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Cell-to-cell variability is a critical issue in biomedical science and plays a role in drug 

resistance of bacteria and cancer, as well as in the formation of biofilms and differentiation of 

stem cells. Despite its broad relevance, quantitatively understanding cellular heterogeneity 

from its sources to its consequences is still an open challenge. The chemotaxis system of the 

bacterium Escherichia coli is an ideal model for such investigations since it is very well 

characterized genetically and biochemically. Chemotaxis, which is cellular movement toward 

favorable chemical conditions, is an important behavior across microbiology and human 

physiology, but the impact of cell-to-cell heterogeneity on chemotaxis is mostly unexplored. 

 Despite sharing the same genetically-encoded machinery, individual E. coli cells exhibit 

substantial differences in chemotactic behaviors. Here, we characterize the consequences of 

this behavioral heterogeneity for population performance by using modeling, simulations, and 

experiments. We find that there exist trade-offs in which a single chemotactic behavior cannot 

perform optimally in all environmental challenges. We show that, in some cases, optimal 

populations can benefit from non-genetic diversity to provide specialists for different tasks. We 

demonstrate that this is mechanistically possible through mutations in genetic regulatory 

sequences that alter the distribution of protein levels in the population. We therefore propose 

a framework for analyzing the sources, consequences, and adaptability of non-genetic diversity 

wherein noisy distributions of proteins give rise to heterogeneous phenotypes, which in turn 

give rise to differential performance and ultimately collective fitness.  
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 → 

Life is not possible without reproducible interactions between vast arrays of molecules. 

These molecules are organized into functional networks that directly affect the viability of 

organisms, from the pathological signaling networks that drive cancer cells to be insensitive 

to the body’s messages to stop growing (Hanahan & Weinberg, 2000), to the metabolic 

networks that give brewer’s yeast the ability to ferment grape juice into wine (Quiros et al., 

2013). Much of our understanding about such networks is predicated on the conceptual 

paradigm that one network has one function: when a cell contains the proteins of a network, 

that network will execute its function in a predictable and unvarying manner. This function 

may be broken or altered by genetic mutations in network genes, but as a first approximation 

it is assumed that cells possessing the same genetic material encoding a certain network will 

behave approximately the same way. 

In fact, the actual concentration and ratios of proteins within a network can dramatically 

change the function of a biological network. One way in which this function can change is in 

how the network behaves in time, which is to say its dynamics (Alexander, Kim, Emonet, & 

Gerstein, 2009). An on-off switching behavior could change to an oscillatory behavior, and the 

distinction between these is crucial for proper function (Ferrell, Tsai, & Yang, 2011). The 

former behavior may be more relevant to an organism’s metabolic response to the appearance 

or disappearance of a certain nutrient in the environment, whereas the second type of response 
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is necessary to correctly coordinate the growth and division process of the cell cycle. Confusing 

these types of behaviors could hypothetically result in the starvation of an organism or the 

development of hyperproliferative cancerous cells (Hanahan & Weinberg, 2000). 

The sensitivity of network dynamics—and consequently network function—to molecular 

quantities would not have a substantial impact on organismal behavior were organisms able 

to perfectly ensure that every cell had an exactly predictable number of molecules. In reality, 

cells make many “errors”: different cells that have the same genetic material are nonetheless 

observed to have different numbers of proteins (and other components) due to random 

fluctuations (Paulsson, 2004; Raser & O'Shea, 2005). This biological “noise” raises the question 

of whether variations in molecular abundance can alter the function of biological networks and 

consequently the fitness of the organism. Indeed, cell-to-cell variability is a critical issue in 

biomedical science, as it plays a role in drug resistance of bacteria (Balaban, Merrin, Chait, 

Kowalik, & Leibler, 2004) and cancer (Spencer, Gaudet, Albeck, Burke, & Sorger, 2009), as 

well as in the formation of biofilms (P. S. Stewart & Franklin, 2008) and differentiation of cells 

during development and tumorigenesis (Huang, 2009). 

This dissertation at the broadest level seeks to establish a linkage between proteins and 

fitness in single cells and explicitly consider the ramifications of cell-to-cell variations in 

molecular numbers for the survival of cellular populations. It is my hope that the framework 

that I establish here will be useful in the future to examine medically- and industrially-

relevant biological systems in greater detail by revising our understanding from “one network 

→ one function” to “one network → many functions.” 

Specifically, the conceptual framework of this dissertation (Figure 1–1) describes how a 

distribution of different protein levels among genetically-identical cells gives rise to different 

cells in the same population (or organism) having different phenotypes. Here, I largely define 

phenotypes, or phenotypic parameters, as properties of cells that characterize the response of 

the individual to different stimuli in space and time. As such these phenotypic parameters 

determine how a cell will perform in different environmentally-imposed tasks. Finally, 
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evolutionary selection acts on the cells’ performance, bestowing proliferative rewards or doling 

out population-culling punishment depending on how well or how poorly cells perform in a 

given environmental challenge, to determine fitness. This dissertation is mainly dedicated to 

understanding how cell-to-cell variability propagates through these different quantities—from 

variability in protein numbers to phenotypes to performance to fitness—and how this 

propagation determines the survival of populations. 

This conceptual flow diverges from the conventionally posed relationship between genotype, 

phenotype, and fitness in a few respects and for a few reasons. Since I will focus on non-genetic 

variation (noisy differences in protein amounts due only to random fluctuations rather than 

individually borne mutations), the impact of genotypic variability will be ignored. Second, 

“phenotype” conventionally defined is too broad for the purpose of these investigations. I 

believe that it is more precise to separate the part of phenotype that concerns cellular response 

characteristics (“phenotype”), from the part of the phenotype that describes the behavior of an 

organism in a specific environment (“performance”), from the part of the phenotype that 

describes the growth or death rate resulting from the behavior (“fitness”). In total, these three 

subgroups of the “conventional phenotype”—phenotype, performance, and fitness—will shape 

the total fitness of an entire noisy population over time, which I define in Part 2 as “big” F. 

As I will show in this dissertation, this framework affords us a new level of detail that 

permits the interrogation of new and interesting questions. How does cell-to-cell variability in 

protein levels affect population fitness, and are there situations in which more or less 

variability is advantageous? How can such variability be controlled biologically, in other words, 

how could mutations lead to competitive adaptation of cell-to-cell variability when said 

variability is non-genetic in origin? In order to address these broad questions, I will use the 

well-characterized E. coli chemotaxis system as a biological model and borrow extensively from 

physics and biology to create a multidisciplinary approach from simulations to experiments. 
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Figure 1–1. From proteins to fitness. 

From a single genotype, noise in gene expression leads to a distribution of proteins expression levels 

(blue shaded contours in protein space; left); network design determines how proteins quantities map 

onto phenotypic parameters (middle left); the performance of all possible phenotypic parameter values 

across environments will determine the outer boundary of performance space (middle right); selection 

bestows a fitness reward based on performance and will reshape the performance front into the Pareto 

front (thick black line), which, for optimal fitness, the population distribution should be constrained to 

(right). 

 

 

Many cells are able to move around their environment, and some can use information that 

they sense to move toward favorable conditions and away from unfavorable ones. This 

behavior, called chemotaxis for movement in response to chemicals, phototaxis for light, 

thermotaxis for temperature, aerotaxis for dissolved gases, et cetera, allows bacteria to find 

nutrition and avoid toxins. Pathogenic bacteria use chemotaxis to infect host tissues (Lane et 

al., 2005; Stecher et al., 2004; M. K. Stewart & Cookson, 2012; Sze, Zhang, Kariu, Pal, & Li, 

2012). Many cells in our bodies also perform chemotaxis, from nerve cells to skin cells to cells 

of the immune system and sperm (Eisenbach & Lengeler, 2004), making it a key cell behavior 

in development, disease, and reproduction. 

One of the earliest scientists to observe chemotaxis in bacteria experimentally, the botanist 

Willhelm Pfeffer (1845–1920), famously decreed “Bewegung ist Leben [Movement is life]!” 



 5  

Perhaps it is because of our association of movement with life that chemotaxis in the bacterium 

Escherichia coli has garnered as much attention as it has from such diverse fields, inviting 

multidisciplinary collaborations as early as the late 1960s (Hazelbauer, 2012). Constant study 

since then has made the chemotaxis system in E. coli not only one of the best-characterized 

model systems biologically, but also one of the best-understood theoretically thanks to the 

constant involvement of physicists, mathematicians and engineers over the decades. This 

synergy between theory and biology has made E. coli chemotaxis an extremely fruitful system 

for advances in theoretical and systems biology. (Incidentally, “Bewegung ist Leben” is now 

the name of a fitness club in Austria.) 

The system itself consists of a small network of proteins that, although simple, contains 

many of the fundamental features of larger and more complex systems. E. coli uses a single 

chemotaxis protein network to navigate gradients of chemical attractants and repellents, as 

well as gradients of temperature, oxygen, and pH (Sourjik & Wingreen, 2012) (Figure 1–2A). 

The core of the network is a two-component signal transduction system that carries chemical 

information gathered by transmembrane receptors to flagellar motors responsible for cell 

propulsion. A second group of proteins allows the cells to physiologically adapt to changing 

background signal levels, allowing them to track signal gradients over many orders of 

magnitude. While different receptors allow cells to sense different signals, all signals are then 

processed through the same set of four cytoplasmic proteins responsible for signal transduction 

and adaptation. The mechanistic details of these protein–protein interactions (Kentner & 

Sourjik, 2009) are thoroughly characterized. Protein structures have been solved, interaction 

domains identified, biochemical constants fit from data. 
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Figure 1–2. From proteins to fitness. 

A. The cell receives extracellular ligand signals through transmembrane receptors. Changes in signal 

are rapidly communicated to the flagellar motors through the kinase CheA and response regulator CheY. 

CheZ opposes the kinase activity of CheA. At a slower timescale, the activity of the receptor complex 

physiologically adapts to its steady-state activity through the antagonistic actions of CheR and CheB. B. 

Cartoon diagram of the response of the system to transient step-stimulus and definition of the key 

phenotypic parameters of the system. Without stimulation, the system has a steady-state tumble bias, 

or fraction of time spent tumbling. Upon stimulus with a step, CheY activity and therefore tumble bias 

drops and the cell starts running more, then slowly adapts back to the steady-state with a characteristic 

timescale (adaptation time). The steady-state tumble bias and adaptation time are tuned by the 

concentrations of proteins in A. C. Cells explore their environment by alternating between straight runs 

and direction-changing tumbles. When cells sense that they are traveling up a concentration gradient, 

they suppress tumbles to increase run length. Precisely how a cell navigates a gradient depends on its 

phenotypic parameters in B. 

 

 

The cell explores its environment in a run-and-tumble fashion (Berg & Brown, 1972). The 

flagella that cells use to move through the environment that are driven by rotary motors. 

Counterclockwise rotation of the flagella promotes the formation of a helical bundle that 

propels the cell forward in a run, whereas clockwise rotation of one or more flagellar motors 

interrupts the run with a brief direction-changing tumble. It has been observed that clonal 

cells, grown and observed under the same conditions without stimulation, will differ 

substantially in the fraction of time the motors spend in the clockwise state, or clockwise bias 

(Park et al., 2010). Analogously, tumble bias is defined as the fraction of time spend tumbling 
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Variability in tumble bias can also be observed in a clonal population by tracking the motion 

of cells, picked from a single colony, on a microscope slide. Even without stimulation, 

differences in swimming patterns emerge almost instantly. Cells with high tumble bias make 

crumpled tracks causing very little displacement, whereas cell with lower tumble bias swim 

much straighter for long periods, exploring their local environment more freely, albeit 

potentially less thoroughly (Figure 1–3). Such obvious differences between clonal cells (grown 

and observed in the same way and arising from no additional treatment) visually states the 

spatial impact of cell-to-cell variability in phenotypes. (Methods in Part 4.) 

 

 

 

Figure 1–3. Variability in tumble bias among clonal cells on a glass slide 

 Two-minute-long movie of cells captured at 10x. The frame is 1.3 mm x 1.3 mm with a depth of 

approximately 10 µm. Cells were tracked and tumble bias assigned as described in Part 4, Methods. Low, 

average, and high are so named because a tumble bias of 0.2 is roughly the mean tumble bias among 

wildtype cells.  
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The central logic of E. coli chemotaxis is to transiently decrease tumble bias in response to 

an increase in attractant signal (Figure 1–2B). This approach allows cells to climb gradients 

of attractants by lengthening runs up the gradient (Figure 1–2C). The adaptation process that 

maintains receptor sensitivity is mediated by the covalent modification of the chemoreceptors 

through addition and subtraction of methyl groups by the enzymes CheR and CheB, 

respectively. Like tumble bias, the timescale of this adaptation process has been observed to 

vary among clonal cells (Spudich & Koshland, 1976). 

This observation was made by tethering cells to slides by their flagella and watching their 

bodies spin in different directions in response to the delivery of an attractant. Individuals took 

more or less to return to steady-state behavior following a strong dose of attractant. The visual 

nature of this study, which may have popularized the now-standard term “non-genetic 

individuality,”  inspired scientific essayist Lewis Thomas to expressively describe the cells in 

this now oft-quoted way: 

If you watch them closely, tethered by their flagellae to the surface of an antibody-coated slide, 

you can tell them from each other by the way they twirl, as accurately as though they had 

different names. (Thomas, 1979) 

Heterogeneity in protein levels is a compelling hypothesis for this behavioral variability. 

The intracellular levels of CheR and CheB proteins are known to change both adaptation 

timescale and tumble bias (Alon, Surette, Barkai, & Leibler, 1999). Chemoreceptor activity is 

communicated to the motors via phosphorylation of the response regulator CheY to form CheY-

P by the receptor-associated kinase CheA. CheZ opposes the action of CheA by 

dephosphorylating CheY-P. Consequently, the balance of CheA and CheZ affects tumble bias. 

Furthermore, the total amount of CheY in the cell will determine the range of possible CheY-

P levels, and due to noise in the expression of CheY (Kollmann, Lovdok, Bartholome, Timmer, 

& Sourjik, 2005) this dynamic range will likewise vary between clonal cells.  

These three phenotypic parameters—tumble bias, adaptation time, and CheY-P dynamic 

range—are the main determinants of how E. coli performs chemotaxis. These in turn depend 



 9  

on the quantities of chemotaxis proteins within each individual cell. The abundance of these 

proteins therefore determine the capability of the individual to navigate its environment, 

regardless of the type of signal being followed. 

The central dogma of biology describes how proteins are made, translated from the 

molecular instructions of mRNA molecules which themselves are transcribed from a DNA 

template (Crick, 1970). As this process unfolds in time through the actions of RNA polymerase, 

ribosomes, tRNAs, and a massive cast of regulators, it is tempting to view the process as an 

automatic watch mechanism—everything happening precisely according to plan. The agents 

involved herein move randomly, however, not deterministically, and, as with other stochastic 

systems like street traffic and stock markets, there will necessarily be irregularities, for better 

or for worse. As a result of these stochastic nonlinear dynamics, different cells with the same 

gene will end up with different numbers of the protein that the gene encodes. 

Observations of cell-to-cell variability necessarily require single-cell measurements. 

Although initially observed in early studies using flow cytometry (Darzynkiewicz, Crissman, 

Traganos, & Steinkamp, 1982), this phenomenon only began to be described in detail in the 

last decade or so with the rise of quantitative single-cell and single-molecule microscopy, made 

possible by advances in fluorescent dyes, proteins, and microscopes. By carefully measuring 

the dynamics of protein synthesis (Cai, Friedman, & Xie, 2006) and the distribution of protein 

quantities in clonal populations (Swain, Elowitz, & Siggia, 2002), we now understand that 

there are several contributors to cell-to-cell variation (Paulsson, 2004; Raser & O'Shea, 2005). 

The transcription process and the translation process introduce different sources of noise, as 

does the randomly unequal partitioning of cellular contents during cell division. Factors 

affecting the variance include the particular interaction between RNA polymerase and the 

region of DNA that initiates transcription, or promoter, the analogous relationship between 

the ribosome and its bindings sites, and the localization pattern of a protein in the cell when 
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it comes time to divide. The average expression level of a protein will also affect the variance 

of its expression levels in a clonal population. 

In the E. coli chemotaxis system, measurements of expression of fluorescently-labeled 

chemotaxis proteins CheA and CheY from the native chromosomal loci have shown substantial 

cell-to-cell variation in protein concentration (Kollmann et al., 2005). That observation 

combined with the relationship between protein abundance and cellular phenotype led us to 

hypothesize as others have (Levin, Morton-Firth, Abouhamad, Bourret, & Bray, 1998) that 

gene expression noise is likely responsible for much of the observed non-genetic behavioral 

diversity in clonal populations. 

With the rising awareness of non-genetic variability in protein levels, biologists, physicists, 

and engineers alike have begun asking questions of how organisms could maintain proper 

function in the face of these fluctuations. In other words, how can biological systems be robust 

to protein noise? Evolutionary biologists have grappled with a similar question for quite a long 

time in a different form, seeking to understand how populations of viruses or bacteria can 

balance the benefits of high mutation rates in granting evolutionary access to new phenotypes 

with the downsides of sometimes wrecking core systems (Montville, Froissart, Remold, 

Tenaillon, & Turner, 2005). Evolutionary robustness defined as such is more concerned with 

the insensitivity of a biological function to mutation. Now, biological robustness in the systems 

biology sense refers to the maintenance of function in the face of non-genetic variations (Barkai 

& Leibler, 1997). 

E. coli chemotaxis has been successfully used as a model system to broach the robustness 

question of systems biology. Chemotaxis genes are chromosomally organized in operons—that 

is, expression of multiple genes is driven by common promoters. This organization is known to 

introduce correlations in cell-to-cell variability, wherein total amounts of proteins may vary 

from cell to cell, but the ratio of one protein to another will vary substantially less (Lovdok et 

al., 2009). Combined with the negative integral feedback design of the protein network, this 

conservation of protein ratios greatly reduces the occurrence of cells with “non-functional” 
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parameter values—for instance, those that only run or only tumble—and maintains the 

precision of the physiological adaptation process (Alon et al., 1999; Barkai & Leibler, 1997; 

Kollmann et al., 2005; Lovdok, Kollmann, & Sourjik, 2007; Yi, Huang, Simon, & Doyle, 2000). 

These parameter values are considered “non-functional” for chemotaxis since, without a 

combination of both runs and tumbles, it is not possible to bias a random walk. For these and 

other reasons (Endres & Wingreen, 2006; Mears, Koirala, Rao, Golding, & Chemla, 2014; 

Oleksiuk et al., 2011; Schulmeister, Grosse, & Sourjik, 2011; Sneddon, Pontius, & Emonet, 

2012; Vladimirov, Lebiedz, & Sourjik, 2010), chemotaxis in E. coli is often said to be robust—

in the systems biology sense. 

Within the range of “functional” behaviors, substantial variability exists, and the fact that 

this variability has not been selected against raises the question of whether it might serve an 

adaptive function. Population diversity is known to be an adaptive strategy for environmental 

uncertainty (Donaldson-Matasci, Lachmann, & Bergstrom, 2008; Haccou & Iwasa, 1995; 

Kussell & Leibler, 2005). For chemotaxis this would suggest that different cells in the 

population may hypothetically have behaviors specialized to navigate different environments. 

