions with different mean tumble biases. Dots: average over n= 4 experiments; error bars are SD
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Collective migration of eukaryotes resulting from traveling
gradients of attractants generated by consumption or breakdown
of an attractant has recently been found to be more important
than previously believed because it enables cell migration over
much larger distances than migration along externally imposed
gradients46. Being able to maintain diversity within the traveling
group could be important in the context of immunity and
cancer.

The types of interactions between collective behavior and
phenotypic diversity reported here might also be at play beyond
microbiology and cell biology, in contexts where individuals in a
group respond to the cumulative effect on the environment of the
individuals ahead. Whereas a bird monitors its neighbors to
benefit from the collective information acquired by the flock, here
individuals monitor the environmental gradient to benefit from
the information accumulated in the environment by the band. In
both cases, there is a group “memory” in the form of a spatial
structure that individuals respond to47. In general, both types of
memory are probably available and utilized by groups, with their
relative importance determined by the specific biology of the
organisms.

Methods
Mathematical model. We extended the classic Keller–Segel10 model to include the
effect of phenotypic differences in TB. The key variables in the model are the
density ρi(x, t) of cells of phenotype i as a function of position x and time t, and the
concentration of Asp A(x, t). Cells of phenotype i are characterized by their che-
motactic coefficient χi and diffusivity μi. As Asp consumption depends on oxy-
gen32, we also model the amount of oxygen dissolved in the media O(x, t). The
parameters of the model are in Table 1. The time-dependent evolution reads:

∂ρi
∂t

¼ μi
∂2ρi
∂x2

� ∂

∂x
χiρi

∂f ðAÞ
∂x

� �
ð1Þ

∂A
∂t

¼ μA
∂2A
∂x2

� αA Oð Þ A
KA þ A

X
i

ρi ð2Þ

∂O
∂t

¼ μO
∂2O
∂x2

� αO
O

KO þ O

X
i

ρi þ κ Oex � Oð Þ ð3Þ

Eq. 1 represents the motion of cells due to diffusion and chemotaxis. f Að Þ ¼
Mlog 1þA=K0

1þA=K1

h i
is the perceived signal which depends on the local Asp concentration

A, where K0= 3.5 μM and K1= 1000 μM represent the dissociation constants of
Asp for the inactive and active conformations of the Tar receptors, and M= 6 is
the receptor gain29,48. The effective diffusion coefficient and the chemotaxis
coefficient are functions of the microscopic parameters of individual cell swimming

behavior. We draw on previous work22,29 to model them as μi ¼ v2
3

1�TBið Þ
ð1�ΘÞλR;iþ2Drot

and χi ¼ k0TBi
TB0þTBi

μi (Supplementary Fig. 8a). In these expressions, v ~ 36 μm s−1 is

the cell swimming speed, which when projected in two dimesnions (2D)49

corresponds to the average speed we measure in our quasi-2D device (~ 28 μm s
−1); Θ= 0.16 is the directional persistence between successive runs22; Drot= 0.062

s−1 is the rotational diffusion coefficient during runs21,50; λR;i ¼ ω
ffiffiffiffiffiffiffiffiffiffi
TBi

1�TBi

q
is the

rate of switching from the run state to the tumble state; and ω= 3.8 s−1 is the
effective switching frequency22. μi and χi are monotonically decreasing functions of
the TBi and χi/μi ≈ 22= k0, apart for the range 0 ≤ TBi≲ TB0= 0.05, where χ(TBi)
is increasing as recently observed in experiments where individual cells were
tracked in a static gradient of α-methylaspartate (non-metabolizable analog of
Asp)22.

Eq. 2 represents the change in the concentration of Asp due to diffusion, with
diffusivity μA, and to consumption, with half-max constant KA and maximum rate

αA Oð Þ ¼ αA0 1� gA þ gA
O
Oex

� �
. Here, αA0 is the base consumption rate, Oex is the

external oxygen concentration, and gA is the fractional reduction of Asp
consumption rate at zero oxygen. Eq. 3 describes the time-dependent evolution of
oxygen, with diffusion coefficient μO, maximum consumption rate αO, half-max
constant KO, and supply of oxygen through the polydimethylsiloxane (PDMS) with
the mass transfer rate κ.

