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ABSTRACT
We study the generation of vorticity in the magnetic boundary layer of buoyant magnetic tubes and

its consequences for the trajectory of magnetic structures rising in the solar convection zone. When the
Reynolds number is well above 1, the wake trailing the tube sheds vortex rolls, producing a von Ka� rma� n
vortex street, similar to the case of Ñows around rigid cylinders. The shedding of a vortex roll causes an
imbalance of vorticity in the tube. The ensuing vortex force excites a transverse oscillation of the Ñux
tube as a whole so that it follows a zigzag upward path instead of rising along a straight vertical line. In
this paper, the physics of vorticity generation in the boundary layer is discussed and scaling laws for the
relevant terms are presented. We then solve the two-dimensional magnetohydrodynamic equations
numerically, measure the vorticity production, and show the formation of a vortex street and the conse-
quent sinusoidal path of the magnetic Ñux tube. For high values of the plasma beta, the trajectory of the
tubes is found to be independent of b but varying with the Reynolds number. The Strouhal number,
which measures the frequency of vortex shedding, shows in our rising tubes only a weak dependence
with the Reynolds numbers, a result also obtained in the rigid-tube laboratory experiments. In fact, the
actual values measured in the latter are also close to those of our numerical calculations. As the Rey-
nolds numbers are increased, the amplitude of the lift force grows and the trajectory becomes increas-
ingly complicated. It is shown how a simple analytical equation (which includes buoyancy, drag, and
vortex forces) can satisfactorily reproduce the computed trajectories. The di†erent regimes of rise can be
best understood in terms of a dimensionless parameter, s, which measures the importance of the vortex
force as compared with the buoyancy and drag forces. For s2> 1, the rise is drag dominated and the
trajectory is mainly vertical with a small lateral oscillation superposed. When s becomes larger than 1,
there is a transition toward a drag-free regime and epicycles are added to the trajectory.
Subject headings : hydrodynamics È MHD È Sun: interior È Sun: magnetic Ðelds

1. INTRODUCTION

The motion of magnetic Ñux tubes in astrophysical media
is a complex phenomenon in which the full two- or three-
dimensional magnetohydrodynamic structure of the tube
plays an important role. Much attention has been devoted
to the dynamics of the tubes as one-dimensional deformable
ropes with little consideration of the physics of the bound-
ary layer at their periphery or of the surrounding external
Ñows (for a summary, see Moreno-Insertis 1997a, 1997b).
Yet, the generation of vorticity in the boundary layer has
the potential to modify the trajectory as well as the struc-
ture of the Ñux tube. As with high Reynolds number Ñows
around rigid cylinders in the laboratory, the vorticity gener-
ated in the periphery of the tube accumulates in a trailing
wake, yielding a von vortex street. Shedding ofKa� rma� n
oppositely signed vorticity leads to an imbalance of the
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total vorticity of the tube, the appearance of alternating
aerodynamic lift forces, and a consequent sideways deÑec-
tion of the upward motion (Fan, Zweibel, & Lantz 1998a).
The rise of the tube is thus accompanied by a lateral oscil-
lation, yielding a zigzag path.

Vorticity is generated in the magnetic Ñux-tube periphery
essentially through the curl of the Lorentz force, with the
buoyancy force being of secondary importance as a vor-
ticity source there (Emonet & Moreno-Insertis 1998). As
with the kinetic energy of the Ñow, viscosity tends to dissi-
pate the vorticity. However, for buoyant magnetic tubes in
a stratiÐed medium, the ratio of viscous dissipation to mag-
netic generation of vorticity, both in the boundary layer,
scales as (see ° 2), where Re and are the(R/H

p
)(Re

m
/Re) Re

mviscous and magnetic Reynolds numbers, respectively, R is
the tube radius, and is the local pressure scale height.H

pWhenever and (both conditions applyR/H
p
> 1 Re

m
[ Re

for magnetic tubes in stellar interiors), the magnetic term is
predominant and governs the vorticity budget and the for-
mation of the trailing wake.

This paper presents the results of an analytical and
numerical study of the generation of vorticity in the bound-
ary layer surrounding a magnetic Ñux tube and discusses its
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implications for the buoyant rise of the tube across a strati-
Ðed medium. We Ðrst address the vorticity sources and
obtain the basic parameters of the problem and the corre-
sponding scaling laws (° 2). The magnetic, buoyancy, and
viscous terms in the vorticity equation are found to be
inversely proportional to the plasma beta. In ° 3, we present
compelling empirical support for this b~1 scaling from 2.5-
dimensional numerical simulations of both rectilinear and
zigzag rises. In ° 4, we examine the Reynolds number depen-
dences. Despite the complexity of the process, an under-
standing of the results follows from a simpliÐed equation of
the motion for the tube (including buoyancy, aerodynamic
drag, and vortex forces). Various regimes of rise can be
delineated depending on a parameter s, which measures the
importance of the lift force as compared with the aero-
dynamic drag and is proportional to the square of the vor-
ticity generated in the boundary layer : for s2> 1 the
dynamics are drag-dominated, whereas for s2? 1 they are
drag-free (° 5). The parameter s grows with increasing Rey-
nolds numbers. A discussion of these results is presented in
° 6.