Indeed, past simulations (Dufour, Fu, Hernandez-Nunez, & Emonet, 2014; Jiang, Qi, & Tu, 

2010; Vladimirov, Lovdok, Lebiedz, & Sourjik, 2008) have shown that the speed at which cells 

climb exponential gradients depends on tumble bias and adaptation time, and experiments 

using the capillary assay—an experiment that tests cells’ ability to find the mouth of a pipette 

filled with attractant—have shown that inducing expression of CheR and CheB at different 

levels changes the chemotactic response (Park, Guet, Emonet, & Cluzel, 2011). In order to 

understand the impact of these findings on population diversity, we must place them in an 

ecological context. 

Relatively little is known about the ecology of E. coli chemotaxis, but it is probable that 

they, like other freely swimming bacteria, encounter a wide variety of environments, from 
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gradients whipped up by turbulent eddies (Taylor & Stocker, 2012) to those generated during 

the consumption of large nutrient caches (Blackburn, Fenchel, & Mitchell, 1998; Saragosti et 

al., 2011). In each case, variations in environmental parameters, such as in the amount of 

turbulence, the diffusivity of the nutrients, or the number of cells, will change the steepness of 

these gradients over orders of magnitude (Seymour, Marcos, & Stocker, 2009; Stocker, 

Seymour, Samadani, Hunt, & Polz, 2008; Taylor & Stocker, 2012). Still other challenges 

include maintaining cell position near a source (Clark & Grant, 2005), exploration in the 

absence of stimuli (Matthaus, Jagodic, & Dobnikar, 2009), navigating gradients of multiple 

compounds (Kalinin, Neumann, Sourjik, & Wu, 2010), navigating toward sites of infection 

(Terry, Williams, Connolly, & Ottemann, 2005), and evading host immune cells (Stossel, 1999).  

Considering all of these eventualities, it would seem unlikely that a population consisting 

only of a single phenotype would be well-suited to all environments. If, for instance, two 

different environments require different specialists, this could lead to performance trade-offs 

wherein mutual optimization of both tasks is not possible (Figure 1–1, panel 3). Depending on 

how survival and reproduction depend on their performance, performance trade-offs could lead 

to fitness trade-offs (Figure 1–1, panel 4), which are known to have direct consequences for the 

evolution of diversity (Donaldson-Matasci et al., 2008; Haccou & Iwasa, 1995; Kussell & 

Leibler, 2005; Shoval et al., 2012). 

Fitness trade-offs can lead to the development of multiple biological modules (Rueffler, 

Hermisson, & Wagner, 2012). Some modules, like new limbs, may be permanent fixtures, while 

others, like metabolic pathways, may be switched on and off, either in response to the 

environment as it changes, or stochastically in anticipation of environmental fluctuation. This 

latter case, often called “bet-hedging” (Veening, Smits, & Kuipers, 2008), is a strategy used by 

bacteria to avoid extinction from antibiotic stress during infection (M. K. Stewart & Cookson, 

2012) and has evolved in the laboratory under fluctuating selection (Beaumont, Gallie, Kost, 

Ferguson, & Rainey, 2009). In these examples, environmental extremes lead to discrete 

partitioning of the population. It is unknown whether there is an intermediate case, a possible 
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evolutionary stepping stone, in which a single function is continuously diversified in the 

population without the formation of a wholly different state. 

 

 

 

Figure 1–4. Relationship between trade-off shape and population strategy. 

Left: Two environments, A and B, select for different optimal phenotypes, specialist A and specialist 

B (blue and red circles). The generalist phenotype (gray circle) performs well, but not optimally, in both 

environments. Middle and right: Trade-off plots. Gray region: fitness set composed of the fitness of all 

possible phenotypes in each environment; Black line: Pareto front of most competitive phenotypes; 

Dashed line: fitness of mixed populations of specialists; Circles: fitness of phenotypes corresponding the 

circles in the left plot. Middle: In a weak trade-off (convex front), the optimal population distribution will 

consist purely of a generalist phenotype that lies on the Pareto front. Right: In a strong trade-off (concave 

front), the optimal population will be distributed between the specialists for the different environments. 

Here, the fitness of a mixed population of specialists (dashed line), exceeds that of the generalist in both 

environments. 

 

 

To understand the consequences of fitness trade-offs, we must analyze whether they are 

weak or strong. Such analysis will reveal in which cases populations should adopt homogenous 

or diversified strategies, respectively, for optimal collective function. For a two-environment 

trade-off, the fitness of all possible phenotypes in both environments occupies a region in two-

dimensional fitness space called the fitness set (Levins, 1962) (Figure 1–4, gray regions). 

Specialists in this set will be located at the region’s maxima in each axis (red and blue circles). 
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Between the specialists, the outer boundary of the set is called the Pareto front (Shoval et al., 

2012): a group of phenotypes that have jointly optimized both tasks (black line). A generalist 

phenotype will occupy a position on this front (gray circle). When this front is convex (middle 

panel), the generalist has higher joint performance. A concave front (right panel), however, is 

optimized by a mixed strategy of specialists, due to the fact that a combination of specialists 

(dashed line, the “extended fitness set”) will exceed the fitness of any phenotype in the fitness 

set (Donaldson-Matasci et al., 2008). 

Arising from the abovementioned literature, I formulate several hypotheses : 

 Stochastically generated cell-to-cell variations in protein abundance will lead 

to diversity in chemotactic behaviors. 

 The diversity of possible chemotactic challenges will exert trade-off problems 

on the chemotaxis network, potentially requiring diversified populations if the 

trade-offs are strong. 

 Mutations that alter cell-to-cell variability will allow for adaptive diversified 

strategies in the face of trade-offs. 

To test these hypotheses, it is necessary to understand our model system in many ways: as 

a mutable genotype, as a collection of biomolecules, as a dynamical system, as a strategic 

agent, and as a population of individuals each of which may be a little different. Each of these 

facets will borrow techniques from applicable fields: evolutionary biology, cell biology, physics, 

engineering, and systems biology. While many of the techniques employed are now long 

established, bringing them together as I have in this dissertation will be new. 

The research content of the dissertation consists of two parts to reflect the two fundamental 

styles of research that I will be combining: simulations and experiments. In the following Part 

2, I will use simulations of bacteria in different environments to demonstrate that no single 

phenotype performs optimally in all environments, leading to trade-off problems in 
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chemotactic behaviors, which was recently published (Frankel et al., 2014). Using an 

experimentally-constrained model of noisy gene expression in a clonal population, I will 

theoretically predict that cells with different protein levels will have different chemotactic 

behaviors, and that mutations that alter the noise in gene expression can permit adaptation 

to resolve chemotactic trade-offs at the population level. 

This theoretical work leads to several testable predictions which I then begin to study 

experimentally in the final research part, namely that clonal populations should have 

functional diversity in chemotaxis behaviors, and that different chemotactic challenges should 

require different chemotactic behaviors for optimal performance. To measure the diversity in 

chemotactic behaviors in clonal populations and connect it to diversity in protein levels, I 

describe the development of assays to separate cells based on chemotactic performance and 

demonstrate cases in which performance depends on cell phenotype and on the level of 

expression of chemotaxis proteins (Waite*, Frankel*, Dufour*, & Emonet, In preparation). 

These results are consistent with predictions developed in the theoretical section and other 

recent modeling work (Dufour et al., 2014). 

The final Part 4 of the dissertation brings together findings from theory and experiments 

to describe the impact of the dissertation on future research on this topic and beyond. In the 

end, my goal to use this well-characterized model system to establish the efficacy and broaden 

the awareness of what I hope will be a useful framework for the study of diversity in other 

systems—biological and otherwise. 
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In this part, we seek to determine to what extent advantageous diversity can be created 

from a single biological network, as well as the mechanisms that permit adaptation of this 

diversity in response to selective pressures. In order to this, we must be able to translate an 

individual cell’s protein concentrations into its fitness in different environments. 

Chemotaxis in E. coli is a system uniquely well-suited to this purpose because of the wealth 

of molecular and cellular data that has been gathered by different research groups over the 

last several decades, making it one of the best-characterized systems in biology for the study 

of single-cell signal transduction and behavior. We will fit many of these data sets with a single 

molecular model of E. coli chemotaxis that accounts for the interactions of all of the proteins 

in the network. 

From this model, we will be able to calculate phenotypic parameters such as adaptation 

and tumble bias as a function of protein concentrations. We will then simulate the performance 

of virtual E. coli cells with these phenotypic parameters to characterize any trade-offs that E. 

coli may face in performing fundamental chemotactic tasks. Using different ecological models 

of selection, we will examine how performance trade-offs give rise to fitness trade-offs. Finally, 

we will use a model of population diversity based on noisy gene expression to determine 

whether changing genetic regulation could allow populations to achieve a collective fitness 

advantage. 
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The first step in creating a single-cell conversion from protein levels into fitness was to 

build a model of the chemotaxis network. We began with a standard molecular model of signal 

transduction based explicitly on biochemical interactions of network proteins. We 

simultaneously fit the model to multiple datasets measured in clonal wildtype cells by multiple 

labs (Kollmann, Lovdok, Bartholome, Timmer, & Sourjik, 2005; Park et al., 2010; Shimizu, Tu, 

& Berg, 2010). Along with previous measurements reported in the literature, this fitting 

procedure fixed the values of all biochemical parameters (i.e. reaction rates and binding 

constants), leaving protein concentrations as the only quantities determining cell behavior 

(Methods, Table 2–1). 

The fit took advantage of newer single-cell data not used in previous models that 

characterize the distribution of tumble bias and adaptation time in a clonal population(Park 

et al., 2010). In order to fit this data, we coupled the molecular model with a model of noisy 

gene expression, adapted from Lovdok et al. (2009). In this model of gene expression, the 

abundance of each protein is approximately lognormal-distributed and depends on a few 

parameters that determine the mean expression level and the extrinsic (correlated) and 

intrinsic (uncorrelated) noise in gene expression (Swain, Elowitz, & Siggia, 2002). By 

combining these components, we were able to use our model to simultaneously fit the mean 

behavior of the population (Kollmann et al., 2005; Shimizu et al., 2010) and the noisy 

distribution of single-cell behaviors (Park et al., 2010) (Figure 2–1ABC). In all cases, a single 

set of fixed biochemical parameters was used, the only driver of behavioral differences between 

cells being differences in protein abundance generated by the noisy gene expression model. 

(For more details and discussion, see Methods section “Constant biochemical parameters of 

the model”) 
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Figure 2–1. Comparing the model to single cell and population averaged measurements. 

The same set of model parameter values is used for all the plots. A. Adaptation time and motor 

clockwise (CW) bias. Bottom: normalized histogram of motor clockwise bias in the population. Top: The 

mean and standard deviation of adaptation time in each bin of CW bias. Red lines: experimental data 

from Park et al. (2010). Black lines: model. Circles: Individual cells from the model. Color: probability 

density. B. Population-averaged CW bias as a function of fold changes in mean expression level of all 

pathway proteins after Kollmann et al. (2005). Red: data. Black: model. C. Population-averaged 

methylation rate as a function of population-averaged receptor activity obtained by exposing cells to 

exponential ramps of methyl-aspartate as described in Shimizu et al. (2010). Red circles: data. Black: 

simulation of model. A. Schematic of step function of ligand delivered to immobilized cells in simulation 

to test response dynamics. B. Direct comparison of response of molecular model (blue) and phenotypic 

model (green), with the same parameters, to stimulus of the form in A illustrating close agreement.  
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Given an individual with a particular set of protein levels, we then needed to be able to 

calculate the phenotypic parameters: adaptation time, tumble bias, and CheY-P dynamic 

range. To do so we solved for the steady state of the model and its linear response to small 

deviations in stimuli relative to background (Methods). This produced formulae for the 

phenotypic parameters in terms of protein concentrations. Using these definitions, we reduced 

the molecular model into a phenotypic model written in terms of phenotypic parameters rather 

than protein levels (Methods). Simulating the step-response of the molecular model with a 

given set of protein levels matched the behavior of the phenotypic model with corresponding 

phenotypic parameters (Figure 2–1DE). Because there are half as many phenotypic 

parameters as different proteins, the phenotypic model made it computationally possible to 

explore large ranges of behavior in the simulations we describe in the next section. 

To characterize chemotactic trade-offs faced by E. coli, we began by investigating which 

chemotactic phenotypes performed best in different ecological tasks. Here, we defined a 

phenotype as a particular set of values of the phenotypic parameters: adaptation time, tumble 

bias, and CheY-P dynamic range. We used the phenotypic model to simulate the behavior of 

individual phenotypes in various environments and measured the performance of each 

phenotype based on metrics appropriate to each ecological challenge. In total, these steps 

provided us with a direct mapping from individual protein levels to chemotactic performance 

in the ecological tasks we describe below. 

E. coli, like other commensals and pathogens, must survive relatively nutrient-poor 

environments outside the host until it can colonize a new host. To simulate this scenario, we 

created two challenges (Detailed discussion in Methods section “Stochastic simulations of the 

model in ecological challenges”). The first is a foraging challenge in which a spherical parcel of 

nutrient appears at a certain distance from the cell and immediately begins to diffuse away. 

This occurs, for instance, upon lysis of a unicellular eukaryote (Blackburn, Fenchel, & Mitchell, 

1998). The location of the parcel is unpredictable and could be close or far. For simplicity, each 
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environment contains only one parcel. Each cell in the simulation accumulated nutrient by 

collecting an amount proportional to the concentration at its position at every timestep. 

Performance was defined as the amount of nutrient acquired (Figure 2–2A) within a certain 

time limit. For computational simplicity we assume that consumption by an individual is small 

enough not to have an impact on the gradient itself. Feedback of populations onto the shape of 

the gradient certainly plays a role in many ecological scenarios and could be considered in this 

framework in the future. 

The second environment recapitulates a colonization task, in which a colonization site 

opens up at a random distance from the cell and immediately starts releasing an attractant 

signal by diffusion. This case is analogous to the classic capillary experiment (Mesibov & Adler, 

1972) and may have relevance to infection by species such as uropathogenic E. coli (Lane et 

al., 2005). We approximated the site as a persistent spherical zone with a non-depleting 

concentration of attractant. Performance was defined by minimizing the time to reach the site, 

or maximizing the reciprocal of the arrival time, before some global time limit, which may be 

determined by the carrying capacity of the site or the periodic purging of the area around the 

site (Figure 2–2D). Cells unable to reach the colonization site by that time were given an 

infinite arrival time and consequently a zero performance value. Later, we consider the 

reduction of this time limit as an ecological factor. 

For each ecological task, we scanned different environmental parameters (the distance at 

which the source appears [Figure 2–3–1,2], the time allotted [Figure 2–3–4], and the source 

concentration [Figure 2–3–5]) and simulated the performance of different phenotypes. For each 

phenotype, the performance of 6,000–30,000 replicate trajectories was averaged together. We 

began with no constraints or correlations between phenotypic parameters and scanned them 

independently; later we consider the effect of biological constraints on phenotypic 

distributions. 

When a nearby source appeared, cells in the foraging challenge immediately experienced 

high nutrient levels and were challenged to maintain their position despite having been 
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stimulated with a large increase in signal. Successful cells had high tumble bias, which curtails 

long runs, and short adaptation time, which mitigates large responses (Figure 2–2B). 

Conversely, when a source appeared farther away, cells had to use longer runs to reach the 

expanding front of the gradient and long adaptation times to integrate the weaker signals at 

its tails (Figure 2–2C). If time is further limited, this far-source effect is exaggerated (Figure 

2–3–3). Consequently, trade-offs become much stronger when the environment turns over 

rapidly (Figure 2–5). 

The case of colonization was similar, except that very high tumble biases were excluded in 

all cases, since staying in one place was not an option. Additionally, shorter adaptation times 

were favored overall as compared to foraging. This was because the gradient geometry is much 

steeper in the vicinity of the source due to its persistently high concentration (Figure 2–2, D 

inset versus A inset). Climbing steep gradients requires fast adaptation to stay abreast of 

quickly changing background levels. 

The source concentration played a minor role in colonization; however, when foraging less 

concentrated sources, the favored strategy for far distances flips from low to high tumble bias 

(Figure 2–3–4). The dynamic range of CheY-P has a negligible effect on cell performance so 

long as it is sufficiently high as to ensure that the response of CheY-P to kinase activity is 

linear and does not saturate (Figure 2–3–5). For this reason, when we discuss optimal 

performance in the subsequent analysis, we assume that the total amount of CheY molecules 

in the cell has been selected to be high enough to avoid these limitations. (Greater detail on 

these trends can be found in Methods section  “Simulating performance of phenotypes.”) 
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Figure 2–2. Performance of chemotactic phenotypes depends on environmental conditions. 

A. Cartoon diagram (not to scale) of the foraging challenge: cells navigating a 3-D time-varying 

gradient created by diffusion of a spherical drop of nutrient 100 µm in diameter with diffusion coefficient 

of 550 µm2/s. Inset: radial profile of the attractant concentration over time B. Average nutrient collected 

by each phenotype (combination of tumble bias and adaptation time) in environment in A over 8000 

replicates per phenotype. Tumble bias and adaptation time were sample in log-spaced bins. Cells start 

near to the source (0.2 mm from its center), and are allowed to swim for 13 minutes while accumulating 

a small fraction of the nutrient they sense. C. Same as B except that cells start farther away from the 

source (1 mm from its center) and 14000 replicates per phenotype were used. D–F. Similar to A–C but 

the environment consists of a colonization challenge: diffusion of ligand out of a spherical non-depleting 

source representing a colonization site. Rather than nutrient collection, performance (E, F) is quantified 

as the reciprocal of the arrival time at the source averaged over all replicates (9000 and 36000 for E and 

F respectively) with a maximum time allotted of 15 minutes.  
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Figure 2–3–1. Foraging performance as a function of distance to source. 

Left set: Cells with various phenotypes were challenged to forage a source presented at varying 

distances, r0 from 75µm to 3mm. Between 6000 and 30000 replicates were simulated for each phenotype. 

 : the average nutrient collected by all replicates of a given phenotype in µmol. Right set: Data on 

left smoothed with a Gaussian filter and resampled on a higher resolution grid of phenotypic parameters. 

Diamond: phenotype with highest performance. 

.colN
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Figure 2–3–2. Colonization performance as a function of distance to source. 

Left set: Cells with various phenotypes were challenged to colonize a source presented at varying 

distances, r0 from 75µm to 3mm. Between 6000 and 30000 replicates were simulated for each phenotype, 

: the average reciprocal-of-arrival-time of all of the replicates of a given phenotype in min–1. Right 

set: Data on left smoothed with a Gaussian filter and resampled on a higher resolution grid of phenotypic 

parameters. Diamond: phenotype with highest performance.  

.1/ arrT
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Figure 2–3–3. Effect of time restrictions on foraging performance. 

Cells were challenged to forage sources that appeared at distances of 200, 5000, or 1000 µm away 

(columns from left to right). Different amounts of time were allotted to cells to accumulate ligand: 3 min, 

5 min, 11 min, 15 min (rows from top to bottom).  : the average nutrient collected by replicates of 

a given phenotype in µmol. 

.colN
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Figure 2–3–4. Effect of source concentration on performance. 

Left block: foraging performance for increasing source distance (columns) and increasing source 

concentration (rows): L1 = 1 mM, 10 mM, 100 mM. Right block: colonization performance for increasing 

source distance (columns) and increasing source concentration (rows): L1 = 100 µM, 1 mM, 10 mM. 

 

 

In both challenges, the distance at which the source appeared substantially changed which 

phenotypes outperformed the others. Distant sources required lower tumble bias and longer 

adaptation time than nearby ones (Figure 2–2, C compared to B and F compared to E). These 

results are consistent with a recent analytical study (Dufour, Fu, Hernandez-Nunez, & 

Emonet, 2014) that calculated the velocity of cells climbing static one-dimensional gradients 

as a function of phenotype. There, trade-off was demonstrated wherein steep gradients 

required fast adaptation time and high tumble bias for optimal velocity, whereas shallow 

gradients required slow adaptation time and low tumble bias. Our present simulations in 

ecological tasks show that a similar trade-off also exists in more complex chemotactic 

scenarios. Here, simulations of distant sources are similar to simple shallow gradients and 

nearer sources are analogous to steeper gradients. 
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Figure 2–3–5. Effect of CheY-P dynamic range on performance. 