Eqs. (1–3) were integrated in MATLAB using second-order centered
differences for the spatial derivatives (mesh size 20 µm) and an explicit fourth-

order Runge–Kutta routine for temporal integration (time step 0.08 s). We used

no-flux boundary conditions. The initial condition was ρi x; 0ð Þ ¼
ρ0 � P TBið Þe� x=x0ð Þ2 for 0 < x < 1.6 mm and ρi(x,0)= 0 for x > 1.6 mm. Here, ρ0 is
the initial cell density scale, determined from the total initial cell number ~ 2 ×
105; x0= 0.8 mm; and P(TBi) was obtained from experimental measurements
(Fig. 2e black).

Assuming near-constant wave speed, we rewrite Eq. 2 in the moving
coordinate z=x–ct and integrate from −∞ to +∞ to obtain

αAh i ¼ cA0

N=a
: ð4Þ

Here, αA is the average attractant consumption rate, N is the number of cells in
the band, and a is the cross-sectional area of the channel. In the absence of
oxygen-dependent consumption of Asp, the average consumption rate in the
band would be constant across experimental conditions10. However, oxygen-
dependent consumption makes the average consumption rate decreases with
increasing cell density in the band, which is correlated with the number of cells
in the band (Fig. 2c). As shown in Supplementary Fig. 7h, the value of 〈αA〉
calculated from experimental data using Eq. 4 decreases as the number of cells in
the band increases, which is captured in simulations.

To derive the result of spatial sorting analytically from this model, we first
rewrite Eq. 1 in the moving coordinate z= x− t:

�c
∂ρi
∂z

¼ μi
∂2ρi
∂z2

� ∂

∂z
χiρi

∂f ðAÞ
∂z

� �
; ð5Þ

Noting that for each phenotype i to be traveling with the group, its density profile

must have a peak. Around the density peak zi we must have dρi
dz

���
z¼zi

¼ 0 and

d2ρi
dz2

���
z¼zi

<0.

Rewriting Eq. 5 as

μi
∂2ρi
∂z2

¼ �c
∂ρi
∂z

þ χi
∂ρi
∂z

∂f Að Þ
∂z

þ χi
∂2f ðAÞ
∂z2

; ð6Þ

we then have at the density peaks zi:

μi
d2ρi
dz2

����
z¼zi

¼ χiρi
d2f
dz2

����
z¼zi

<0 ð7Þ

Eq. 7 indicates that in the front of the band the perceived gradient must be shallow
and become progressively steeper as z decreases toward the back (Fig. 3c black).

Integrating Eq. 5 and using dρi
dz

���
z¼zi

¼ 0, we obtain

c ¼ χi
df
dz

����
z¼zi

ð8Þ

Eqs. 7, 8 together show that the cell density peaks zi of each phenotype i are
monotonically ordered according to their chemotactic coefficients χi.

Examining the effect of oxygen analytically, at the back of the wave the Asp

concentration is small so that the chemotactic drift there is χi
∂f Að Þ
∂z � χi

M
K0

dA
dz .

Rewriting Eq. 2 in the moving coordinate, assuming the diffusion term is
negligible10, and assuming A≫ KA gives an expression for dA/dz. From this, the
drift becomes

χi
∂f Að Þ
∂z

� χiM

K0c
αA Oð Þ

X
i

ρi: ð9Þ

At the back of the band there are fewer cells and therefore more oxygen than in the
middle of the band. Thus, when the Asp consumption rate depends on oxygen,
αA(O) becomes larger at the back than the mean over the band, 〈αA〉. As a
consequence, the drift at the back is higher than in the case without oxygen
dependence, slowing down the decay of the band. We verified this by running
simulations with and without oxygen dependence (Supplementary Fig. 8b). In the
simulations without oxygen, we set 〈αA〉 equal to a constant value, corresponding
to the average consumption rate in the band αA in the simulation with oxygen
dependence. This was intended to make the wave speeds in the two simulations
similar, eliminating the effect of different wave speeds on cell leakage rates.