Left block: foraging performance for near (200 µm) and far (1000 µm) sources and increasing CheY-P 

dynamic range, which was changed through the total number of CheY molecules, Ytot, as described in the 

Methods. Right block: same as left block but for colonization. 

 

 

Assuming cells have negligible ability to control or predict at what distance the next source 

will appear, cells are mutually tasked with survival in both near and far sources. We examined 

trade-offs between pairs of near and far environments to test to the extent to which cells can 

cope with environmental variability. In each environment, performance was evaluated on a 

scale relative to the richness of that environment. That is to say, nearby sources naturally 

result in higher performance values than distant ones. Differences in scale between different 

tasks do not change the significance of the curvature of the Pareto front; axes can even have 

different units and the meaning of the curvature will be the same (Shoval et al., 2012) 
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Trade-offs in performance arose when cells were require to mutually optimize foraging or 

colonization of nearby and faraway sources (Figure 2–4). This is a consequence of the fact that 

unique specialists are needed for each environment. As the disparity between these source 

distances becomes greater, the front of the trade-off transitions from convex to concave (Figure 

2–4, from A to C for foraging and from D to F for colonization), demonstrating that performance 

trade-offs in fundamental tasks can be strong when environmental variability is high. 

Nutrition and arrival time, however, are not themselves equivalent to fitness. Fitness 

defines how these performance metrics would contribute to cellular survival and reproduction. 

Taking a neutral performance trade-off case for each task type (Figure 2–4, B and E), we asked 

the questions: how are performance trade-offs translated into fitness trade-offs, and how does 

the nature of selection influence their strength? 

In the case of foraging, survival depends on the ability to scavenge sufficient nutrition. The 

metabolic reactions that mediate this survival are nonlinear biochemical processes. Many such 

reactions follow sigmoidal relationships, like the Hill equation, rather than linear ones. We 

created a simple metabolic relationship in which the survival probability of an individual cell 

was expressed as a Hill function with two parameters: the amount of food required for survival, 

and how strongly survival probability depended on that amount (Figure 2–6A). To obtain the 

fitness of each phenotype, we calculated the expected value of its survival by averaging the 

survival probability of all replicate cells with that phenotype (Methods section “Calculating 

fitness from performance”). 

When the nutrition requirement was low and the dependency was weak, the previously 

neutral trade-off became a weak fitness trade-off (Figure 2–6B). Increasing the nutrition 

requirement and dependency imposed stricter selection, which penalized all but the top 

performers. This transformed the underlying neutral performance trade-off into a strong 

fitness trade-off (Figure 2–6C). Therefore, the selection parameters themselves can determine 

the strength of fitness trade-offs. Discrete transitions between survival outcomes gave 

qualitatively similar results (Figure 2–7ABC). 
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Figure 2–4. Performance trade-offs in E. coli chemotaxis. 

Ecological chemotaxis tasks pose trade-off problems for E. coli that become strong when 

environmental variation is high. A–C. Trade-off plot between nutrient accumulation when starting near 

and when starting far from a source. Plotting the performance of all possible clockwise bias and 

adaptation time combinations in both near and far cases (colored region) reveals the strength of the trade-

off in the curvature of the front. As the disparity between starting distance becomes greater (left to right 

plots), the trade-off front goes from convex to concave, signifying a transition from weak to strong 

performance trade-offs. Source distances are indicated on axis labels. D–F. Same as A–C but for the 

colonization challenge.  
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Figure 2–5. Effect of time limits on near/far foraging trade-offs. 

Trade-offs in performance between foraging near and far sources are shown. From left to right (cyan 

to magenta), the far case is progressively more distant compared to the near case: 1 mm, 1.5 mm, 2 mm, 

3mm. From top to bottom (bright to dark colors), the time allotted is increasing: 3 min, 5 min, 11 min, 15 

min. Reduced time allotment makes the front (black line) more concave for the same pair of 

environments.  
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In the case of colonization, individual success was binary: either the colonization site was 

successfully reached, securing that cell’s survival for the near future, or the cell was purged 

from the site – e.g. consumed by a neutrophil – and left no progeny. We approximate the fitness 

reward for each replicate as a function of the arrival time that steps down from one to zero 

after a time limit (Figure 2–6D). 

As in the foraging case, we calculated the colonization fitness, or survival expectation, of a 

phenotype as the average of the zero and one outcomes of all the individual replicate cells of 

that phenotype. When the time limit was high, the previously neutral performance trade-off 

gave rise to a weak fitness trade-off (Figure 2–6E). When the transition point was lower, the 

same performance trade-off became a strong fitness trade-off (Figure 2–6F). These effects 

mirror those demonstrated in the foraging case. As an alternative calculation of fitness we also 

considered a continuous reward function, which qualitatively produced the same results 

(Figure 2–7DEF). 

The common thread between these cases is that the nonlinear relationship between 

performance and fitness can increase or reduce the fitness difference between the high-

performing specialists and intermediate-performing generalist, strengthening or weakening 

the trade-off, respectively. Thus, whether diversification is advantageous depends not only on 

performance trade-offs, but also on the selection process, which has the potential to reverse 

the strength of trade-offs. Understanding fitness trade-offs therefore requires consideration of 

both performance and selection. This relationship will receive a detailed treatment in Part 3.  
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Figure 2–6. Selection can reshape trade-offs. 

A. Simple metabolic model of survival applied to the chemotactic foraging challenge. Each individual 

replicate is given a survival probability based on a Hill function of the nutrition they achieve from 

chemotaxis. For each phenotype, the foraging fitness is the average survival probability across replicates. 

The effect of more (red) and less (blue) stringent survival functions are compared. Transitional nutrition 

value: 1.5 µmol  (blue), 2.5 µmol (red), Hill coefficient: 2.5 (blue), 7 (red). B–C. Beginning with the neutral 

foraging performance trade-off in Figure 2–4B, application of the survival model in A gives rise to either 

a weak (B) or strong (C) fitness trade-off, depending on where the thresholds and steepness are low (blue 

curve in A) or high (red curve in A). D. Simple threshold model of survival applied to the chemotactic 

colonization challenge. Each individual replicate survives only if it arrives at the goal within the cut-off 

time. For each phenotype, the colonization fitness is the probability to colonize measured over all 

replicates. The effect of more (red) and less (blue) stringent survival functions are compared. Time 

threshold value: 5 min (blue), 1.5 min (red). E–F. Beginning with the neutral colonization trade-off in 

Figure 2–4E, application of the selection model in C gives rise to either a weak (E) or strong (F) fitness 

trade-off. 



42  

 

Figure 2–7. Fitness trade-offs under alternate models of selection. 

A. Model of discrete physiological transitions applied to the chemotactic foraging challenge. Each 

individual replicate is given a number of progeny (0, 1, or 2) based on a two-step function of the nutrition 

they achieve from chemotaxis. For each phenotype, the foraging fitness is the average progeny across 

replicates. The effect of more (red) and less (blue) stringent nutrient requirements are compared. 

Survival requirement: 0.5 µmol  (blue), 0.75 µmol (red), Division requirement: 2 µmol  (blue), 3 µmol (red). 

B–C. Beginning with the foraging performance trade-off in Figure 2–4B, application of the survival model 

in A gives rise to either a weak (B) or strong (C) fitness trade-off, depending on where the thresholds and 

steepness are low (blue curve in A) or high (red curve in A). D. Probabilistic model of survival applied to 

the chemotactic colonization challenge. Each individual replicate survives has chance to survive 

depending on how soon it arrives. For each phenotype, the colonization fitness is the probability to 

colonize measured over all replicates. The effect of more (red) and less (blue) stringent survival functions 

are compared. Time threshold in both cases is 1 min with dependency 1 (blue) or 10 (red). E–F. Beginning 

with the arrival performance trade-off in Figure 2–4E, application of the selection model in C gives rise 

to either a weak (E) or strong (F) fitness trade-off.  
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We have identified conditions in which diversified populations have a fitness advantage: 

those in which the environment is highly variable and those in which selection truncates 

populations to the top performers. While we cannot know precisely what trade-offs wildtype 

E. coli have experienced, we do know that they exhibit substantial phenotypic heterogeneity 

in their swimming behavior. While there are certainly other sources of variations, our model 

shows that noise in protein levels is a plausible driver for behavioral diversity in E. coli 

chemotaxis. 

We asked the question of whether selection on genetic regulatory features of the chemotaxis 

network could serve as an adaptive mechanism that can shape diversity in protein abundance, 

and thus phenotypes, to resolve trade-offs. Such features include the organization of the genes 

on the chromosome and the sequences of ribosomal binding sites (RBSs) and promoter regions. 

Selection for individuals with mutations in these features would give rise to adaptation of the 

distribution without changing highly-conserved network proteins. In our model of gene 

expression, such alterations were realized through changes in the levels of extrinsic and 

intrinsic noise and the mean expression level of each protein. We first varied these parameters 

individually to investigate their effects on phenotypic diversity (Figure 2–8). 
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Figure 2–8. Genetic control of phenotypic diversity. 

A. Clustering genes on multicistronic operons constrains the ratios in protein abundance. B. Protein 

expression of core chemotaxis proteins CheRBYZ are shown relative to the mean level in wildtype cells. 

Two thousand cells are plotted. Light blue: mean levels of the proteins CheRBYZAW and receptors are 

equal to the mean levels in wildtype cells, which we take to be 140, 240, 8200, 3200, 6700, 6700, 15000 

mol./cell, respectively (Li & Hazelbauer, 2004); the extrinsic noise scaling parameter, ω, is 0.26 and the 

intrinsic noise scaling parameter, η, is 0.125, which are both fit to wildtype variability (Figure 2—1). 

Dark blue: same but with ω = 0.8, which is greater than wildtype level. Note the substantial variability 

around the mean even in the case of wildtype noise levels (light blue). C. Clockwise bias and adaptation 

time of individuals in A. D. Changes in the strength of individual RBSs will independently change the 

mean levels of individual proteins. E,F. Light blue: gene expression of cells with same population 

parameters as in A, light blue. Pink: mean levels of CheR changed to twice wildtype mean. G. Promoter 

sequences can be inherently more or less noisy, resulting in amplification or attenuation of the variability 

of total protein amounts without affecting protein ratios. H,I. Pink: gene expression of cells with same 

population parameters as in E, pink. Red: ω reduced from 0.26 to 0.1.  
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Intrinsic noise results in diversification of protein ratios (Figure 2–8A). Intrinsic noise can 

be reduced when multiple genes are expressed from one operon—as are the core chemotaxis 

genes cheRBYZ (Lovdok et al., 2009). When we compared populations that had low or high 

intrinsic noise (Figure 2–8B, light blue and dark blue, respectively) we observed that high 

intrinsic noise resulted in many cells having tumble bias near 0 or 1 and therefore being non-

chemotactic (Figure 2–8C, dark blue). Reducing intrinsic noise had two effects: more cells had 

phenotypic parameters within the functional range, and there was an inverse correlation 

between tumble bias and adaptation time that is known to arise from the architecture of the 

network (Park et al., 2010; Pontius, Sneddon, & Emonet, 2013) (Figure 2–8C, light blue). 

Altering the strength of an RBS changes the mean protein ratios, resulting in a shift in the 

mean phenotype of the population without directly affecting population variability (Figure 2–

8D). Experimentally, mutations in RBSs at the single-nucleotide level are known to have 

profound effects on expression levels of chemotaxis genes in E. coli (Oleksiuk et al., 2011). We 

tested this by increasing the mean level of CheR (Figure 2–8E, pink). CheR is responsible for 

receptor methylation, so increasing its mean level decreased the mean adaptation time (Figure 

2–8F). There was also an increase in mean tumble bias due to the fact that increasing CheR 

relative to CheB increases the steady-state methylation level (in spite of the mitigating effect 

of the CheB-P feedback), leading to higher tumble bias. 

Extrinsic noise (Figure 2–8G) arises both from variations in global factors in the cell as well 

as from the noisiness of promoters that drive multicistronic operons (Bruggeman, Bluthgen, & 

Westerhoff, 2009; Freed et al., 2008; Miller-Jensen, Skupsky, Shah, Arkin, & Schaffer, 2013). 

Reduction of extrinsic noise resulted in a population with a tighter, generalist-like distribution 

of phenotypes (Figure 2–8HIJ, red). Hence, through pathway-specific mutations in the 

promoter or its regulators, we predict that clonal populations could approach a more 

generalist-like distribution or a more multi-specialist-like distribution. 

To determine whether changing these regulatory parameters alone can generate Pareto-

efficient population distributions, we numerically maximized population fitness (Methods), 
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allowing only the two noise magnitudes and the mean expression levels to vary. Populations 

are comprised a discrete set of individual cells generated by the noisy gene expression model, 

each having a fitness in each environment. Following previous studies (Haccou & Iwasa, 1995), 

the fitness of the population in a given environment was defined as the average fitness of all 

of its individuals in that environment. For simplicity we assumed that the population 

encounters environments one at a time and must survive all environments. Therefore the 

population fitness over all environments was the geometric mean of the population fitness in 

each environment, weighted by the probability of encountering each environment (Methods). 

The environments considered were the same as in Figure 2–6, which include examples of both 

strong and weak fitness trade-offs for each ecological task. 

We first performed the optimization with lower limits on the noise parameters that were 

very low (Methods). When we optimized populations for weak trade-off in either foraging or 

colonization tasks, the resulting populations in both tasks exhibited low levels of protein noise 

(Figure 2–9A for foraging and 2–9E for colonization, blue points) and low phenotypic 

variability (Figure 2–9B and F). In contrast, populations optimized for the strong foraging or 

colonization trade-offs exhibited higher protein noise (Figure 2–9A and E, red compared to 

blue points) and higher phenotypic variability (Figure 2–9B and F). In all cases, the spread of 

individuals in the optimal populations was constrained to the Pareto front (Figure 2–9CDGH). 

The spread was more condensed in the weak trade-offs than in the strong trade-off in the same 

task (Figure 2–9C compared to D for foraging and G compared to H for colonization). 

Interestingly, the driver of diversity in the case of the foraging trade-off was extrinsic noise 

whereas in the colonization case it was intrinsic (Figure 2–9A compared E, red points). This 

resulted in a negative correlation between tumble bias and adaptation time in the foraging 

case, but no such correlation in the colonization case (Figure 2–9B compared to F, red points).  
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Figure 2–9. Optimized of gene expression noise under trade-offs, very low noise permitted 

Protein expression of populations were optimized for either weak or strong foraging fitness trade-offs 

(same trade-offs as in Figure 2–6B and C). For each population, 5000 individuals are plotted, protein 

expression shown relative to the mean level in wildtype cells. A. Gene expression parameters of the 

population optimized for the weak foraging trade-off: mean expression levels of CheRBYZAW and 

receptors relative to mean wildtype expression level were 1.79, 2.925, 1.98, 1.08, 1.08, 1.08, and 1.08 fold, 

respectively, with an intrinsic noise scaling parameter, η, of 0.04 and an extrinsic noise scaling 

parameter, ω, of noise 0.02. For the strong foraging trade-off: mean CheRBYZAW and receptors relative 

to wildtype were 4, 3.35, 2.75, 10, 10, 10, and 10 fold, respectively, with η= 0.04 and ω= 0.15. B. Clockwise 

bias and adaptation time of individuals in A with the corresponding dot color. C. Fitness of the population 

that was optimized for the weak foraging trade-off (corresponding to blue dots in A and B). D. Same as 

C but for the population optimized for the strong foraging trade-off. E–H. Same as A–D for the 

colonization fitness trade-offs shown in Figure 2–6D and E. Population parameters optimized for weak 

colonization trade-off: mean CheRBYZAW and receptors levels relative to wildtype were 4.58, 3.61, 1.32, 

1.32, 1.32, and 1.32  fold, respectively, with η= 0.04 and ω= 0.02. Population parameters optimized for 

strong colonization trade-off: mean CheRBYZAW and receptors levels were 1.72, 4.17, 2.44, 1.21, 1.21, 

1.21, and 1.21  fold, respectively, with η= 0.18 and ω= 0.02. 
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We then established a lower limit on the noise parameters that was higher, which reflects 

an irreducibility of biological noise. We used the wildtype level of intrinsic noise obtained in 

our fit to experimental data (Figure 2–1) as a lower bound in the optimization, with the 

rationale that multiple experimental studies show that wildtype cells have reduced intrinsic 

noise for improved chemotactic function (Kollmann et al., 2005; Lovdok et al., 2009; Lovdok, 

Kollmann, & Sourjik, 2007), from which we inferred that they may be operating near a 

fundamental lower limit. We also set a lower bound on the total noise level based on 

experimental measurements in E. coli of protein abundance in individual cells over a large 

range of proteins (Taniguchi et al., 2010) (Methods). This bound is primarily from irreducible 

extrinsic noise arising from various mechanisms such as the unavoidability unequal 

partitioning of proteins during cell division. We set an upper bound on mean protein levels to 

5 fold above the wildtype mean in order to be within a range of experimentally established 

observations (Kollmann et al., 2005; Li & Hazelbauer, 2004) (Methods). 

Similar to above, when we optimized populations for weak trade-off in either foraging or 

colonization tasks, the resulting populations in both tasks exhibited lower levels of protein 

noise (Figure 2–10A for foraging and E for colonization, blue points) and lower phenotypic 

variability (Figure 2–10B and F), in comparison to populations optimized for the respective 

strong foraging or colonization trade-offs (Figure 2–10ABEF, red compared to blue points), 

although the difference was smaller than in the case of looser constraints on gene expression 

parameters (i.e. Figure 2–9). The spread of individuals was again constrained to the Pareto 

front (Figure 2–10CDGH). The spread was more slightly condensed in the weak trade-offs than 

in the strong trade-off in the same task (Figure 2–10C compared to D for foraging and G 

compared to H for colonization) 

 



 49  

 

Figure 2–10. Optimized gene expression noise under trade-offs with biological noise limits 

Protein expression of populations were optimized for either weak or strong foraging fitness trade-offs 

(same trade-offs as in Figure 2–6B and C). For each population, 2000 individuals are plotted, protein 

expression shown relative to the mean level in wildtype cells. A. Gene expression parameters of the 

population optimized for the weak foraging trade-off: mean expression levels of CheRBYZAW and 

receptors relative to mean wildtype expression level were 2.54, 2.53, 2.50, 4.20, 4.50, 3.49, and 3.49 fold, 

respectively, with an intrinsic noise scaling parameter, η, of 0.051 and an extrinsic noise scaling 

parameter, ω, of noise 0.128. For the strong foraging trade-off: mean CheRBYZAW and receptors relative 

to wildtype were 3.27, 3.27, 2.86, 3.83, 4.17, 2.82, and 5.00 fold, respectively, with η= 0.051 and ω= 0.200. 

B. Clockwise bias and adaptation time of individuals in A with the corresponding dot color. C. Fitness of 

the population that was optimized for the weak foraging trade-off (corresponding to blue dots in A and 

B). D. Same as C but for the population optimized for the strong foraging trade-off. E–H. Same as A–D 

for the colonization fitness trade-offs shown in Figure 2–6D and E. Population parameters optimized for 

weak colonization trade-off: mean CheRBYZAW and receptors levels relative to wildtype were 2.42, 2.52, 

2.32, 2.50, 4.16, 3.25, and 5.00 fold, respectively, with η= 0.055 and ω= 0.126. Population parameters 

optimized for strong colonization trade-off: mean CheRBYZAW and receptors levels were 2.90, 2.92, 1.71, 

3.845, 2.25, 3.80, and 3.76 fold, respectively, with η= 0.221 and ω= 0.090.  
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In the weak trade-off cases, condensation into a single point on the Pareto front was 

impeded by lower bounds on noise. Even though a pure generalist strategy was unattainable, 

adjustments in the means and correlations between protein abundance enabled the system to 

shape the “residual” noise to distribute cells along the Pareto front. This could be a general 

phenomenon in biological systems: given that molecular noise is irreducible, the best solution 

is to constrain diversity to the Pareto front. Our results suggest this may be achievable via 

mutations in the regulatory elements of a pathway. 

In the strong foraging trade-off, the optimized population took advantage of the fact that 

correlated noise in protein levels leads to an inverse relationship between clockwise bias and 

adaptation time (Figure 2–9 and 2–10, A and B, red) due to the architecture of the network. 

By capitalizing on this feature, the population contained specialists for near sources, which 

had higher clockwise bias and shorter adaptation times, and those for far sources, which had 

lower clockwise bias and longer adaptation time. Cells with clockwise bias above 0.25 were 

avoided because steep gradients were very short-lived in this challenge. 

The strong colonization trade-off also required high clockwise bias for near sources and low 

clockwise bias for far sources. However, since the gradient in the site’s vicinity did not flatten, 

a short adaptation time was always necessary to climb the final part of the gradient and 

clockwise bias above 0.25 could become advantageous when the source is close. In order to 

achieve greater diversity in clockwise bias while keeping adaptation time low, the optimized 

population for this trade-off had increased intrinsic noise, which diversified protein ratios and 

disrupted the inverse correlation between clockwise bias and adaptation time (Figure 2–9 and 

2–10, E and F, red). 

In all cases, selection on regulatory elements of the network resulted in phenotypic 

diversity being remarkably constrained to the Pareto front. Furthermore, the levels of 

diversity in these populations are consistent with the sign of the curvature of the Pareto front 

they occupy. The adaptability of these distributions predicts that genetic alterations to basic 

regulatory mechanisms may allow clonal cells to resolve multi-objective problems at the 
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population level using a single signaling network. This mechanism could allow populations to 

cope with the need to navigate diverse environments, or follow diverse signals, without 

partitioning into discrete subpopulations through the use of switches or modules. 

Our results could be tested using several types of chemotactic performance experiments. 

The radial symmetry of our environments makes it possible to use the capillary (Park, Guet, 

Emonet, & Cluzel, 2011) and plug assays (Lanfranconi, Alvarez, & Studdert, 2003), which 

present cells with a concentrated source of attractant. The soft agar swarm plate assay (Lovdok 

et al., 2007) could be used as well if modified to introduce nutrient solution to one spot of the 

plate instead of the whole. Microfluidic chemotaxis assays (Kalinin, Neumann, Sourjik, & Wu, 

2010) could be constructed using soft lithography to reproduce these environments with a 

higher level of precision. In each of these cases, the distance between cells and the source and 

the duration for which the source is presented could be varied, as well as the source 

concentration. Cells with high performance should be selected, analyzed for their phenotypes 

and protein abundance, and re-grown, either under continual presentation of the same 

condition or switching between two or more conditions.  

Using these types of experiments, our theoretical results predict several specific outcomes. 

First, seeding the same clonal population in different assays that have different length- or 

time-scales should select for different optimal subpopulations with different phenotypic 

parameters and different levels of protein expression. Such measurements would make it 

experimentally possible to verify the chemotactic trade-offs we predict. Experimental work 

using the capillary assay already supports this claim (Park et al., 2011), which will be further 

investigated in Part 3 of this dissertation. 

In the case of laboratory evolution with one selection condition, we predict an eventual shift 

toward genotypes that suppress population noise, as well as toward mutations in chemotaxis 

protein RBSs that allow the mean clockwise bias and adaptation time to specialize for this 

task. In this case, we predict that populations will reduce phenotypic diversity but run into a 
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lower limit of protein noise. These outcomes could be measured by performing single cell 

phenotype analyses and by re-sequencing the operon. Conversely, alternating selection in 

different assays or different length- and time-scales may lead to enhanced phenotypic noise 

and still other RBS mutations. In these cases, whole genome re-sequencing may show 

alterations to the operon structure or to the master regulators of chemotaxis. 

Strains that are evolved in the lab could be compared to the wildtype ancestor in order to 

gain insight into the types of environments the latter evolved in. Furthermore, investigating 

phenotypic diversity in wild strains in comparison to domesticated and evolved laboratory 

strains may uncover differences that reflect the level of environmental diversity faced in their 

respective lifestyles.  

Without changing the protein coding sequences or interrupting robust features such as 

perfect adaptation, the bacterial chemotaxis system exhibits significant plasticity in the shape 

of phenotypic distributions. Such plasticity can provide fitness advantages under chemotactic 

trade-offs. While we do not know what trade-offs wildtype E. coli populations have faced, our 

results suggest that the relationship between chemotactic phenotype and survival is highly 

sensitive to environmental time- and length-scales. Hence, we expect that the real-world 

ecology of chemotaxis will impose many trade-offs. Indeed, the same network in E. coli is 

tasked with processing chemical, oxidative, and temperature information on multiple scales 

simultaneously. Additionally, changes in the environment bring different growth conditions, 

which change the distribution of protein expression (Li & Hazelbauer, 2004; Scott, Gunderson, 

Mateescu, Zhang, & Hwa, 2010) and will naturally change the distribution of phenotypes as 

well. As new data on these niches and populations emerge, the framework we introduce in this 

dissertation could be used to investigate the significance of these trade-offs and their resulting 

phenotypic distributions. 



 53  

A new feature of our conceptual framework is the distinction between performance and 

fitness. Organisms exhibit many behaviors which, to researchers, are not directly connected to 

survival and reproduction. These gaps in our understanding inhibit our abilities to understand 

the evolutionary significance of many organismal behaviors. Here, we demonstrated methods 

for broaching these questions quantitatively, and in so doing uncovered the relevant finding 

that nonlinearities in selection can strengthen or weaken trade-offs. This will be of general 

interest to those studying fitness trade-offs since the nature of selection can change the 

optimality of pure versus mixed population strategies. 

In this study, we simplified the problem by focusing only on pairs of environments, but 

trade-off problems between more than two environments are certainly possible. Without 

modifying this framework, trade-offs between any arbitrary distribution of environments could 

be examined. Likewise, multiple different task types could be compared simultaneously. Due 

to the fact that such cases will impose more constraints on the chemotaxis system, stronger 

and more difficult problems are likely to arise. Other simplifications were that challenges and 

regrowth occurred in discrete sequential steps and that there was no direct inheritance or 

persistence of phenotype from mother to daughter cells. The relative importance of these 

features will depend on the relationship between their time-scales and those of the 

environmental challenges (Kussell & Leibler, 2005). 

Flagellar motors 

Bacterial flagellar motors switch between counterclockwise rotation, associated with 

relatively straight swimming, and clockwise rotation, associated with periods of tumbling. We 

model the bacterial flagellar motor as a bistable stochastically switching system (Sneddon, 

Pontius, & Emonet, 2012; Tu & Grinstein, 2005). The free energies of the states, and 

consequently the switching rates between states, are modulated by the concentration of 
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phosphorylated messenger protein CheY, Yp. We assume that the free energy difference 

between the CCW and CW states is linear in the occupancy of the motor protein FliM by CheY-

P. The rates k+ and k- of switching out of the CW and CCW states, respectively, are then given 

by 
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in which 0 sets the maximum rate of motor switching, G sets the scale of the free energy 

difference, and Kd is the FliM-CheY-P dissociation constant. Instantaneous CW bias CW as a 

function of CheY-P input is given by 

 , (2–2) 

which describes a sigmoidal curve (Cluzel, Surette, & Leibler, 2000). Here g determines the 

steepness of the relationship, and Kd sets the location of the midpoint. The noise in the Yp 

signal is modeled using a normal distribution N(Yp) with mean Yp,0 and variance, , the 

time-averaged CW bias CW0 is obtained by averaging the instantaneous CW bias according to 

 . (2–3) 

In our model, we make the simplifying assumption that each cell has one flagellum; 

therefore, the clockwise bias is equivalent to the tumble bias (Sneddon et al., 2012), or CW = 

TB. When the system is either unstimulated or fully adapted to a constant background, the 

system is said to be at steady state. In such conditions, Yp = Yp,SS, CW0 = CWSS = TB0 = TBSS. 

The “tumble bias” we refer to in the main text is TBSS and is set by Yp,SS through Eq. (2–3), 

along with , which is calculated below under “Linearization of the chemotaxis pathway 

model.” We show how Yp,SS is calculated below under “Molecular model of the chemotaxis 

pathway.” 
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Bacterial chemoreceptors 

Bacteria sense changes in their external environment using transmembrane 

chemoreceptors. These receptors are sensitive to changes in the concentrations of various 

chemical stimuli as well as temperature, oxygen levels, and acidity. Receptors respond to 

stimuli by modulating their rates of switching between active and inactive conformations. Here 

we model the receptor response to the chemoattractant methyl-aspartate using a Monod-

Wyman-Changeux model of mixed complexes of Tar and Tsr receptor types (Endres & 

Wingreen, 2006; Mello & Tu, 2005). Each MWC complex consists of NTsr = 4 Tar and NTar = 2 

Tsr homodimers (Endres & Wingreen, 2006). Receptors within each complex are assumed to 

switch in an all-or-none fashion. The free energy of the active conformation is taken to decrease 

linearly with the methylation level mc of the complex, as determined experimentally (Shimizu 

et al., 2010). For this model, the mean activity a of the complex as a function of mc and the 

external methyl-aspartate stimulus L is 

 , (2–4) 

in which ε0 and ε1 are constants, and the function 

 . (2–5) 

The constants , , , and  characterize the binding of methyl-aspartate to 

Tar and Tsr in active and inactive conformations. In the models of the chemotaxis pathway 

below we use m to denote the mean methylation level of all MWC complexes in the cell and 

take a(m) to be the mean activity of all complexes in the cell, following previous studies 

(Emonet & Cluzel, 2008; Mello & Tu, 2005; Shimizu et al., 2010; Sneddon et al., 2012). This 

approximation is equivalent to assuming that the distribution of mc across the cell is sharply 

peaked around m or, alternatively, that a(mc) is linear in mc. 
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Molecular model of chemotaxis 

Receptor activity adapts to persistent stimulus through methylation and demethylation of 

the receptors by the enzymes CheR and CheB, respectively. In modeling the kinetics of receptor 

modification, we follow previous work that successfully describes the adaptive response 

measured in populations in bacteria (Pontius et al., 2013; Shimizu et al., 2010). In this model, 

CheR binds preferentially to inactive receptors and CheB to active receptors. The average 

methylation level m of all MWC complexes therefore evolves according to 

 , (2–6) 

in which TTot, RTot, and Bp,Tot are the total concentrations of receptors, CheR, and 

phosphorylated CheB in the cell, Kr and Kb are Michaelis-Menten constants characterizing the 

enzyme-receptor binding, and kr and kb are the catalytic rates for receptor methylation and 

demethylation. T* and T denote the concentrations of free active and inactive receptors, 

respectively. Since the number of enzyme-receptor complexes is small relative to the number 

of receptors, we make the approximations  T* + T ~ TTot and for the mean activity of the system, 

a ~ T*/TTot. We define N = NTar + NTsr as the size of the MWC complexes, so TTot/2N is the total 

concentration of MWC complexes in the cell. The term m(t) is a white noise source that 

introduces spontaneous fluctuations in methylation level. While models of the form of Eq. (2–

6) correctly describe the adaptation dynamics of averaged populations, they generally fail to 

predict sufficiently high levels of noise(Pontius et al., 2013). Therefore, we set the intensity of 

the noise source m(t) to agree with experimental measurements, as discussed in the next 

section. Differentiating a(m, L) and using , we may recast Eq. (2–6) to 

describe the evolution of the mean activity a of the system: 
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Note that the stimulus term depends on the time derivative of the ligand concentration . At 

steady state the steady state activity a0 is given by .

 

In their active form, receptors promote the autophosphorylation of an associated histidine 

kinase CheA, which in turn phosphorylates CheB and the messenger protein CheY that 

regulates the activity of the flagellar motors. The concentration Ap of phosphorylated CheA is 

then described by  

 , (2–8) 

in which ap, ab, and ay are rate constants, ATot, BTot, and YTot are the total concentrations of 

CheA, CheB, and CheY, and Bp and Yp are the concentrations of free CheB-P and CheY-P. 

CheB-P (either free or bound to a receptor) autodephosphorylates at a rate db and CheY-P is 

dephosphorylated by CheZ with a rate dz. The levels of phosphorylated CheB and CheY then 

follow: 

 , (2–9) 

and 

 , (2–10) 

in which ZTot is the total concentration of CheZ molecules.  

The molecular model depends on the biochemical parameters, kr, kb, Kr, Kb, ap, ay, dz, db, 

ab, which are the same for all cells since we consider isogenic populations (Methods section 

“Constant biochemical parameters of the model” below), and on the molecular abundance of 

Atot, Ttot, Rtot, Btot, Ytot, and Ztot.  

Linearization of the molecular model 

Eqs. (2–6,7,8,9,10) constitute a nonlinear system dX/dt = F(X) + S + H describing the 

evolution of X = (a, Ap, Bp, Yp) in the presence of a stimulus S and noise source H. F is a vector-

valued function specified by Eqs. (2–6,7,8,9,10). In the absence of stimulus S = 0 the steady 
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state of the system X0 is the solution of F(X0) = 0. For small stimuli and noise levels that induce 

only small changes X = X – X0 about the steady-state, we may linearize the system to obtain 

 , (2–11) 

in which J is the Jacobian of F evaluated at the steady state X0: 

 . (2–12) 

The eigenvalues of J for the model Eqs. (2–6,7,8,9,10) are generally negative, indicating 

that the system relaxes to its steady state after small perturbations. The methylation reactions 

of Eq. (2–6) are slow relative to the phosphorylation reactions described by Eqs. (2–8,9,10) and 

therefore effectively determine the rate of this relaxation. This rate is given by the largest 

(least negative) of the eigenvalues  of J, which we use to define the relaxation time scale of 

the system 

 . (2–13) 

We note that this rate sets the rate of relaxation to both external stimuli and intrinsic noise 

(Emonet & Cluzel, 2008; Park et al., 2010). 

Magnitude of spontaneous fluctuations 

Measurements(Park et al., 2010) have indicated that the variance  of intrinsic 

temporal fluctuations in CheY-P scales linearly with the relaxation time scale , according to  

 , (2–14) 

with C = 3.89 × 10-3 M2/s. We assume these fluctuations arise solely from fluctuations in the 

mean methylation level m. Therefore, for a value of  calculated from the reaction constants 

and protein concentrations in a given cell, we choose the intensity of the noise source m(t) in 
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Eq. (6) so that  and  satisfy Eq. (2–14). Specifically, we first calculate  for a given cell and 

calculate the corresponding variance  from Eq. (2–14). Since the phosphorylation processes 

in Eqs. (2–8,9,10) are fast relative to the methylation process of Eq. (2–6), they may be 

considered to be in steady-state and Eq. (2–6) is effectively a one-dimensional Ornstein–

Uhlenbeck process. We therefore can relate  to the variance of the intrinsic temporal 

fluctuations in the methylation level  by 

 . (2–15) 

Here, dYp/da is calculated from the function Yp(a), Eq. (2–16) below, obtained from solving 

Eqs. (2–6,7,8,9,10) at steady state, as described fully in the next section. Since  corresponds 

to the relaxation time of the methylation process in Eq. (2–6), we then use  and  to set the 

intensity of the noise source m(t) according to 

  (2–16) 

in which (t) is the Dirac delta. 

Gene expression model 

The reaction rates are assumed to be the same for all cells since the population we consider 

is isogenic. The total numbers of protein, however, do change from cell to cell and their 

distribution over the population are determined using a stochastic gene expression model 

described in this section.  

We adapted a model (Lovdok et al., 2009) of noisy gene expression that produces individual 

cells each with an individual set of protein counts P = [ATot WTot RTot BTot YTot ZTot TTot]: 

 , (2–17) 

where P0 is the corresponding vector of mean protein levels in the population, ξin and ξex are 

the intrinsic and extrinsic noise components (Swain et al., 2002), respectively, η is the scaling 
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of the intrinsic noise, and A is the translational coupling matrix (Lovdok et al., 2009), a lower 

triangular matrix of correlation coefficients aij between proteins i and j. The intrinsic noise ξin 

is a vector of normally-distributed random variables with mean zero and variance one, 

providing individual uncorrelated noise sources for each protein. The extrinsic noise ξex is a 

single lognormally-distributed random variable that provides correlated noise to all proteins 

together given by 

 , (2–18) 

where ξ is a normally-distributed with mean zero and variance one, and ω is a scaling 

parameter for the extrinsic noise. 

Since many proteins of the pathway assemble into ultrastable membrane-associated 

complexes (Boldog, Grimme, Li, Sligar, & Hazelbauer, 2006; Zhang, Khursigara, Hartnell, & 

Subramaniam, 2007), the individual protein levels generated from the noisy gene expression 

model was further constrained by taking into account the experimentally observed 

stoichiometry: CheW docks to Tar and Tsr with 2:12 stoichiometry, CheA docks to receptor-

associated CheW with 2:2 stoichiometry, and CheA is synthesized in two isoforms, CheAL and 

CheAS, with a 45:22 ratio (Li & Hazelbauer, 2004); only the CheAL form has kinase activity, 

CheZ docks to CheAS and has more activity than un-docked CheZ (Cantwell et al., 2003; 

Kentner & Sourjik, 2006, 2009; Schulmeister et al., 2008), so we assume for simplicity that 

only docked CheZ has significant activity. These relationships were used to determine the 

number of functional receptor complexes on a per-cell basis, producing final effective levels of 

Ztot, Atot, and Ttot to be used in the single cell model described above. The extra copies of proteins 

not in complexes did not participate in signaling.  

Constant biochemical parameters of the model 

Before conducting any simulations or analysis, we performed a one-time fitting routine to 

fix some of the biochemical parameters, which we assume are the same for all cells since we 

consider isogenic populations. All of these parameter values were fixed from previous 
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experiments (Table 2–1) except for kr, kb, Kr, Kb and ap, which we fit to data. To perform the 

fitting, we set the population mean protein levels P0 to the wildtype levels (Li & Hazelbauer, 

2004) except where noted below to match a given dataset. Since the intrinsic and extrinsic 

noise scaling parameters η and ω are unknown for wildtype cells, those were allowed to change 

along with the biochemical parameters that were being fitted. In summary, the biochemical 

parameters kr, kb, Kr, Kb, and ap, and the gene expression parameters η and ω were used as the 

7 fit parameters. After the fit was performed, η and ω were allowed to vary again (i.e. in Figure 

2–8 and the population optimization for Figure 2–9,10), but the biochemical parameters (kr, 

kb, Kr, Kb, ap, ay, dz, db, ab) were fixed permanently for all populations in all contexts. 