Strains, growth conditions, and sample preparation. E. coli RP437 was used as
the wild type strain for chemotaxis in this study. Cells were grown in M9 glycerol
medium: M9 salts (6.78 g L−1 Na2HPO4, 3.0 g L−1 KH2PO4, 0.5 g L−1 NaCl, 1.0 g L
−1 NH4Cl), supplemented with 4 mL L−1 glycerol, 0.1 % casamino acids, 1.0 mM
magnesium sulfate, and 0.05% w/v polyvinylpyrrolidone-40 at 30 °C. Appropriate
antibiotics were supplemented (ampicillin 100 µg mL−1, kanamycin 50 µg mL−1,
and chloramphenicol 25 µg mL−1) when necessary to maintain plasmids.

For Fig. 1, cells were collected at mid-exponential phase (approximately an
OD600 of 0.3) and washed twice with fresh M9 glycerol medium, then resuspended
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in fresh M9 glycerol medium to concentrate cell density at an OD600 of 0.7. These
cells were then gently loaded into the microfluidics chamber, which was
maintained at 30 °C throughout the experiment.

To generate a single traveling band, experiments were conducted in M9 glycerol
buffer: motility buffer (M9 salts, 0.01 mM methionine, 0.1 mM EDTA, 0.05% w/v
polyvinylpyrrolidone-40) supplemented with 4 mL L−1 glycerol and the indicated
amount of Asp. This buffer was used to wash and resuspend cells instead of the
complex growth medium (M9 glycerol medium) mentioned above. The same
M9 salts were used in the M9 glycerol medium and M9 glycerol buffer to minimize
osmolality changes. RP437 is auxotroph for leucine, histidine, methionine, and
threonine, and therefore does not grow in M9 glycerol buffer.

To control the TB distribution, we used a ΔcheZ strain derivative of RP437
containing a chromosomally-integrated copy of the phosphatase CheZ under the
control of the inducible promoter and tetR (gift from Dr. Chenli Liu). CheZ
dephosphorylates the response regulator CheY, which, when phosphorylated,
induces the motors to switch and the cells to tumble. Thus, low CheZ results in
higher CheY-P and more tumbling, and vice versa. aTc was added overnight in the
culture when indicated to release the repressor TetR from the cheZ promoter
region, inducing the expression of CheZ in this strain. To color-code strains,
pBca1020-r0040 carrying mRFP1 (obtained from BioBrick), pLambda driving
mRFP1 (gift from Dr. Chenli Liu) and plasmids carrying YFP51 under constitutive
promoter were transformed into RP437 and into the inducible CheZ strain by
electroporation.

Microfluidic device design and fabrication. Microfluidic devices were con-
structed from the biocompatible and oxygen-permeable silicone polymer PDMS on
cover glass following standard soft lithography protocols for two-layer devices52.
The master molds for the device consisted of two silicon wafers with features
created using ultraviolet (UV) photoresist lithography. The bottom wafer had two
main parts: a large chamber created using SU-8-negative resist (thickness: 10 µm,
SU8 3010, Microchem) and a long channel together with two inlet/outlet channels
designed to be opened and closed using pressure actuated valves. A second coat of
SPR-positive resist (thickness: 14 µm, SPR 220-7.0, MEGAPOSIT) on the same
wafer was used to create a rounded channel profile that can collapse fully if
depressed from above (Supplementary Fig. 1a). The second, top wafer contained
features for the control channels that close the collapsible features in the bottom
wafer. The top wafer was created using SU-8 negative resist (thickness: 10 µm, SU8
3010, Microchem). The resists were then cured using UV light exposure through
photomasks designed in CAD software and printed by CAD/Art Services, Inc.
(Bandon, Oregon), again following photoresist manufacturer specifications.
Subsequently, wafers were baked and the uncured photoresist was dissolved. After
curing the SPR coat, the features were baked further to produce a rounded profile.
After both wafers were complete, a protective coat of silane was applied by vapor
deposition.