As fit-data we used (i) measurements of the histogram of CW bias in a wildtype population 

and the adaptation times associated with each bin (Park et al., 2010) (Figure 2–1A); (ii) 

measurements of the population-average CW bias as a function of fold overexpression of the 

mean protein levels P0 (Kollmann et al., 2005) (Figure 2–1B); and (iii) population-averaged 

relationship between receptor activity level and methylation rate (Shimizu et al., 2010) (Figure 

2–1). To fit the later data we used our molecular model to simulate and reproduce the time-

dependent experimental method used in these experiments: we simulated the response of 

CheY-P levels within populations of 100 immobilized cells to exponential ramps of ligand. We 

used the same ramp rates and “strain” (Δtsr cells) as in the experiments.  

We used a cost function that was simply the sum squared error of all data points and 

corresponding model/simulation results. We minimized the cost function, allowing the 7 fit-

parameters mentioned above to vary, using MATLAB’s pattern search optimization algorithm. 

With a single set of parameter values, the resulting model agrees well with the fit data 

(Figure 2–1). Compared to single-cell measurements of the histogram of CW bias in the 

population, the model produces a similar spread (Figure 2–1A, bottom) and anti-correlation 

with adaptation time (Figure 2–1A, top) (Park et al., 2010). Despite this variation, the 

population-averaged CW bias is constrained within a functional range even when the mean 

level of proteins is globally upregulated (Figure 2–1B)—experimentally this was done by 



62  

inducing the expression of a master transcriptional regulator (Kollmann et al., 2005)—here we 

multiplied P0 by the appropriate factor. This conservation shows that our model recapitulates 

and resolves a fundamental unexplained dichotomy in the chemotaxis pathway: population 

variability around the average is possible in addition to high robustness of the population 

average. Hence the pathway is sensitive to molecular noise at the single cell level, but robust 

at the population level. Finally, simulations of the population model to reproduce the 

experiment by Shimizu et al. (2010) show close agreement (Figure 2–1C), notably fitting the 

nonlinear behavior at low and high receptor activity levels without using a piecewise model or 

higher exponents in the methylation equation. 

Phenotypic model of chemotaxis 

The stochastic molecular model described above and its linearization specifies the 

stochastic behavior of the single cell in a given environment as a function of its biochemical 

parameters (e.g. reaction rates) and protein concentrations. In the following, we define the key 

phenotypic parameters of the system, adaptation time, tumble bias, and the dynamic range of 

CheY-P levels. We derive these quantities directly from the molecular model as a function of 

protein levels. 

Consider the small changes in ligand concentration experienced by a cell moving in a 

gradient. In this linear regime, small perturbations in receptor activity around the mean 

steady-state value a0 (given by the steady state of Eq. (2–7)) will arise from either intrinsic 

molecular noise or from the external stimuli. The relaxation time of the system   (Eq. (2–13)) 

is determined by the time scale of methylation and demethylation, which are slow relative to 

all other reactions in the system (Table 2–1) and may therefore be considered at steady state 

relative to methylation. Under these conditions, we may construct a simplified version of the 

above pathway model with only a single SDE to describe the methylation dynamics. The end 

result is a phenotypic model specified only by the mean activity at steady-state a0, the 

relaxation time scale , and the total CheY concentration YTot that controls the maximum level 

of CheY-P that the cells can reach and therefore the dynamic range of the response regulator. 
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In the phenotypic model, the dynamics of the mean receptor methylation level m are 

described by (Sneddon et al., 2012): 

 . (2–19) 

For a given ligand concentration L, m0(L) is the methylation level at which receptor activity 

is equal to its mean adapted level a0. Therefore m0 satisfies a(m0, L) = a0 with a given by Eq. 

(2–4) above and a0 given by the steady state of Eq. (2–7). The white noise source ηm is identical 

to that in Eq. (2–6) with intensity derived from τ according to Eqs. (2–13,14,15,16). 

The phosphorylation reactions described by Eqs. (2–8,9,10) are much faster than the 

methylation and demethylation reactions (Eq. (2–7)) that govern the slow adaptation of the 

cell and therefore are calculated using a steady-state approximation as in previous studies 

(Sneddon et al., 2012; Tu, Shimizu, & Berg, 2008; Vladimirov, Lovdok, Lebiedz, & Sourjik, 

2008). Since the concentration of total CheB is small relative to total CheY (BTot/YTot << 1) and 

the rate of CheB phosphorylation is lower than the rate of CheY phosphorylation, the effect of 

CheB phosphorylation in Eq. (2–8) can be safely neglected. Solving Eqs. (2–8) and (2–10) then 

yields the following relationship between CheY-P concentration and the kinase activity a: 

  , (2–20) 
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In summary, we combined the phenotypic model in Eqs. (2–19,20) with the MWC receptor 

model in Eq. (2–4,5) and the flagellar motor switching model in Eq. (2–1,2,3) to produce a 

simplified model of the bacterial chemotaxis system in the linear regime. Using this model, an 

individual cell is fully specified by the three parameters: tumble bias, adaptation time, and the 

dynamic range of the response regulator CheY-P: 

 The tumble bias can be obtained from the molecular model (Eqs. (2–6,7,8,9,10)) at 

steady state using the protein levels (Atot, Ttot, …) and biochemical parameters (kr, 

kb, …) to first obtain a0 and Yp,SS and then by using Eq. (2–3) to solve for the steady-

state tumble bias as a function of Yp,SS .   

 The adaptation time can be obtained from Eqs. (2–12,13,14), which depend on the 

molecular model (Eqs. (2–6,7,8,9,10)) that is parameterized by the protein levels 

(Atot, Ttot, …) and biochemical parameters (kr, kb, …). That value of adaptation time 

also directly sets the adaptation time in the phenotypic model described in Eq. (2–

19). 

 The dynamic range of the response regulator CheY-P is defined as Yp(a=1) in Eq. 

(2–20) and is determined by the total number of CheY molecules in the cell, Ytot. For 

large values of Ytot the response regulator activity is linear with that of the kinase 

and therefore the maximum level of Yp the cell can adopt is α. For lower values of 

Ytot, the total amount of CheY proteins in the cells becomes limiting and the 

dynamic range of CheY-P diminishes proportionally to Ytot.  

The values of all parameters used in this study are given in Table 2–1. 

Model parameter summary 

Collectively our model therefore consists of the three classes of parameters: 

 Biochemical parameters of the signaling network (kr, kb, Kr, Kb, ap, ay, dz, db, ab) 

represent the physical kinetics of the proteins’ enzymatic actions. In this 

dissertation, these parameters are fixed for all populations in all cases because we 

assume neither the protein-coding genes nor the pathway topology changes.  
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 Population parameters of the gene expression model (P0, η, ω) represent the genetic 

architecture (i.e. operons, promoters, and RBSs) of the chemotaxis genes shared by 

all individuals in the clonal population. In this dissertation, these parameters can 

vary at the population level (such as in Figure 2–8 and the population optimization 

for Figure 2–9,10) but are assumed to be the same among cells in a populations 

within a generation. Their role here is to determine the distribution of protein levels 

among individuals within a given population. 

 Phenotypic parameters of the cell (adaptation time, tumble bias, dynamic range of 

the response regulator) control the dynamical behavior of the individual cell. These 

vary from cell to cell and are determined by the combination of the individual levels 

of protein generated by the populations’ noisy gene expression parameters and the 

biochemical signaling network as described in Methods section “Phenotypic Model 

of Chemotaxis” above. These parameters were also varied manually to perform the 

parameter scans of cell dynamics. 

Comparison of Molecular and Phenotypic Models  

We tested the agreement between the molecular model specified by Eqs. (2–

1,2,3,4,5,6,7,8,9,10) and the phenotypic model specified by Eqs. (2–1,2,3,4,5,19,20) in a 

simulation. First we performed deterministic simulations of immobilized cells being exposed 

to 50 s square pulses of attractant and compared the time traces of CheY-P output of the 

system (Figure 2–1DE) for a wide range of adaptation time, tumble bias, and YTot. The two 

traces lie on top of each other, demonstrating agreement. 

Environment definitions 

We simulated cell trajectories using the phenotypic model (Sneddon et al., 2012) in 3-D 

environments in which methyl-aspartate was diffusing. The sources of methyl-aspartate were 
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spherical and diffusion was modeled as a 1-D process with central symmetry extending from 

the center of the source, described by: 

   (2–21) 

where L is the ligand concentration at radius r, in µm, from the center of the source and D is 

the diffusion coefficient of methyl-aspartate, in µm2/s. 

In the foraging simulations, the only boundary condition was that L goes to zero as r goes 

to infinity. The source simply diffused from its spherical initial condition, which was given by: 

  , (2–22) 

where L1 was the initial source concentration and R was the radius of the source. The solution 

of the gradient in space and time becomes 

 , (2–24) 

where  and . 

In the colonization simulations, there was an additional boundary condition to describe 

the persistence of the source as a permanent non-depleting zone: 

 , (2–24)  

resulting in the solution 

 . (2–25) 

Simulating performance of phenotypes 

To construct heatmaps, adaptation time was varied directly, and the internal parameters 

used to vary the tumble bias and dynamic range were YpSS and YTot, respectively. Adaptation 

time was scanned in 25 log-spaced steps over the interval [1,300] s. YpSS was scanned in 25 log-

spaced steps over the interval [1.2,4] µM with an additional point at 0 µM.  Ytot was scanned 
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in 10 log-spaced steps over the interval [820,82000] molecules/cell. For each combination of 

parameters, 6000–30000 replicates were simulated (more replicates were used for farther 

away sources). 

To calculate foraging performance, individual cell replicates accumulated ligand along 

their trajectories during the simulation. At each time point, kL(t)dt was added to their total, 

where k is the uptake rate in µmol/µM/s, L(t) is the concentration of ligand at the current cell 

position and time, and dt is the simulation timestep in seconds. Nutrient accumulation was 

cut-off after a certain time; for the cases in the main figures, this was 13 minutes—

characterization of the effect other times are described below. For each phenotype, the 

performance was the average ligand accumulation of all replicates (Figure 2–3–1 left). 

To calculate colonization performance, each cell replicate was first awarded an arrival time 

in minutes upon its first crossing of r = R. If it failed to cross in 15 min, its arrival time was 

infinity. Since we define performance as a quantity to be maximized rather than minimized, 

the performance of each replicate was defined as the reciprocal of the arrival time in min–1; 

infinite arrival time resulted in zero performance. The replicates of each phenotype were then 

averaged together to get the performance as a function of phenotype (Figure 2–3–2 left). 

Replicate cells began at a single point on the spherical shell r = r0, where r0 is the distance 

away that the source appears to the cells. Simulations in both tasks were performed for 15 

minutes for several values of r0 (Figure 2–3–1,2 left). For all subsequent analysis, the 

heatmaps were smoothed and resampled at higher resolution in phenotype space (2–3–1,2 

right). Performance was first smoothed over the original cell parameter mesh using a Gaussian 

kernel. A resampled parameter mesh was created on a 200 x 200 grid within the existing range 

of cell parameters. The performance values at the new grid points were interpolated from the 

smoothed performance heatmaps using spline interpolation. The same procedure was used for 

the fitness landscapes described later, but importantly all fitness calculations were performed 

on original unsmoothed raw data, then smoothing was applied, so we did not smooth twice. 
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To find the specialist in each environments, the top performing phenotype on the high-

resolution parameter grid was screened out (Figure 2–3–1,2, diamonds). To plot the Pareto 

front for two environments, we scattered the performance of all values of adaptation time and 

YpSS (for a given YTot) on the high-resolution grid to obtain a cloud in chemotactic performance 

space. We then screened out phenotypes which were not outperformed in environment 1 and 

not outperformed in environment 2 to form the Pareto front.  

Changing time limits was explicitly considered in the Results for the colonization case. For 

foraging, reducing the time limit has little effect on sources that are nearby, but for far sources, 

it limits the success of high tumble bias dramatically, exaggerating the trends observed in the 

far cases (Figure 2–3–3). In this regime, time is a key parameter since the cells must explore 

to reach the front of the source before foraging it appreciably. As such, limiting the time has a 

disproportionate effect on these phenotypes. 

As a result of these disproportionate effects in far environments, trade-offs become 

stronger when time is restricted (Figure 2–5). For the same four examples of two-environment 

near–far trade-offs, reducing the time consistently increases the curvature of the Pareto front. 

When 3 minutes are given, the transition of trade-offs from weak to strong occurs at a much 

more similar pair of environments. Therefore, if the environment has frequent turnover 

events, for example caused by turbulence that equilibrates the gradient, it strengthens trade-

offs substantially. 

In the cases shown in the Results section, L1 was 100 mM for foraging and 10 mM for 

colonization. If L1 is reduced (Figure 2–3–4), the colonization case is relatively unaffected, 

except that the trend in farther sources become exaggerated because cells have to explore 

longer before finding a detectable signal. There are more substantial changes to the foraging 

case. For farther sources especially, the preferred phenotypes switch to having high tumble 

bias. In these cases, exploration reduces the chances of the cells to see ligand because they 

became too spread out; rather, staying in one place and waiting for the diffusing nutrient front 

to arrive became the preferred strategy. 
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As we derived in equation (2–20), the dynamic range of CheY-P depends on YTot, which sets 

the asymptotic value of CheY-P. In cells with low YTot, phosphotransfer is hindered, reducing 

information transfer from the kinase to the motor and thus deteriorating performance. Cell 

performance is limited by low YTot, but once it is high enough to reach the linear regime 

between kinase activity and CheY-P concentration, additional CheY does not add much benefit 

since the dynamic range of CheY-P activity will then become limited by the number of kinases.   

We see in our simulations (Figure 2–3–5) that, above about YTot = 10591 molecules/cell, the 

performance does not appreciably change because this condition of linearity is met. From this, 

we conclude that there is no trade-off on YTot apart from the cost of protein synthesis, and that 

cells should express enough CheY to reach the Pareto front. Beyond that, there is minimal 

increase in performance. In our analysis of the Pareto fronts, we used YTot = 29469 mol./cell for 

all cells; the results do not change significantly if the next higher or lower levels of YTot are 

used instead. 

Calculating fitness from performance  

Fitness was assigned based on performance via a selection function. The fitness of each 

individual simulation trajectory was calculated, then all trajectories of a given phenotype were 

averaged together to produce the fitness of a given phenotype. This is clearly distinct from 

calculating the fitness of each phenotype’s average performance. We used this procedure to 

create fitness landscapes which were then smoothed and resampled exactly as we did with the 

performance heatmaps. 

Fitness was calculated on a single-cell (i.e. single-replicate) basis. For Figure 2–6, in the 

foraging case, our metabolic formula was , where K is the amount of 

nutrition required for survival and n is the dependency; for colonization, our time-limit model 

was , where TL is the time limit, and H is the Heaviside step function. 

For Figure 2–7, for the foraging case, different levels of nutrition were associated with 

discrete transitions to different physiological states. Below a survival threshold Tsurvive, the 

 
1

.1 /
n

colf K N


  
 

 .L arrf H T T 



70  

individual dies, resulting in an outcome of 0 to signify no progeny. If the nutrition is above a 

higher division threshold Tdivide, the individual gives rise to 2 progeny. Nutrition in between 

the two thresholds results in survival of the individual, or an outcome of 1 progeny. This model 

can be written as: . For colonization, if success 

depends on arrival time within a certain time limit K, but that dependency n is not absolute 

(i.e. infinite), this was described by a sigmoidal function like the Hill equation:  

. 

For each selection function and for each environment, the approach described above was 

used to create a lookup table for fitness as a function of phenotype. In order to calculate 

population fitness below, we first calculated the fitness of individual cells that are initially 

defined only by their levels of chemotaxis proteins. In order to find Yp,SS, we solve the system 

of Eqs. (2–5,7,8,9,10). To find adaptation time we use the definitions in Eqs. (2–11,12,13). YTot 

is given as one of the protein levels. Given these three phenotypic parameters, we interpolate 

on the lookup table for any combination of task, environment, and selection function to give 

the corresponding fitness of that phenotype. 

To optimize population fitness, we first defined a general expression for population fitness 

beginning with the fitness of a single phenotype. Chemotaxis is non-deterministic, hence, in 

each environment g, an individual phenotype  had a distribution of performance V, or 

, where  is a vector of adaptation time, tumble bias, and CheY-P dynamic range. 

Fitness was a function of single-cell performance f(V). To calculate the fitness of a phenotype 

in a given environment, we took the expected value of its fitness over its distribution of 

performance . This should not be confused with the fitness of 

the average performance     
,
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We assume for simplicity that populations encounter challenges sequentially, all cells in 

the population experience each challenge simultaneously and in the same way, populations 

must survive through all environments, and individuals do not directly inherit phenotypes. 

Hence, within a given environment, a population consisting of many cells with different 

phenotypes has fitness equal to the average of its constituent cells 

, where  is the population distribution of phenotypes. Following this, population fitness 

from one environment to the next is multiplicative. In the long term this results in a geometric 

mean across environments, weighted by the probability of encountering each environment: 

 , (2–26) 

where h(g) is the distribution of environments. This formula is consistent with previous 

derivations (Haccou & Iwasa, 1995) but has been extended to include stochastic performance 

of individual cells and a distinction between fitness and performance. 

While equation (2–26) provides a general solution, in the specific cases analyzed in this 

study, the populations consist of a finite number of different phenotypes and for simplicity we 

show cases that compare two discrete environments g1 and g2 with occurrence probability h 

and (1 – h). As such, the discrete calculation of population fitness becomes: 

 , (2–27)

 

where ξ indexes the cells in the population, Npop is the number of cells in the population, and 

 is the fitness of the phenotype of cell ξ in environment g determined using a look-up table 

constructed from simulation data as described above. 

The trade-off problem itself is thus parameterized by: h, g1, g2, and the form and parameters 

of f(V) that gave rise to the look-up table. For example, in the case of foraging these are the 

nutritional requirement K and the dependency n; for colonization there is only the time limit 

TL. These we collectively called the trade-off parameters. 
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The population gene expression parameters generate a list of individuals with different 

phenotypes as described above. We can optimize the fitness of the population as a whole 

(Figure 2–9,10) by first calculating population fitness F (Eq. (2–27)) for a set of trade-off 

parameters. We then used MATLAB’s pattern search optimization function on the population 

fitness formula, allowing only the gene expression parameters P0, η, and ω to vary, but not the 

trade-off parameters, the biochemical parameters, or any other parameters. The noise 

parameters η and ω initially had a lower constraint set to 0.04 and 0.02 respectively (Figure 

2–9), then were changed to reflect biological measurements (Figure 2–10)  as described below, 

and h was 0.8. From this we obtained the optimized population parameters for strong and 

weak trade-offs (performed separately). For each type of ecological task, the strong and weak 

trade-offs are between the same pair of near and far environments, with the same form of 

selection function, but each has a different set of selection function parameters. 

Since there is always some irreducible noise in biology, we used experimental observations 

to provide lower bounds for the noise parameters in our model. For a limit on the intrinsic 

component, we took the wildtype level of intrinsic noise, which we obtained by fitting the model 

to wildtype data (described above). Multiple studies have described the advantage of reduced 

intrinsic noise in chemotaxis, so we assume wildtype cells are likely to be functioning at or 

near the minimum intrinsic noise. In order to apply this constraint, we ensure that the 

intrinsic noise scaling parameter and mean protein levels are constrained within the 

optimization algorithm such that the condition 
wt wt 

0 0
P P  is maintained. 