To cast and manufacture the two-layer device, the top wafer was coated with a
5 mm-thick layer of degassed 10:1 PDMS-to-curing agent ratio (Sylgard 184, Dow
Corning). For the bottom layer, a 20:1 mixture was prepared and spin coated to
create a 100 μm-thick layer. The two layers were partially baked for 45 min at 70 °C.
The top layer was then cut and separated from the wafer, holes were punched from
the feature side using a sharpened 20-gauge blunt-tip needle to make external
connections to the control valve lines, then aligned and laminated onto the bottom
layer. The stacked layers were baked together for 1.5 h at 70 °C and allowed to cool.

The laminated layers were then cut out and the remaining ports were punched to
make external connections with the channels. To reduce the evaporation of the
microfluidic device, the PDMS device was soaked overnight in Millipore-filtered
water at 50 °C.

The assembled PDMS devices were bonded to 24 × 50 mm glass coverslips
(#1.5). The PDMS was cleaned with transparent adhesive tape (Magic Tape,
Scotch) followed by rinsing with (in order) isopropanol, methanol, and Millipore-
filtered water, air-drying between each rinse. The glass was rinsed the same way,
with acetone, isopropanol, methanol, and Millipore-filtered water. The PDMS was
tape-cleaned an additional time, and then the two pieces were placed in a plasma
bonding oven (Harrick Plasma) under vacuum, gently laminated, and then baked
on an 80 °C hotplate for 15 min to establish a covalent bond. Devices were stored at
room temperature and used within 24 h.

Band formation and imaging. Washed cells were gently loaded into the device
which was then centrifuged for 20 min at 700 g in a 30 °C environmental room to
concentrate cells at the end of the chamber (Supplementary Fig. 1b). After spin-
ning, the microfluidic device was placed on an inverted microscope (Nikon Eclipse
Ti-U) equipped with a custom environmental chamber (50% humidity and 30 °C).
A custom MATLAB script was used to control the microscope and its automated
stage (Prior) via the MicroManager interface53. Time-lapse images (phase‐contrast
and fluorescence: mRFP1 or YFP) of the migrating cells were acquired using a
Hamamatsu ORCA-Flash4.0 V2 camera (2,048 × 2,048 array of 6.5 × 6.5 μm
pixels), a × 10 phase contrast objective (Nikon CFI Plan Fluor, N.A. 0.30, W.D.
16.0 mm) and a LED illuminator (Lumencor SOLA light engine, Beaverton, OR)
through the mCherry block (Chroma 49008, Ex: ET560/× 40, Em: ET630/75 m) or
EYFP block (Chroma 49003; Ex: ET500/× 20, Em: ET535/30 m). Once the band
formed, starting at the origin (closed end of the channel), the motorized stage
moved along the channel and paused every ~ 1.3 mm (the width of one frame with
a small overlap < 0.1 mm between consecutive positions) to take images in phase
contrast and fluorescence (exposure time 122 ms for both channels). After reaching
the observation chamber, acquisition started over at the origin every 40 s (every 60
s for Fig. 1c).

In Fig. 1, all cells were expressing mRFP1. In Fig. 2, unlabeled and fluorescently
labeled cells were separately grown to mid-exponential phase (OD600 of about 0.3).
For the experiments with 50, 100, and 200 µM Asp, the fluorescently labeled cells
were diluted with unlabeled cells at the following ratios 1:20, 1:50, 1:100. The mixed
cells were then washed and resuspended to the same predetermined density
(OD600 of 0.7). The mixed populations were loaded into the microfluidic device
and imaged as described above. In Fig. 4b-e, a similar procedure was followed to
prepare the samples for different induction conditions. A 1:1 mixture of high and
low induction cultures was mixed and loaded in the device.

In Fig.4f, a 1:1 mixture of high and low aTc induction (ranging from 1 to 10 ng
mL−1) cultures with all cells fluorescently labeled by mRFP1 or YFP was mixed and
loaded in the device. The distances between the peaks of the density profiles of the
two populations were calculated by measuring the distance between the peaks in
the two fluorescent intensity profiles. The mean TB of each population were
measured by loading a sample of the population on a cover slip and tracking
individual cells as previously described21.

Once a band arrived in the perfused chamber, the gate near the chamber was
closed (using 10 psi pressure) to capture the band (Supplementary Fig. 1b). To
capture the second band in a separate experiment, the gate remained open until the

Table 1 Model parameters

Symbol Definition and value Reference

M The receptor gain for aspartate, M= 6 Ref. 29

K0 The dissociation constant to aspartate for the inactive conformation of the Tar receptor, K0= 3.5 μM Ref. 48

K1 The dissociation constant to aspartate for the active conformation of the Tar receptor, K1= 1000 μM Ref. 48

μA The diffusion coefficient of aspartate molecules, μA= 500 μm2 s−1 Ref. 55

KA The aspartate concentration at half-max of its consumption, KA= 0.5 μM Ref. 56

αA0 The maximum aspartate consumption rate, αA0= 9.3 × 10−12 μmol−1 cell−1 Supplementary Fig. 7g
Oex The external oxygen level, Oex= 250 μM Ref. 57

gA The basal ratio of relative consumption rate at zero oxygen, gA= 0.27 Supplementary Fig. 7g
μO The diffusion coefficient of dissolved oxygen, μO= 2500 μm2 s−1 Ref. 55

αO The maximum oxygen consumption rate, αO= 7×10−11 μmol min−1 cell−1 Supplementary Fig. 7g
KO The dissolved oxygen concentration at half-max its consumption, KO= 1 μM Supplementary Fig. 7g
κ The oxygen transfer rate through ~ 0.5 cm of PDMS, κ= 0.02 s−1 Ref. 58

ρ0 Initial cell density, ρ0 ~ 2.87 × 1010 cells per mL This study
x0 Length scale of initial cell density profile, x0= 0.8mm This study
v Cell swimming speed, v ~ 36 μm s−1 This study
Θ Directional persistence Θ= 0.16 Ref. 22

Drot Rotational diffusion coefficient during runs, Drot= 0.062 s−1 Ref. 50

k0 Parameter in the expression for χi/μi, k0= 22 Ref. 22

TB0 Parameter in the expression for χi/μi, TB0= 0.05 Ref. 22
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first band passed, then closed. The first band was immediately flushed away by
flowing M9 glycerol medium at 3 psi for 5 ~ 20 s through the chamber until all cells
were flushed from the chamber. The gate was then reopened to let the second band
migrate into the chamber. Once a band was captured in the perfused chamber,
several pulses of fresh medium/buffer at 3 psi were flown in to reduce cell density
and homogenize the environment in the chamber. Cells were left to adapt in the
perfused chamber for a few minutes.

TB detection. Once cell density became relatively homogeneous, the swimming
trajectories of individual cells were recorded for 2 min at 8 fps in order to extract
TB. We verified that perfusion of the observation chamber did not affect the
distribution of TBs (Supplementary Fig. 3). Each TB distribution was generated by
acquiring four movies, tracking the individual cells, and determining their TB as
described before21,22. The resulting number of sample trajectories longer than 10 s
(shorter tracks were discarded, because they provide poor estimate of TB21) was
limited by the number of independent movies one can acquire in the PDMS
chamber, the size of which corresponds to four field of views, and the density of
cells, which must be kept low for tracking to be possible. This procedure resulted in
a minimum of 2823 and 3209 trajectories per distribution giving an error of at
most 1.15% and 1.00% in the determination of the cumulative distribution function
(CDF) estimated by bootstrapping for Figs. 1 and 2, respectively.

Determination of the number of cells in the band. Image analysis was conducted
in MATLAB. We detected the position of the centroid of each fluorescent cell using
the MATLAB function bwconncomp. Figures 2a, 4b, and Supplementary Figs. 6d, e
report these coordinates. The number of labeled cells was multiplied with the
dilution ratio to obtain the total number of cells in the band.