There is also a lower bound on the minimum total protein noise, defined as the coefficient 

of variation squared, measured in single E. coli cells to be about 0.09 for proteins with a mean 

expression level of above 100 copies per cell (Taniguchi et al., 2010). This constraint in practice 

acts more on extrinsic noise than on intrinsic noise since in our case the latter is typically fairly 

low. To enforce this constraint computationally, we ensure that P0, η, and ω of Eq. (2–2 through 

2–18) are chosen by the optimization such that the squared coefficient of variation of every 

protein is above 0.09. This typically has the effect of keeping ω above about 0.09, depending on 
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P0 and η. Increases in global expression levels of up to approximately 3 fold are observed for 

different strains and growth media (Li & Hazelbauer, 2004), and using mutations in flgM, 

increases up to 7 fold are possible (Kollmann et al., 2005). Hence, we set our upper limit of 

mean expression levels at 5 fold to work within that range. 
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Receptor Parameters 

Name Description Type Value Reference 
0 Basal energy of receptor 

cluster 

Fixed 6 kBT (Shimizu et al., 2010) 

1 Receptor energy change per 

methyl group addition 

Fixed -1 kBT (Shimizu et al., 2010) 

 Taroff−meAsp diss. constant Fixed 18.2 µM (Shimizu et al., 2010) 

 Taron−meAsp diss. constant Fixed 3000 µM (Shimizu et al., 2010) 

 Tsroff−meAsp diss. constant Fixed 104 µM (Endres & Wingreen, 2006) 

 Tsron−meAsp diss. constant Fixed 109 µM (Endres & Wingreen, 2006) 

NTAR Number of Tar receptor 

dimers 

Fixed 2 (6*) (Shimizu et al., 2010), (Li 

& Hazelbauer, 2004) 

NTSR Number of Tsr receptor 

dimers 

Fixed 4 (0*) (Shimizu et al., 2010), (Li 

& Hazelbauer, 2004) 

Signaling Parameters 

Name Description Type Value Reference 
kr Catalytic rate of CheR Fitted 350 s-1 this study 

Kr Equilibrium constant of 

CheR activity 

Fitted 300 µM this study 

kb Catalytic rate of CheB Fitted 266 s-1 this study 

Kb Equilibrium constant of 

CheB activity 

Fitted 200 µM this study 

aP CheA autophosphorylation 

rate  

Fitted 12.5 s-1 this study 

aB Rate of CheB 

phosphorylation by CheA 

Fixed 15 µM-1 s-1 Stewart, Jahreis, and 

Parkinson, 2000(Stewart, 

Jahreis, & Parkinson, 

2000) 

dB CheB 

autodephosphorylation rate 

Fixed 0.5 s-1 Stewart, 1993(Stewart, 

1993), (Kentner & Sourjik, 

2006) 

aY Rate of CheY 

phosphorylation by CheA 

Fixed 50 µM-1 s-1 this study 

dZ Rate of CheY 

desphosphorylation by CheZ 

Fixed 5 µM-1 s-1 this study 

Motor Parameters 

Name Description Type Value Reference 
 Basal switching frequency Fixed 1.3 s-1 (Sneddon et al., 2012), 

Cluzel et al., 2000(Cluzel 

et al., 2000) 

g1 Transition energy of motor Fixed 40 kBT (Sneddon et al., 2012), 

Cluzel et al., 2000(Cluzel 

et al., 2000) 

KD Dissociation constant of 

CheY-motor interaction 

Fixed 3.06 M (Sneddon et al., 2012), 

Cluzel et al., 2000(Cluzel 

et al., 2000) 

Simulation Parameters 

Name Description Type Value Reference 
v Cell speed Fixed 20 m s-1 (Sneddon et al., 2012), 

(Berg & Brown, 1972) 

DROT Rotational diffusion Fixed 0.062 rad s-1 (Sneddon et al., 2012), 

(Berg & Brown, 1972) 

krot Post-tumble redirection 

angle Gamma distribution 

shape parameter  

Fixed 4 (Sneddon et al., 2012), 

(Berg & Brown, 1972) 

rot Post-tumble redirection 

angle Gamma distribution 

scale parameter 

Fixed 18.32 (Sneddon et al., 2012), 

(Berg & Brown, 1972) 

off

TARK
on

TARK
off

TSRK

on

TSRK
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D Diffusion coefficient of 

methyl-aspartate 

Fixed 550 m2 s-1 (Lewus & Ford, 2001) 

k Nutrient pickup rate Fixed 10–4 

mol/M/s 

This study 

Gene expression parameters 

Name Description Type Value Reference 
<T> Population mean receptors 

per cell (Tar + Tsr) 

Population 

variable, fixed 

during fitting 

15000 mol./ 

cell 

(Li & Hazelbauer, 2004) 

<A> Population mean CheA 

proteins per cell 

Population 

variable, fixed 

during fitting 

6700 mol./ 

cell 

(Li & Hazelbauer, 2004) 

<W> Population mean CheW 

proteins per cell 

Population 

variable, fixed 

during fitting 

6700 mol./ 

cell 

(Li & Hazelbauer, 2004) 

<R> Population mean CheR 

proteins per cell 

Population 

variable, fixed 

during fitting 

140 mol./ 

cell 

(Li & Hazelbauer, 2004) 

<B> Population mean CheB 

proteins per cell 

Population 

variable, fixed 

during fitting 

240 mol./ 

cell 

(Li & Hazelbauer, 2004) 

<Y> Population mean CheY 

proteins per cell 

Population 

variable, fixed 

during fitting 

8200 mol./ 

cell 

(Li & Hazelbauer, 2004) 

<Z> Population mean CheZ 

proteins per cell 

Population 

variable, fixed 

during fitting 

3200 mol./ 

cell 

(Li & Hazelbauer, 2004) 

x Conversion between 

mol./cell and M for 

proteins 

Fixed 833 

M/mol./cell 

this study 

ARB Translational coupling 

coefficient between CheR 

and CheB 

Fixed 0.485 (Lovdok et al., 2009) 

ABY Translational coupling 

coefficient between CheB 

and CheY 

Fixed 0.210 (Lovdok et al., 2009) 

AYZ Translational coupling 

coefficient between CheY 

and CheZ 

Fixed 0.250 (Lovdok et al., 2009) 

η Intrinsic noise scaling 

coefficient 

Population 

variable, fitted 

during fitting 

0.125 this study 

ω Extrinsic noise scaling 

coefficient 

Population 

variable, fitted 

during fitting 

0.26 this study 

 

Table 2–1. Parameter Values and Variables. 

*Values in parentheses were used when directly comparison to Shimizu et al. (2010) to 

reflect the Tsr knockout mutation used in that study. 
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Individual Escherichia coli bacteria exhibit substantial differences in chemotactic behavior 

despite sharing the same genetically encoded machinery. This has been experimentally 

characterized in cells that are immobilized, either on the surface of a glass slide (Cluzel, 

Surette, & Leibler, 2000; Park et al., 2010; Spudich & Koshland, 1976) or in an optical trap 

(Mears, Koirala, Rao, Golding, & Chemla, 2014). In freely-swimming wildtype cells interacting 

with their environment, however, it is unknown how this variability affects chemotactic 

performance in a gradient, either on a single-cell basis or on the population as a whole. 

Predictions about such outcomes are made in Part 2, but must be tested experimentally. 

In this Part, we characterize the consequences of phenotypic diversity for population 

performance first by using the classic capillary assay and then by tracking cells in a 

microfluidic chemoattractant gradient. As cells explore the environment and climb a gradient, 

we find that a clonal wildtype population segregates in space and time into behaviorally 

distinct subpopulations. Some subpopulations explore and climb the gradient faster than 

others. When the gradient is reversed, however, and cells are challenged to localize near a 

source, different subpopulations perform best. Following simulation results in Part 2, these 

results support the existence of near–far trade-off in E. coli chemotaxis, which may be a type 

of the canonical exploration–exploitation trade-off widely discussed in the context of foraging 

of patchy environments (Eliassen, Jorgensen, Mangel, & Giske, 2007; Krakauer & 

RodriguezGirones, 1995; Seymour, Marcos, & Stocker, 2009; Stocker, Seymour, Samadani, 

Hunt, & Polz, 2008; Taylor & Stocker, 2012). 
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In order to test the underlying role of chemotaxis protein copy number, we constructed a 

strain in which CheR was expressed under inducible control. By tuning the mean expression 

level of CheR, we found that cells with low CheR climbed shallower gradients faster, whereas 

higher levels produce better performance in steeper gradients. Additionally, capillaries filled 

with higher concentration of attractant selected for subpopulations with higher CheR than 

capillaries with lower concentrations. This “steepness” trade-off is also consistent with 

theoretical predictions from Part 2 and with recently published models (Dufour, Fu, 

Hernandez-Nunez, & Emonet, 2014). In total, our result that wildtype populations contains 

different cells that are specialized to different tasks provides experimental support for our 

theoretical claim that behavioral heterogeneity may provide robustness in fluctuating 

environments. 

To test cell performance we first tried Adler’s capillary assay. This assay consists of 

presenting an attractant-filled capillary tube to a well of cells in buffer and counting the 

number of cells that swim into the capillary over a certain time (Mesibov & Adler, 1972) 

(Figure 3–1A). This can be modified to a high-throughput version performed on 96-well plates 

of cells (Bainer, Park, & Cluzel, 2003; Park, Guet, Emonet, & Cluzel, 2011) (Figure 3–1B). We 

validated our use of this assay by demonstrating a specific response to the amino acid 

aspartate (Figure 3–1C) after calibrating the counting of cells (Figure 3–1DE). 

We presented cells with capillaries containing a dilution series of aspartate and constructed 

a dose–response curve that followed the trend of Adler’s early findings (Figure 3–2A), although 

substantial day-to-day variability was observed. To see if cell phenotype plays a role in 

capillary assay performance, we used a strain that is deleted for CheR on the chromosome and 

expresses a YFP-CheR fusion from an inducible promoter on a low-copy plasmid (NB: This is 

not the same strain we use later, which expresses mCherry-CheR from a single-copy 
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chromosomal promoter). When we raised the mean expression level of CheR in the population 

with increasing levels of the inducer isopropylthiogalactopyranoside (IPTG), we found that this 

resulted in substantially different average performance, with an intermediate induction level 

performing optimally (Figure 3–2B). The fact that performance tapers off at high and low YFP-

CheR is consistent with expectations since these cells would have very low or very high tumble 

bias, respectively. 

To continue this analysis at the single-cell level, we used an intermediate level of CheR 

induction and presented the same population with many separate capillary attractant 

concentrations. Following the red arrow in the flow chart in Figure 3–1B, instead of counting 

the cells, we expelled the cells that successfully entered the capillary onto agarose pads and 

imaged fluorescence levels in single cells at 100X magnification. We then compared the 

original distribution of YFP-CheR expression to the distributions in the winning 

subpopulations (Figure 3–2CD, two full experiment replicates). 

Although replicates of the assay look slightly different, some trends in the winning 

distribution of CheR relative to the original distribution can be observed as a function of 

capillary attractant condition. For the highest concentration of aspartate in the capillary 

(Figure 3–2CD, 10 mM, magenta lines), high expression levels of YFP-CheR are more common 

than in the seed distribution, whereas lower concentrations of aspartate in the capillary result 

in winning populations with distributions of YFP-CheR shifted to lower levels. Finally, in 

capillaries filled with buffer only, which contained cells that only entered due to chance, the 

winning distribution had a YFP-CheR distribution that was most down-shifted, which as we 

show later (Figure 3–8) corresponds to a population with much longer runs.  
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Figure 3–1. Quantification of high-throughput capillary assay performance 

A. Schematic of capillary assay. Cells (red ovals) in a well with buffer (wide cylinder) swim into a 

capillary (narrow cylinder) filled with attractant (blue color). B. Flow chart of high-throughput capillary 

assay procedure. Black: method for traditional cell counting. Red: method for measuring single-cell 

distributions. C. High throughput capillary assay response of RP437 cells, n = number of wells on 96-

well plate with that condition. D. Calibration curve of growth kinetics in plate reader for use as a 

quantification method for high throughput capillary assay (8 wells per condition). E. Verification of 

agreement between growth-kinetics quantification method in D (black points) with traditional CFU 

counting (red points). In this figure, error bars represent +/– standard error of the mean (SEM).  
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Figure 3–2. Effect of variability in YFP-CheR expression on capillary assay performance 

A. High-throughput capillary assay response of RP437 cells to several dilutions of aspartate on one 

plate, 12 wells per condition. Blue and purple series are different experiments on different 96-well plates. 

Inner error bars are +/– SEM, outer error bars are +/– standard deviation. B. High-throughput capillary 

assay response to either buffer (gray) or 1 mM aspartate (red) of IPTG-inducible YFP-CheR expressing 

cells grown in different concentration of IPTG. Single plate, 6–8 wells per condition. Error bars are +/– 

SEM  C. Distributions of YFP-CheR fluorescence (normalized to cell area) in subpopulations of cells that 

successful entered capillaries with different chemoattractant conditions (different colors) compared to 

the seed population (black) on a single plate. Gray: autofluorescence of wildtype cells in identical imaging 

conditions. n = number of cells measured (Note: number of cells measured is not correlated with number 

of cells in capillary). Error bars are +/– binn  . D. Replicate of C.  
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These findings show that different levels of CheR produce different performance on average 

and that different conditions can select for different subpopulations of CheR expression. The 

trends are roughly consistent with simulation predictions from Part 2 and recent modeling 

work (Dufour et al., 2014), wherein steeper gradients or nearby strong sources require higher 

tumble bias and shorter adaptation time compared to shallower gradients or farther sources. 

High tumble bias and short adaptation time are both produced by elevated CheR, and the 

converse by reduced CheR. This assay was not replicable enough to explore this potential 

agreement in greater detail (Figure 3–2A blue versus purple, Figure 3–2C versus D), so we 

continued pursuit of this topic in a microfluidic platform that offered more precise control of 

the cells’ microenvironment. 

We created a microfluidic device to track individuals within a clonal population as they 

performed chemotaxis in different gradient conditions (Figure 3–3). The main chamber of the 

device in which cells were tracked was 10 mm across by 1 mm wide by 10 µm deep. These 

dimensions ensured that cells were always in the focal plane of a 10X objective and were in an 

essentially one-dimensional environment. In order to accurately track the spatiotemporal 

evolution of the population, the design had to be such the gradient was constant in time, cells 

were not pushed by flows, and all cells began the assay at the same location. 

The first two constraints were satisfied by a source–sink gradient system in which 

circulation of buffer on one side and chemoattractant on the other were separated from the 

main channel by thin hydrogel barriers (Figure 3–3, gray regions). These membranes, made of 

poly(ethylene glycol), prohibited bulk flow that would push cells, but allowed chemoattractant 

to diffuse across and, after equilibration, form a stable gradient. We used a non-metabolizable 

attractant, alpha-methyl-aspartate, and mixed it with fluorescein dye to allow the gradient to 

be visualized via fluorescence microscopy. Fluorescein and meAsp have similar diffusion 

coefficients (5x10–10 vs. 5.5x10–10 m2s–1) (Lewus & Ford, 2001). To meet the third constraint, 

cells were loaded behind a pressure-actuated gate (Figure 3–3B , blue line), which pinched off 
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the first 0.1 mm of the main chamber, detaining the population at one end of the device until 

the assay was begun. 

At the start of the assay, the pressure-actuated gate was lifted and an automated 

acquisition program was simultaneously initiated. One-minute movies were captured at 10X 

magnification across the device in locations spaced ~1 mm apart, scanning from origin to end 

repeatedly in a raster pattern over several hours (Figure 3–4A), to image the expansion of the 

population. Before and after each movie, a fluorescence image was captured to measure the 

gradient profile (Figure 3–3A). 

We performed particle tracking on each movie (Methods), which yielded a trajectory for 

each individual cell (Figure 3–4B). To characterize individual cell behavior, we calculated 

tumble bias by assigning each frame in a cell’s trajectory as either run or tumble (Methods). 

The tumble bias of each cell was then the fraction of the trajectory spent tumbling. By 

arranging this data by stage position and acquisition time (Figure 3–4D), this procedure 

furnished us space–time distributions of cell density, tumble bias, and methyl-aspartate 

concentration. 

We first performed the assay without chemoattractant to measure the baseline exploration 

behavior of wildtype bacteria. The evolution of cell density across the device over time 

demonstrates population diffusion (Figure 3–5E). The tumbling probability was higher near 

the start point of the device, with the expanding diffusive front being composed of low tumble 

bias cells (Figure 3–5F). This demonstrates spatial separation of the population by tumble bias 

over time. Indeed a distribution of tumble bias was observed in the assay (Figure 3–5G), with 

the mean position of low tumble bias cells progressing faster from the origin due to diffusion 

than the mean position of high tumble bias cells (Figure 3–5H). Therefore, in the absence of a 

gradient, the fraction of wildtype cells that have low tumble bias explore the farthest.  
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Figure 3–3. Characterization of chemotaxis phenotypes in a gradient. 

A. Gradient of methyl-aspartate (meAsp) and fluorescein in a microfluidic device measured via 

fluorescence microscopy. After a 6 hr equilibration, 3 hrs of measurements are shown superimposed, 

demonstrating high stability of the profile. During each experiment, several 1.3 mm-long images are 

acquired across the main chamber at 10X magnification through a YFP filter set. After background 

subtraction, correction for the illumination field, and calibration to maximum fluorescein concentration, 

the intensity is averaged across the non-gradient dimension to obtain 1-D profiles of the gradient. These 

profiles are arranged according to the stage position and time. B. Schematic of the pre-experiment device 

setup, approximately to scale. Hydrogel barriers (gray) separate continuous flow of buffer and attractant 

to allow gradient establishment by diffusion and to prevent cross-flow in the main channel. Then cells 

(white ovals) are loaded behind a pressure-actuated control valve gate (blue bar). C. To start the 

experiment, the stream of cells into the main chamber is first shut off with pressure gates, and then cells 

are released into main channel simultaneously by lifting the large pressure gate, allowing them to drift 

up the gradient (red color) by chemotaxis without flow. Note: gradient profile in A was measured by A. 

J. Waite.  
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Figure 3–4. Acquiring and processing data from the microfluidic gradient experiment. 

A. Cells are released into the gradient (see Figure 3–3), then a motorized stage scans the chamber, 

taking 1 min movies at 10X magnification in phase contrast spaced 1.2 mm apart. The movies consist of 

1.3 mm square frames captured at 8 per second. B–E Example of data from an experiment wherein 

wildtype RP437 cells are exposed to a gradient from 0 to 1 mM meAsp over 10 mm over several hours 

(see also Figure 3–5 IJKL). B–C. Example of data from the first movie of the experiment. From each 

movie, cell tracks were extracted (B), giving the mean position of cells (C) and tumble bias (shown in 

Figure 3–5J). Positions were binned in spatial stripes perpendicular to the gradient to calculate the cell 

density across the frame (D). E. Many density measurements as in D are taken across the device over 

time and assembled on a space and time coordinate system using the X-position of the stage and the time 

at which the movie was taken. Each vertical strip comes from one movie. F. Additional space and time 

points are interpolated from the data in E to achieve a smooth kymograph to better visualize the cell 

density as the population climbs the meAsp gradient. Regions with fewer than 10 cells were omitted. 
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Figure 3–5. (Opposite page) Performance of different phenotypes in different environments. 

Comparison of wildtype performance in three environments: no gradient (E–H); 0.1 mM/mm gradient 

of meAsp (I–L) with cells beginning at 0 mM; –0.1 mM/mm gradient with cells beginning at 1 mM (A–D). 