Cell density profiles in Fig. 2d, 4c d, and Supplementary Figs. 9b, c were
measured as follows: cell density profiles were extracted for each time point within
one experiment and aligned before averaging. The cell density profile at a given
time point was calculated by dividing the number of cells by the volume in one
spatial bin (~ 120 µm) along the observation channel. To reduce alignment error
before averaging, the position of the peak density in each profile was identified by
first smoothing the profile with a moving filter with a 5-bin span (MATLAB
function smooth) and then identifying the position of the peak. To avoid boundary
effects, only the profiles with peak position located between 3 and 8 mm from the
origin were used to calculate the average density profile. The mean and SD shown
in the figures were calculated with raw cell density profiles (not smoothed).

Measurement of amino acids by HPLC. When consuming Asp, E. coli cells
secrete other amino acids, which could affect group migration54. We used HPLC to
analyze the amino acids secreted by the cells when they are suspended in M9
glycerol buffer supplemented with Asp. RP437 cells were grown in 200 mL M9
glycerol medium up to mid-exponential phase and washed twice with M9 glycerol
buffer supplemented with 500 µM Asp. Cells were then resuspended in 5 mL of the
same defined buffer at an OD600 of 1 and placed in a 200 mL flask. The flask was
shaken at 200 r.p.m. to maximize aeration at 30 °C. Every 15 min, a 500 µl of
culture was sampled, filtered using 0.2 µm filter (Acrodisc 13 mm Syringe Filter
with 0.2 µm HT Tuffryn Membrane, Pall Corporation), and analyzed by HPLC via
pre-column derivatization method. The resulting derivatives were separated by
phase chromatography using a Dionex Ultimate 3000 HPLC, with a coupled DAD-
3000RS diode array detector (Dionex) and FLD detector (Dionex) using an ACE
C18 column (3 µm, 3 × 150 mm). Amino acid standard (AAS18 Sigma) was used as
reference.

Upon uptake of Asp, cells secreted small amounts of glutamate (Glu),
asparagine (Asn), and homoserine (HS), which are attractants (Supplementary
Fig. 6c). To quantify the relative contribution of each amino acid to the
chemotactic response in our experiment the measured concentration of each amino
acid was plotted in units of the corresponding EC50 of the dose response of the
chemotaxis system. The EC50 of the dose response of the chemotaxis system for
each amino acid has been quantified by the Sourjik lab using in vivo Förster
resonance energy transfer measurements in RP437, the strain used in this study.
The EC50 values of RP437 E. coli are 0.3 μM for Asp, 50 μM for Glu, 30 μM for
Asn, and 3 mM for HS48. Supplementary Fig. 6c reveals that the response to Asp
dominates by almost two orders of magnitude over the responses to the other
amino acids. It also shows that of the three secreted amino acids, Glu is the one that
has the second largest effect, albeit still much smaller than the response to Asp.
Finally, we also checked that chemotaxis towards oxygen does not play a significant
role either. Mutant strains lacking the oxygen receptor aer or both aer and tsr form
bands under the same condition as in Fig. 2a, indicating that aerotaxis is not
essential and Tar response to Asp is sufficient for the band to travel
(Supplementary Fig. 6d, e).

Measurement of oxygen in the center of the traveling band. Ruthenium
complexes are toxic to E. coli; hence, the need to encapsulate them in phospholipid
micelles. This was achieved using the same protocol as in ref. 33. Fluorescence of
the ruthenium complex is quenched by oxygen binding, so higher fluorescence
corresponds to lower oxygen concentration. It is noteworthy that the high density
of cells in the band could exclude the dye; however, this should decrease

fluorescence intensity, the opposite effect of decreased oxygen. Experiments were
performed in 100 μm-deep and 14 μm-deep devices. The 100 μm-deep devices were
straight channels, 39 mm long and 600 μm wide. The 14 μm-deep devices were the
same as those used in the other experiments in this paper. However, as the control
gates interfere with the fluorescence signal, the top layer of PDMS was fabricated
without a mold for the gates. In both cases, a 1:500 dilution of concentrated
micelles was added to bacteria prepared as described above, just before loading into
the microfluidic device. This dilution was intended to avoid sequestration of
oxygen from the cells. Two control experiments were performed in the 14 μm
device, one with dye and no cells, and one with cells and no dye. Imaging and data
analysis of all three types of experiments were performed in the same way.