A, E, I. Kymographs of cell density along the device over time demonstrate diffusion (E), gradient-

climbing (I), and localization at a source (A). Kymographs were generated by interpolating between raw 

measurements as shown in Figure 3–4. B, F, J. Average tumbling probability across x and time 

determined by analyzing run and tumble states of all trajectories. Only locations with at least 10 cells 

were included. C, G, K. Tumble bias distributions of the populations. Only tracks longer than 15 sec were 

included to reduce error. D, H, L. Performance of populations and subpopulations. Mean position over 

time of the entire population (black dashed line and black circles) or of the same population separated 

into subpopulations by tumble bias (solid colored lines and circles). Each time point contains data from 

one pass of the stage. Error bars indicate +/– 2xSEM. For E–H, only the first 5 mm of the 10 mm main 

chamber was scanned. For I–L and A–D, 8 mm and 3 mm were scanned, respectively. In each column, 

two experimental replicates were combined. Note: Diffusion experiment in E–H performed by A. J. Waite. 

 

 

When we performed the assay with a chemoattractant gradient going from 0 to 1 mM 

methyl-aspartate across the device, the distribution of cell density moved up the gradient 

faster than in the no-gradient case (Figure 3–5I). As in the diffusion case, the population 

separated spatially into different subpopulations of tumble bias (Figure 3–5J), with low tumble 

bias cells at the front. Accordingly, tracking the mean position of low tumble bias cells over 

time demonstrates the fastest gradient climbing performance (Figure 3–5L). 

We hypothesized that the apparent separation of cells by tumble bias was more due to 

stable underlying phenotypic diversity in the steady-state tumble bias rather than a transient 

response of cells with the same tumble bias to differences in the local gradient. Simulations of 

diversified versus non-diversified populations support this hypothesis (Figure 3–6). We used 

the virtual wildtype population from Part 2, which has a distribution of steady-state tumble 

bias across cells, and simulated its performance in the gradient and geometry of our 
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microfluidic device (Methods). We then treated the simulated trajectories as if they were 

experimental measurements and calculated tumble bias based on the observed tumble 

probability within discrete time and space windows.  

Different tumble probability was observed across the simulated device similarly to the 

experiment (Figure 3–6A). Simulating a population of cells with a single phenotype instead of 

the wildtype distribution resulted in a very homogeneous probability of tumbling observed 

across the experiment, comparing unfavorably with the data (Figure 3–6B). This implies that 

the observed diversity of tumbling probability in space and time can be plausibly accounted 

for by underlying phenotypic diversity rather than by differential response of identical cells in 

different regions.  

These two cases demonstrate that wildtype populations are behaviorally heterogeneous and 

that there exist subpopulations with differential performance. However, they also apparently 

suggest that low tumble bias is the superior strategy both with and without a gradient. This 

seemed to be unlikely to be true at extremely low tumble bias, since at zero tumble bias, cells 

are known to be non-chemotactic. To directly measure the performance of non-tumbling cells, 

we performed the assay with a mutant that is deleted for the response regulator CheY, without 

which they are permanently running (Figure 3–7). A gradient was not used since cells not 

expressing CheY are non-chemotactic (Sourjik & Berg, 2000).  

The progress of the mean position over time of these cells was inferior to even the worst 

(i.e. highest) tumble bias subpopulation among wildtype cells climbing a gradient. The opposite 

was observed relative to the diffusing wildtype population, however, with non-tumbling cells 

performed at least as well as the best (i.e. lowest) tumble bias subpopulation. This identifies a 

key distinction that tumble bias can be reduced to zero for optimal diffusion, but a non-zero 

tumble bias is required for optimal gradient climbing.  
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Figure 3–6. Simulations of diverse or non-diverse populations in a microfluidic device. 

A. Simulation of virtual wildtype population in microfluidic gradient environment. Apparent tumble 

bias was calculated in the same way as the experiment: the probability of observing tumbles within a 

given space and time window. The distribution of phenotypes was slightly biased toward lower tumble 

bias because the model is based on single motor data and having multiple motors tends to slightly 

increase tumble bias. B. Same as A, but using a homogenous population consisting of a single phenotype 

with the mean tumble bias and adaptation time of the wildtype population. Note: Simulations were run 

by D. Chawla. 

 

 

Another fundamental chemotactic task is to hold position near a source. To test this we 

reversed the direction of the gradient, with cells beginning at 1 mM methyl-aspartate and 

concentration tapering to 0 at the other end of the device. When placed in this negative 

gradient, the cell density was much more tightly constrained to the source than in the diffusion 

case, with no cells moving past 1 mm over the assay (Figure 3–5A). Despite the close-packing 

of cells, we still observed phenotypic separation of phenotypes (Figure 3–5B), behavioral 

variability (Figure 3–5C), and differential performance (Figure 3–5D), albeit on a 10-fold 

smaller length-scale. The rank order of performance by tumble bias was reversed relative to 

the other two cases, however, with the highest tumble bias cells maintaining mean position 

closest to the source. This suggests a trade-off between exploration for new sources and 

exploitation of sources once found. 
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Figure 3–7. Diffusion of non-tumbling cells compared to wildtype drift and diffusion. 

The thick purple line is the average position versus time of VS100 cells, a strain deleted for CheY 

which does not tumble, in no gradient. For comparison, the thick dashed black line is the mean position 

versus time of wildtype RP437 cells in a 0.1 mM/mm gradient of meAsp, with thick colored lines (except 

purple) that are cells of the same population binned on tumble bias as indicated. The thin lines are the 

same as the thick lines, except for the no-gradient case. Error bars are +/– 2xSEM. Diffusion and drift 

lines come from the same data from Figure 3–5, E and I respectively, with different binning to show finer 

resolution near zero tumble bias. 

 

 

Changes in protein concentration are known to change tumble bias and adaptation 

timescale (Kollmann, Lovdok, Bartholome, Timmer, & Sourjik, 2005; Korobkova, Emonet, 

Vilar, Shimizu, & Cluzel, 2004; Park et al., 2010), and theoretical work described in Part 2 

suggests that the observed diversity in these parameters may be due to underlying 

stochasticity in the levels of proteins. For example, the adaptation enzyme CheR controls not 

only the rate of adaptation, but also the steady-state activity of the receptors. Hence variability 

in CheR is implicated as a factor underlying chemotactic diversity. We constructed a strain 
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that was deleted for native CheR and expressed CheR fused to mCherry from the chromosomal 

lac operon. By growing the cells with lower or higher levels of the lac inducer IPTG, 

populations had lower or higher distributions of tumble bias (Figure 3–8D). For a higher IPTG 

level, the tumble bias distribution was very close to that of the wildtype population, with a 

lower IPTG level resulting in a population that was shifted toward zero tumble bias. 

We sought to use this strain and the wildtype strain to establish a mapping between protein 

concentration, tumble bias, and drift velocity in different gradients. To do so, we needed a 

device that could measure the steady-state velocity of cells climbing a wide range of gradients. 

We created a device that had a large source chamber, a large sink chamber, and a 1 mm long 

by 1 mm wide by 100 µm deep bridge between them over which a gradient was established 

(Figure 3–8AB). Cells were loaded uniformly throughout the device and cell flux was imaged 

across the bridge and quantified using phase-differential microscopy (Colin, Zhang, & Wilson, 

2014). By repeating the experiment with different concentrations in the source, different 

steepness of the gradient was achieved, and drift velocity was measured in each case. Here the 

gradient steepness was defined in terms of the change in receptor free energy in order to 

linearize the relationship between gradient steep and drift velocity (Figure 3–8C, Methods). 

In order to correct for differences in cell speed between experiments, the gradient steepness 

and drift velocity were appropriately adjusted by the cell speed (Methods). Linear regression 

was performed to extract the relationship between gradient steepness and drift velocity 

(Figure 3–8E). In all cases, steeper gradients elicited higher drift velocity from the same 

population. 

Reflecting their identical distributions of tumble bias, the gradient–performance 

relationship of the high CheR induction cells matched that of the wildtype cells. This 

relationship was significantly different in low CheR induction cells. Importantly, the 

performance line of low CheR cells crosses that of high CheR and wildtype cells. As such, low 

CheR cells had higher performance in shallow gradients whereas high CheR and wildtype cells 

had higher performance in steep gradients.  
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Figure 3–8. CheR expression affects phenotypic distribution and chemotactic performance. 

A. Two-chambered PDMS devices were used to generate stable, linear gradients of different 

steepness. Movies were captured of swimming cells (100 s at 10X and 100 fps) in the gradient region 

(gray dashed box). B. Gradient steepness determined by averaging images of fluorescein, taken before 

and after the video. C. Cartoon diagram of drift velocity, Vd, cell speed, v0, and perceived gradient, 

 f c , via nonlinear chemoreception of the meAsp gradient. D. Induction of mCherry-CheR expression 

(red) in TE230 cells with 10 µM IPTG results in a  very low tumble bias distribution. Increasing induction 

to 100 µM (light blue) shifts the tumble bias distribution up to overlap with the wildtype distribution 

(black). E. ΦDM (Colin et al., 2014) was used to determine population drift velocity. Cell speed was used 

to normalize drift velocity and adjust the perceived gradient in order to combine experiments. Cells with 

wildtype tumble bias (black) or TE230 induced to a similar distribution (blue) perform better in steep 

gradients, while TE230 induced to have lower tumble bias than wildtype (red) perform better in shallow 

gradients. Lines: weighted linear regression. Error on points: 2xSEM. Note: Data gathered by A. J. Waite.  
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This suggests a specialization for different gradients that originates in different levels of 

protein and is consistent with expectations based on theory. These predictions are that steep 

gradients require higher tumble bias and shorter adaptation time for optimal performance 

than in shallow gradients, which is reflected here in the differential performance of different 

CheR expression levels. 

One of the earliest major findings in the study of bacterial chemotaxis was that different 

cells in a clonal population take different amounts of time to respond to the same stimulus 

(Spudich & Koshland, 1976). This study arguably served as the conceptual basis for future 

studies of single-cell heterogeneity. Decades later, we understand much more about the 

molecular components of the pathway, but still the functional consequences of variability in 

these components had only been discussed theoretically (Levin, Morton-Firth, Abouhamad, 

Bourret, & Bray, 1998). Here, we provide experimental evidence that this variability results 

in clonal populations assorting by phenotype over space and time, with different phenotypes 

performing better depending on the environment. 

The fact that different CheR concentrations produced specialization for different gradient 

steepness is consistent with theoretically predicted trade-offs (Dufour et al., 2014). For optimal 

drift velocity, cells must achieve maximum contrast between run duration up and run duration 

down the gradient, which is only possible if the adaptation time and tumble bias are 

appropriately matched to the gradient slope. Specifically, fast adaptation time and high tumble 

bias tend to place cells in the correct operating regime when in steep gradients, and the 

opposite parameters are required for shallow gradients. This is reflected in our result that cells 

expressing high levels of CheR, which increases tumble bias and decreases adaptation time, 

perform better in steep gradients while cells with low levels perform better in shallow ones. 

Simulations in Part 2 have predicted that there are trade-offs between sources that appear 

near cells versus far away (Frankel et al., 2014), and this is largely borne out in our 



100  

experimental comparison between positive and negative gradients. Following simulations 

results, the highest tumble bias cells perform best when the cells are at the source because of 

their reduced diffusivity, whereas lower tumble bias cells conversely have a better chance of 

making it to a faraway source. 

We used either wildtype RP437 or TE26, a RP437-derived CheR deletion strain with a low-

copy plasmid encoding IPTG-inducible expression of YFP-CheR and ampicillin resistance. 

Frozen stocks were streaked on LB for RP437 or LB with ampicillin for TE26. Single colonies 

were picked and grown overnight in tryptone broth (TB) for RP437 or TB with ampicillin for 

TE26. Overnight saturated cultures were subcultured in 20 ml of TB and grown to mid-

exponential phase (about 4 hours). If TE26 was used, ampicillin and IPTG was added to the 

TB. Cells were then washed three times in motility medium (MM; phosphate buffer pH 7.0 

with 0.1 mM EDTA and 0.01 mM L-methionine) by centrifugation in a benchtop centrifuge for 

5 min at 3 krpm and resuspended in MM and diluted to an equivalent OD of 0.01.  

We followed the high-throughput capillary assay designed by Bainer et al. (2003) and Park 

et al. (2011). Briefly, a 96-well-plate pipetting device consisting of 96 nozzles was fitted with 

96 syringe needles that served as the capillaries. A syringe pump was attached to a port on 

the device that allowed liquid to be drawn in or pushed out of the needles simultaneously.  

A 96-well plate was filled with different attractant conditions to be used inside the 

capillaries. Here we used different concentrations of aspartate in motility medium (MM; 

phosphate buffer pH 7.0 with 0.1 mM EDTA and 0.01 mM L-methionine). The 96 capillary 

array was placed in the plate and the syringe pump was used to fill the capillaries. 

The capillary array was then transferred to another 96-well plate with each will containing 

200 µl of washed, diluted cells in MM. A spacer was used that ensured that the tip of the 

capillary was submerged a few millimeters into the well. Once the capillaries were submerged, 
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the apparatus was incubated for 30 min at 30ºC. For the standard assay, the apparatus was 

then transferred to a 96-well plate that had 200 µl Luria broth (LB) growth media in each well 

and the contents of the capillaries was expelled. The plate of LB plus capillary contents was 

then grown overnight in a plate reader with continuous shaking at 37ºC and OD600 measured 

every 10 minutes. This produced a growth curve for each well, and the time at maximum 

growth velocity was used to measure the number of initial cells via the following calibration 

method. 

To calibrate, different known dilutions of cells were grown in LB in the plate reader and 

the same preparations were serially diluted and plated on LB agar. Colonies were counted by 

scanning agar plates and using standard image analysis methods in MATLAB consisting of 

thresholding, Gaussian filtering, and watershed region counting. 

For the single-cell version of the experiment, to measure the distribution of fluorescence in 

winning subpopulations, after the 30 minute incubation, the capillary apparatus was purged 

onto a dry 96-well plate and the droplets of liquid were carefully recovered by pipetting, then 

replicate wells were combined and spotted onto pads made from 1% agarose in MM. Cells were 

imaged at 100X magnification in phase contrast and in fluorescence through a YFP filter set 

and high pressure mercury lamp. MicrobeTracker (Sliusarenko, Heinritz, Emonet, & Jacobs-

Wagner, 2011) software in MATLAB was used to quantify fluorescence intensity per area in 

cells.  

Microfluidic devices were constructed from the biocompatible and oxygen-permeable 

silicone elastomer polydimethylsiloxane (PDMS) on coverglass following standard soft 

lithography protocols for two-layer devices with Quake valves (Figure 3–9) (Melin & Quake, 

2007). The master molds for the device consisted of two silicon wafers with features created 

using ultraviolet (UV) photoresist lithography in a class 100 cleanroom (Becton, Yale 

University). The bottom wafer had features for the sample channels (i.e. those through which 

cells, buffers, and chemoattractants were flowed) and was created using SU-8 negative resist. 
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Portions of the sample layer that were designed be opened and closed by pressure actuated 

values were created with a second coat of SPR positive resist on the same wafer. The exception 

was that the region to be pinched off by the large gate that was used to detained cells on one 

side of the main chamber was made using SU-8, not SPR. The second, top wafer contained 

features for the control channels that close the collapsible features in by the bottom wafer. The 

top wafer was created using SU-8 negative resist. 

Silicon wafers were first cleaned using buffered oxide etch, then spin-coated with the 

abovementioned photoresists using manufacturer specifications to achieve 10 µm layers of 

each photoresist. The resists were then cured using UV light exposure through photomasks 

designed in CAD software and printed by CAD/Art Services Inc. (Bandon, Oregon), again 

following photoresist manufacturer specifications. Subsequently, wafers were baked and the 

uncured photoresist was dissolved. After curing the SPR coat, the features were then baked 

further to produce a rounded profile to ensure complete valve closure. After both wafers were 

complete, a protective coat of silane was applied by vapor deposition. 

To cast and manufacture the two-layer device, the top wafer was coated with a 5 mm thick 

layer of degassed 10:1 PDMS-to-curing agent ratio, both provided from a kit (Sylgard 184, Dow 

Corning). For the bottom layer, a 20:1 mixture was prepared and spin coated to create an even 

100 µm thick layer. The two layers were partially baked for 45 minutes at 70ºC. The top layer 

was then cut and separated from the wafer, holes were punched using a sharpened 20 gauge 

blunt-tip needle to make external connections to the control valve lines, then aligned and 

laminated onto the bottom layer. The stacked layers were baked together for 2 hours at 70ºC 

and cooled overnight. The laminated layers were then cut out and punched to make external 

connections with the sample lines. 

To complete the device, the cut and punched PDMS devices were bonded to coverglass. The 

PDMS was cleaned of fingerprints and dust using office tape followed by rinsing with 

isopropanol, methanol, then Millipore filtered water. The glass was rinsed with acetone, 

isopropanol, methanol, then Millipore filtered water. The two pieces were plasma treated for 
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60 seconds (Harrick Plasma, Ithaca, NY), laminated, then baked on a 80ºC hotplate for 30 

minutes to establish a covalent bond. Before use, the chambers were incubated at room 

temperature for at least 24 hours to ensure robust polymerization of the hydrogel within the 

device described in the next section. 

For microfluidic chemotaxis assays, cells were streaked from frozen stocks onto LB agar 

plates. Colonies were picked and grown overnight to saturation in M9-Glycerol medium (M9G; 

standard M9 salts supplemented with 1%w/v glycerol and 0.1%w/v casein hydrolysate), then 

diluted into fresh M9G media in a volume of 15–20 ml and regrown to mid-exponential phase 

(OD600 = 0.15) with shaking at 30ºC. Cells were then washed 3 times in chemotaxis buffer 

(CB; M9 salts with 0.1 mM EDTA, 0.01 mM L-methionine, and 10 mM DL-lactate, 0.05%w/v 

polyvinylpyrrolidone-40). This was done by centrifugation for 5 min at 3 krpm in a benchtop 

centrifuge, supernatant was aspirated, and pellet resuspended in 1 ml CB gently by agitation 

without pipetting. The cells were finally resuspended in 0.5 ml of CB, corresponding to an 

OD600 of 3–4. For the negative gradient experiment, cells were washed and resuspended in CB 

with 1 mM methyl-aspartate and 10 µM fluorescein. 

Before setting up the device, it was first injected with 5 µl 10%w/v benzophenone in acetone, 

which was allowed to absorb into the PDMS for about 15 minutes. This organic photoinitiator 

permeated the PDMS and ensured robust hydrogel polymerization at the fluid–PDMS 

interface. 
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Figure 3–9. Fabrication of two-layer PDMS microfluidic devices 

Standard protocol for creating devices with Quake valves: pneumatically-operated control gates 

(lower right corner). Two wafers are made, one for the sample channels (left column), and one for the 

control valves (right column). Unlike the control wafer, the sample wafer uses a second mask (top row) 

for a second photoresist in addition to the standard negative photoresist (green). This positive resist (red), 

when subjected to additional baking will round its profile, allowing it to be completely collapsed under 

vertical deformation (lower right corner). After wafers are made, they are used to cast PDMS (light gray), 

a silicone polymer that is somewhat flexible, permeable to oxygen, but impermeable to aqueous solutions, 

and which is generally considered biocompatible for experimental purposes.  
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Sample lines were connected to reservoirs mounted on a manifold of manual stopcocks 

allowing for independent selection between tank pressure regulated at tunable 0-3 psi of 

compressed nitrogen (“on”) or atmospheric pressure (“off”). The lines were primed and 

reservoirs filled by introducing negative pressure into the manifold through an auxiliary port 

and subsequently connected to the PDMS device via stainless steel 20 gauge connector blunt 

stubs. The valve lines were similarly set-up, except all lines were filled halfway with water, no 

reservoirs were used, the manifold had computer-controlled solenoid valves, and the tank 

pressure was regulated to 15 psi. 

Hydrogel walls were created by polymerization of photoreactive derivative of poly(ethylene 

glycol) (PEG) using UV light, which was delivered from a high pressure mercury lamp or a UV 

LED illuminator (SOLA light engine from Lumencor, Beaverton, OR) through a DAPI filter 

block. The chamber was first flooded with wall solution (10% v/v PEG-diacrylate 700 average 

molecular weight, 0.05% w/v LAP photoinitiator, and 1 ng/ml resorufin) introduced through 

one of the sample lines. Stopping down the microscope back aperture allowed us to expose a 

small circle within the frame about 100 µm in diameter through a 10X objective. Using 

continuous exposure and an automated stage, a stripe of hydrogel polymerization was “drawn” 

across the device to make the wall. The chamber was then flushed with CB from a different 

sample line until no resorufin dye remained (about 60 min). 

Source and sink solutions were continuously circulated on either side of the observation 

chamber through channels that were separated by the hydrogel walls so that diffusion was 

possible without cross flow. In both the gradient and no-gradient experiments, the sink 

solution was CB. In the gradient case, 1 mM methyl-aspartate and 10 µM fluorescein in CB 

was used as the source, whereas in the no-gradient case, CB was used. Six hours of circulation 

was performed before starting the experiment in order to establish and stabilize the gradient. 

For the negative gradient, the sink and source solutions were reversed. 

Cells were then loaded into one of the sample line reservoirs and cycled into a section of 

device separate from the main channel to avoid disturbing the gradient. The cell-retaining gate 
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was then closed and cells were flowed into a narrow strip on the starting side of the main 

channel behind the gate. All valves surrounding the main channel were then closed, and the 

experiment was started by simultaneously beginning the automated acquisition and opening 

the cell-retaining gate. 

A custom written MATLAB script was used to control the automated stage (Prior) of the 

microscope (Nikon Ti) via the MicroManager interface (https://www.micro-manager.org/). The 

script acquired movies across the device in a tiling fashion at 10x such that each frame was 

about 1 mm wide and the difference between acquisition positions was about 1 mm. At each 

position, 1 minute of phase contrast video was acquired to capture cell swimming preceded and 

followed by a single frame of fluorescence acquired through the YFP block to capture the 

fluorescein gradient. Fluorescein has approximately the same diffusion coefficient as methyl-

aspartate, making it a good indicator of the methyl-aspartate gradient in the device. This main 

channel was scanned in this manner over 8 mm for the positive gradient (5 mm for no-gradient, 

3 mm for negative gradient) and over 3 hours after the cell-retaining gate was lifted. 

The illumination source for fluorescence was an LED illuminator (SOLA light engine from 

Lumencor, Beaverton, OR). Movies were recorded using an EM-CCD camera (Andor) at 1024 

x 1024 resolution to a striped hard disk array in a Dell workstation at 8 fps 

Since cell bodies in phase contrast microscopy are dark, we identified objects by 

thresholding on pixels intensity 6 standard deviations darker than the mean of the distribution 

of all pixel intensities in the frame. To find the center of the resulting objects, we used the 

radial-symmetry-center method described by R. Parthasarathy and available at 

http://physics.uoregon.edu/~raghu/particle_tracking.html. We tracked the motions of objects 

from frame to frame using the U-track software package developed by G. Danuser and 

available at http://lccb.hms.harvard.edu/software.html. 

We created a MATLAB script that identified runs and tumbles in individual trajectories. 

For every point-to-point transition, we calculated the speed and the acceleration. These two 
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quantities were normalized by the mean run speed. We also calculated the angular velocity. 

We then fit these 3 variables with a sum of trivariate Gaussians (i.e. 3 Gaussians in a 3-

variable domain). Points corresponding to runs occupied different regions of this space than do 

those corresponding to tumbles, so we then used clustering to assign run or tumble state 

probabilities to each point based on its position relative to the tri-Gaussian model. Since mean 

run speed is not initially known, an educated guess was used, then iterations of fitting and 

clustering are performed to refine the run and tumble assignments. The fitted trivariate 

Gaussian model was also refined by developing a reference data set with thousands of 

trajectories of wildtype cells swimming on slides in the absence of stimulus. 

Each microfluidic gradient experiment produced roughly 150 short movies of cells 

swimming throughout the device. Tracking and run/tumble processing was run on all movies 

at the Yale High Performance Computing facility or on Dell workstations. Filtering was done 

to remove non-cell objects that met certain criteria: run speeds that were less than 5 or greater 

than 40 µm/s and mean squared displacement that was less than 50 µm2/s. Within-movie 

positions were added to stage positions to localize individual tracks within the device. This 

summing was also done on time information to achieve spatiotemporal positioning of cells 

throughout the device. 

Movies were subdivided into 6 to 10 spatial bins along the gradient axis, depending on the 

experiment, to calculate the cell density and average tumble bias across the device. Whenever 

we calculated an average across trajectories, we weighted by the trajectory duration. For 

measurements that involved binning on tumble bias, only tracks with tumble bias falling in a 

certain range were screened out and analyzed as above. For all kymographs and heat maps 

that are shown over a continuous space-time domain, values at additional space and time 

points between measured movies were linearly interpolated from the data using the linear 

ScatteredInterpolant method in MATLAB. 
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To calculate the mean position as a function of time, we took each scan of the microscopy 

stage across the device as a single time point. The average position of all cells detected in each 

scan was calculated to produce the mean position. The time points are determined by the 

temporal midpoint of each stage scan. To calculate the mean position of individual bins of 

tumble bias, only cells with a certain tumble bias had their positions averaged. 

The shape of the methyl-aspartate gradient was reconstructed from the fluorescein images 

by first normalizing each image to a flat-field image acquired in a uniform fluorescence field 

(typically fluorescence reference slides from Ted Pella, Redding, CA) to correct for systematic 

distortions in fluorescence illumination across the frame, then rescaling to minimum and 

maximum fluorescence measurements captured at the source and sink circulation loops of the 

device. The intensity profile was averaged across the non-gradient direction to produce a 1-D 

profile along the gradient axis for each fluorescence image. Then, using the time and position 

at which the frame was captured during the experiment, these were assembled into a 2-D 

space–time matrix of concentration. 

The same cell model and simulation framework from Part 2 were used. Phenotypes in the 

virtual wildtype population were generated from the fit to wildtype data (Figure 2–1) (Frankel 

et al., 2014). The single phenotype used for the homogenous population was the mean tumble 

bias and mean adaptation time of the wildtype model. Note that this model is slightly shifted 

toward lower tumble bias compared to our experimental wildtype cells because it is based on 

single motor clockwise bias data. The free swimming cells in our experiment have multiple 

flagella, which very slightly increases the tumble bias relative to single motor clockwise bias 

(Mears et al., 2014; Sneddon, Pontius, & Emonet, 2012). 

New boundary conditions were added to match the experimental device. The environment 

was bounded as follows: x from 0 to 10000 µm, y from 0 to 1000 µm, and z from 0 to 10 µm. The 

x boundaries were reflecting. The y boundaries were toroidal. The z boundaries were 

“aligning”: cells attempting to cross the “floor” or “ceiling” of the device had their heading 
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vector reoriented to lie in the z plane. Following the microfluidic device design, this condition 

prevented cells from traveling perpendicular to the gradient for extended periods of time in 

the z dimension and constrained them roughly in a single z plane. The aligning condition was 

not used for the y boundaries to avoid unnecessary computational overhead in resolving edge 

and corner crossings, and since the experimental geometry actually permits cells to run 

perpendicular to the gradient in the y direction for some time. 

To match the experiment’s initial condition, cell positions were initialized within a small 

stripe inside the virtual device: x from 0 to 100 µm and across the device in y. Within that 

region, positions and headings were randomized. A linear gradient of meAsp from 0 to 1 mM 

was applied and cells were pre-equilibrated while being help in place with random 

orientations. At time 0, they were allowed to swim. After a 180 minute simulation, all 

trajectories of all cells were broken into space–time bins exactly as if movies had been acquired. 

The average apparent tumble bias within each bin was calculated as if from experimental data. 

Cells were grown in standard recipes for Luria broth (LB), Super-optimal broth (SOB), or 

SOB with catabolite repression (SOC) as specified. Plates were made with media plus 1.5% 

agar and antibiotics as specified. We found that RP437 has an extremely low recombination 

efficiency compared to MG1655, so we first recombined the insert into MG1655 then used P1 

phage transduction to transfer the insert to RP437. 

Gibson assembly (Gibson et al., 2009) was used to create a plasmid containing the 

recombination insert. The complete insert consisted of a mCherry::cheR fusion sequence 

followed by an FRT-sequence-bounded kanamycin resistance cassette. The mCherry fragment 

was PCR amplified from pTE46. The cheR fragment was PCR amplified from RP437 genomic 

DNA. The FRT-kanR-FRT cassette was PCR amplified from pCP15 (Cherepanov & 

Wackernagel, 1995). The vector for the final plasmid construct was pUC19.  

The assembled recombination insert was PCR amplified from the resulting plasmid with 

primers containing homology for the region following chromosomal pLac in MG1655. Linear 
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insert fragments were gel purified. They were PCR amplified again from the fragment using 

the same template and gel purified again. Before transforming with the fragment, MG1655 

cells were first transformed with pKD46 (Datsenko & Wanner, 2000) encoding a lambda-red 

recombinase cassette, and selected on LB with ampicillin (100 µg/ml) plates at 30ºC. Then an 

overnight culture was prepared in 5 ml SOC with 100 µg/ml ampicillin. To 5 ml SOB with 100 

µg/ml ampicillin and 1 mM arabinose or with no arabinose, 10 µl of overnight culture was 

added and grown to 0D 0.6 (about 3 hours). The subculture was centrifuged at 6krpm for 7.5 

minutes at 4ºC and the supernatant aspirated. The pellet was washed with 1 ml 10% glycerol 

in a 4ºC temperature-controlled room 3 times by centrifugation for 3 min at 6 krpm, then 

resuspended in 50 µl 10% glycerol. To the suspension 1 µg of recombination insert fragment 

DNA was added and electroporated, followed by immediate recovery in 1 ml SOC at 37ºC for 2 

hours. The culture was then washed twice with 1 ml M63 salts by centrifugation for 3 min at 

6krpm, then resuspended in 100 µl of M63 salts and spread on LB agar with kanamycin 

50µg/ml. Plates were incubated overnight at 43ºC to remove pKD46. Colonies were streaked 

out twice on LB agar with 50µg/ml kanamycin to purify and screened for ampicillin sensitivity. 

The insertion site was PCR amplified from a genomic DNA prep and verified by sequencing. 

To create the P1 phage donor lysate, overnight saturated culture of the donor strain in LB 

was first diluted 1:100 into 3 ml transduction growth medium (TG; LB with 5 mM CaCl2 and 

0.2%w/v glucose). The subculture was grown 30 min at 37ºC, then 75 µl P1 phage stock was 

added and incubated for 3 hours. Subsequently 10 µl of chloroform was added. The sample was 

then pelleted and the aqueous supernatant was saved and stored at 4ºC. 

In order to transduce mutations from donor lysate into the recipient strain, the overnight 

saturated culture in LB of the recipient strain was diluted 1:100 into 10 ml TG until late 

exponential phase at 37ºC. The cells were pelleted and resuspended in 2.5 ml transduction 

reaction medium (TR; LB with 5 mM CaCl2 and 100 mM MgSO4). A dilution series was 

prepared from 1:1:0 up to 1:0:1 of recipient cells, TR, and donor lysate in a total volume of 200 

µl. Transduction reactions were incubated without shaking at 37ºC for 30 min. The cells were 
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then grown in 1 ml of LB combined with 200 µl of 1 M sodium citrate pH 5.5 for 1 hour at 37ºC 

with shaking. The cells were then pelleted and resuspended in 100 µl transduction selection 

medium (TS; LB with 20 mM sodium citrate) and plated on TS agar with 25 µg/ml kanamycin 

and grown overnight at 37ºC. Large colonies were selected and colony-purified twice on TS 

agar and 25 µg/ml kanamycin. 

Following transduction, the KanR marker was removed via FRT excision by first 

transforming with pCP20 and selecting on LB 100 µg/ml Amp at 30ºC overnight to remove the 

FRT-bounded region, then re-streaking on LB with no antibiotic and growing overnight at 43ºC 

to remove pCP20. Sensitivity to kanamycin and to ampicillin were then verified. This strain 

was dubbed TE230. 

Note: this assay was performed by Adam Waite. Devices were designed following Colin et 

al. (2014), using the fabrication methods described above under “Microfluidic device design 

and fabrication.” The side chambers were 15 mm x 15 mm with a depth of 100 µm with a bridge 

between them that was 1 mm long. 

Cells were grown exactly as in the microfluidic gradient experiment, except that, when 

TE230 was used, IPTG was added to the liquid growth medium. Mid-exponential-phase cells 

were split into two aliquots, then pelleted and resuspended in either CB or CB plus methyl-

asparate and fluorescein. The ratio of methyl-asparate and fluorescein was held constant but 

the total concentration was varied across experiments to achieve different gradients that were 

still directly comparable in fluorescence measurements. The buffer-only cells were loaded into 

one chamber and the other preparation into the other chamber, then the device was sealed and 

incubated 90 minutes at 30ºC to allow the gradient and cell flux to reach steady-state across 

the bridge. 

The device was then place on the inverted fluorescence microscope with a 10X objective and 

100-second-long phase contrast movies were captured at the bridge with fluorescence stills of 

the gradient being taken before and after. Fluorescence illumination was done with a SOLA 
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light engine. Movies were recorded using a CMOS (Hamamatsu) camera at 512 x 512 

resolution to a striped hard disk array in a Dell workstation at 100 fps. 

The resultant movies contained a dense and deep field of cells from which we calculated the 

drift velocity using the ΦDM technique described by Colin, et al. (2014). Briefly, the Fourier 

transform of the images was taken and the phase shift over time was calculated. To calculate 

the cell speed required to normalize the result from one experiment to the next, we first 

thresholded the pixel intensity of each frame of the phase contrast image was to isolate only 

the in-plane cells. From these we used the particle tracking described above under 

“Computational analysis of single-cell trajectories” to generate short trajectories that gave 

short measurements of speed which were averaged together across all trajectories across the 

experiment. 

In order to calculate the gradient steepness, it was necessary to correct for the fact that the 

sensitivity of the receptors to chemoattractant is sigmoidal (Sourjik & Berg, 2002). Following 

Colin, et al. and others, we used a standard MWC model of the change in receptor free energy 

as a function of methyl-aspartate concentration      ln I Af c K c K c     , where KI = 

18 µM is the binding affinity of the inactive receptors and KA = 3 µM is the binding affinity of 

the active receptors for meAsp. For each movie, we fit this function to the gradient profile in 

order to extract the gradient of the receptor free energy, ( )f c , which was used as the effective 

gradient as sensed by the cells. This quantity was multiplied by the cell speed, which directly 

determines the rate at which the cells perceive the gradient, to normalize between 

experiments. 

Three types of cells were used: wildtype cells, TE230 cells with 10 µM IPTG, and TE230 

with 100 µM IPTG. For each type, many ΦDM experiments were performed by altering the 

concentration of methyl-aspartate that was added to one side to create different gradients. 

Linear regression was then performed on the drift velocity versus gradient data for each cell 

type. Distributions of tumble bias of these cells were also measured at the time of the 
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experiment by placing 10 µl diluted cell preparation on a glass slide without a gradient and 

taking several 2 minute movies and analyzing trajectories for tumble bias. 
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Although the present study still leaves many facets of this topic unexplored, I hope that it 

will serve as a starting point for further investigations into the sources and consequences of 

phenotypic heterogeneity. With respect to bacterial chemotaxis, future experiments should 

establish correlations between protein concentration and behavior at the single-cell level to 

complete the mapping between molecules and behavior. At the population scale, selection on 

chemotactic performance in different environments could be performed in a laboratory 

evolution experiment to discern whether variability in performance provides a fitness 

advantage. Both of these projects are ongoing topics of research. 

A new feature of this framework is that the relationship between genotype and phenotype 

has been expanded to allow consideration of the role of protein levels. While genotype broadly 

defined could be said to include both protein coding sequences and regulators of genetic noise, 

treating the role of protein levels as a separate step allowed us to quantitatively analyze the 

contribution of this noise apart from changes in the proteins themselves. We see applications 

of this approach in the evolutionary study of signal transduction, wherein cell-to-cell 

differences in the levels of signaling proteins may have an impact on behavior on par with 

changing the biochemistry of the proteins themselves (Ferrell, Tsai, & Yang, 2011). 

While we have used E. coli as a model system due to the wealth of experimental data, the 

framework we develop here is also relevant to chemotaxis of other bacterial species and even 

of the cells of higher organisms. Multicellular organisms also exhibit different motion 

strategies in their constituent cells, from the singular approach of human sperm to the 
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different motility patterns of neutrophils as they navigate the body to sites of infection and 

capture invading organisms (Eisenbach & Lengeler, 2004). Our framework could be used to 

investigate several interesting questions in such systems: How does behavioral diversity of 

single cells affect the fitness of the organism, and when is the diversification of a single cell 

type supplanted by the commitment of a new developmental cell lineage? 

All cellular navigation systems use the interactions of proteins to process information 

obtained from the environment and convert it into a decision about how to move. Variations in 

the amounts or stoichiometries of these proteins can therefore lead to variations in this 

decision-making process. As a result, whenever cells are moving, whether they be infectious 

bacteria on their way to a host tissue or immune cells on their way to intercept them, the 

genetic blueprint of the chemotaxis pathway is not sufficient to predict population behavior. 

Indeed, the deviations from the average behavior may themselves constitute an adaptive 

strategy. 

Trade-offs may also exist in the chemotaxis behaviors of other human bacterial pathogens. 

The closely related chemotaxis system in Salmonella enterica is required for virulence (Stecher 

et al., 2004), as is the substantially different motility system of Borrelia burgdorferi (Sze, 

Zhang, Kariu, Pal, & Li, 2012). On the other hand, pathogens such as Pseudomonas aeruginosa 

have multiple motility systems to tackle different environments during infection (O'Toole & 

Kolter, 1998). It is possible that phenotypic diversification within a single navigation system 

may bridge the gap between one system and many by allowing populations to adapt to greater 

environmental variation without developing a new biological module.  

From the simplest two-component systems to the most elaborate signal transduction 

cascades, proteins responsible for sensing environmental signals are usually distinct from 

those involved in making behavioral decisions. Often, the output of many types of receptor 

proteins are fed into a much smaller number of signal transduction pathways. While cells can 
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control their sensitivity to different signals by regulating the expression of different receptors, 

the integration of multiple signals through a central group of proteins will place conflicting 

demands on those core proteins. Thus, while horizontal integration is beautifully economical 

and a ubiquitous feature of biological pathways, our study illustrates that it is also likely to 

introduce trade-offs by design. 

Finally, biology broadly speaking is replete with noise. Although the concept of non-genetic 

individuality may have been initially coined in reference to E. coli chemotaxis (Spudich & 

Koshland, 1976), we now know that many other biological systems exhibit substantial non-

genetic cell-to-cell variability, including stem cell differentiation (Huang, 2009), bacterial 

sporulation (Maamar, Raj, & Dubnau, 2007), and cancer cell response to chemotherapy 

(Spencer, Gaudet, Albeck, Burke, & Sorger, 2009). Different systems may have different 

mechanistic drivers that create, constrain, and adapt this variability. In all cases, however, it 

is conceivable that through genetic changes to drivers of non-genetic diversity, populations of 

cells may achieve higher collective success in tackling biological trade-off problems. This form 

of diversity may constitute an evolutionary stepping stone on the path from one to multiple 

biological modules.  
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