Imaging equipment were the same as described above with a few exceptions.
The excitation filter from an ECFP block (Chroma 31044v2, D436/× 20), the
emission filter from an mCherry block (Chroma 49008, ET630/75 m), and the
dichroic mirror from the mCherry block (Chroma 49008, T585lpxr) were used to
image the dye due to its large Stokes shift.

For the 100-μm device, the × 10 objective described above was used for imaging.
Images were taken in 2 min intervals. For the 14-μm device, imaging was
performed using a × 40 oil objective (Nikon CFI Plan Fluor, NA 1.3, W.D. 0.24
mm). Images were taken in 3.5 min intervals.

To analyze the fluorescence images, fluorescence intensity was first averaged
over the width of the channel that was visible in the image, I(x, t). At each location
x, the passing wave appeared as a brief peak in intensity during the time course. To
separate this from slow variations in signal due to photobleaching and possible
global changes in oxygen concentration, we smoothed the time course of
fluorescence intensity at each position, Ix(t), using MATLAB’s smooth function
(smoothing method: lowess; window size: 4, corresponding to a time window of 14
min) to produce the slowly varying background signal, ÎxðtÞ. To extract the fast-
passing wave, we divided Ix(t) element wise by ÎxðtÞ for each position x. As a result,
the slowly changing background was normalized to 1, while faster changes in signal
were different from 1. This also eliminated differences in illumination over space.
Finally, the noisy normalized profiles produced by this analysis were median
filtered over space using MATLAB’s medfilt1 (window size: 10).

Oxygen consumption rate in batch cultures. RP437 cells were grown in 200 mL
M9 glycerol medium to mid-exponential phase and washed twice with M9 glycerol
buffer supplemented with 200 µM Asp. Cells were then resuspended in 50 mL of
the same defined buffer to an OD600 of 0.5. The sample was placed in a beaker at
30 °C. The surface of the buffer was sealed by overlaying mineral oil. The level of
dissolved oxygen was measured with a portable dissolved oxygen meter (Mel-
waukee MW600) every 30 s. The cell sample was continuously stirred at 300 r.p.m.
with a magnetic stirrer. The consumption rate per cell per minute was obtained by
dividing the reduction in oxygen by the number of cells and the sampling interval
time (Supplementary Fig. 7g).

Asp consumption rate in batch cultures. RP437 cells were grown in 200 mL M9
glycerol medium up to mid-exponential phase and washed twice with M9 glycerol
buffer supplemented with 500 µM Asp. Cells were resuspended in 3 mL of the same
defined buffer to make cell density at an OD600 of 1. Two samples were prepared
in two test tubes. One tube was shaken at 200 r.p.m. to maximize aeration, whereas
the other tube was left on the bench with mineral oil overlaid on the liquid surface
to avoid supply of oxygen from air. These two tubes were incubated at 30 °C and
sampled every 10 min. The amount of Asp in the collected sample was then
measured by using Aspartate Assay Kit (Abcam). The consumption rate per cell
per minute was obtained by dividing the reduction of Asp in the sample by the
number of cells and the sampling interval time (Supplementary Fig. 7g).

Statistical analysis and experimental reproducibility. No statistical methods
were used to predetermine sample size. Standard error in the CDF of the TB in
each replicate experiment was determined by bootstrapping (1000 bootstrap
samples). One-sided unpaired two-sample Student’s t-test assuming unequal var-
iances was used for comparison between two groups in Fig. 2b, c. P-values < 0.05
were considered statistically significant and marked with asterisks. For t-test, t-
values and degrees of freedom are provided in the figure legends. The error bars are
defined in each figure caption and are standard deviation except in Fig. 2f. Data
presented in the main figures were drawn from at least three independent repli-
cates, with the exception of Fig. 4d (n= 2). The number of replicates is mentioned
in the caption of each figure.

Code availability. To analyze the swimming behavior of E. coli cells we used
custom MATLAB code as reported in refs. 21,22. The code to simulate the math-
ematical model is described above and available from the corresponding author
upon request.

Data availability. Data for each figure is provided as a MATLAB .fig file from
which the data points can be extracted https://doi.org/10.6084/m9.
figshare.6207371.
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