There are several recent publications concerning the two-
and three-dimensional structure of buoyant magnetic tubes
(e.g., Moreno-Insertis & Emonet 1996 ; Emonet & Moreno-
Insertis 1998 ; Fan et al. 1998a, 1998b ; Hughes & Falle
1998). Their basic astrophysical motivation is to understand
the transport of magnetic Ñux from the interior to the
surface of cool stars. Fan et al. (1998a) already noted the
detachment of vortex rolls and the ensuing imbalance of
vorticity as causing the tube to rise following a zigzag path.
In their calculation, however, the vortex loss did not result
from a simple instability of the wake but, rather, was
directly linked to the presence of a neighboring Ñux tube.
Also related to this paper is a Letter by Hughes & Falle
(1998), in which they present the results of a 2.5-dimensional
numerical simulation of a rising Ñux tube at Reynolds
number D103 and b \ 10. The rise of their tube shows a
trajectory deviating from the vertical soon after the begin-
ning of the rise. In addition, the tube subsequently stops
moving upward and, for a short while, even descends before
resuming its rise. In this paper, we argue that these motions
are just part of an incipient zigzag oscillation in an
intermediate-drag regime, in which the zigzag and the iner-
tial oscillations of a buoyantly accelerated object subjected
to a transverse lift force are superposed. In fact, the reversal
of the direction of motion just constitutes an epicycle typical
of this regime of motion : the trajectories found by Hughes
& Falle (1998) can be reproduced with our simple analytical
model (see Fig. 6 in ° 5.3).

2. VORTICITY GENERATION IN THE BOUNDARY LAYER

2.1. Vorticity Sources
Consider a plane-parallel stratiÐed medium with equi-

librium pressure and density A magnetic Ðeldp0(z) o0(z).distribution in the form of a horizontal magnetic tube is
introduced, so that the pressure and density now become
p(x, z) and o(x, z)\ p0(z) ] *p(x, z) \o0(z) ] *o(x, z),
respectively. The main axis of the tube points in the y-
direction and the problem is assumed to be 2.5-
dimensional : all quantities are invariant in y but vectors
may have a y-component. The magnetic Ðeld lines may be
twisted, and we denote with and the longitudinal andB

y
B

ttransverse components of the Ðeld, respectively. The quan-

tity of interest is the longitudinal vorticity Its timeu
y
e
y
.

evolution is governed by the following equation (Emonet &
Moreno-Insertis 1998) :
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The subscript t stands for the component of a vector in the
vertical plane, J is the current density, c is the speed of light,
and k is the dynamic viscosity. The e†ect of compressibility
in the viscous term is safely neglected in this equation
because the rise velocity is assumed to be much smaller than
either the or the sound speed. An asymptoticAlfve� n (VA) (c

s
)

analysis based on the small parameters b~1 and R/H
p(appropriate for buoyant magnetic tubes in the lower solar

convection zone where typically andb Z 105 R/H
p
[ 10~2)

shows that the fourth term on the right-hand side of equa-
tion (1), is O(b~1) smaller than the other three,T4, T1, T2,and (Emonet & Moreno-Insertis 1998). These Ðrst threeT3terms correspond to vorticity generation by buoyancy
(baroclinic production, and magnetic stresses andT1) (T2),to the viscous dissipation respectively. The viscous(T3),term is the only one present in laboratory experiments with
Ñows around rigid cylinders.

If the magnetic Ðeld lines are assumed to be sufficiently
twisted for the tube to maintain coherence during its rise,
but still with smaller than then within the inte-o B

t
o o B

y
o ,

rior of the tube, the Ðrst two vorticity generation terms of
equation (1) compete with each other in an oscillatory
fashion with time (Moreno-Insertis & Emonet 1996). In the
tube boundary layer (where the magnetic Ðeld distribution
falls to zero), however, they reinforce each other, generating
oppositely signed horizontal vorticity on either side of the
tube. This vorticity, in fact, has the same sign as that gener-
ated around rigid cylinders in high-Re laboratory experi-
ments, which produces the characteristic vortex rolls in the
wake.

2.2. Scaling L aws
We are interested in high Reynolds number Ñows for

which the width of the boundary layer is much smaller than
the radius of the tube. The structure of the boundary layer
depends on the ratio If g > l, with g the magneticRe

m
/Re.

di†usivity and l the kinematic viscosity, then there are two
boundary layers, with the resistive one being much thinner
than the viscous one (e.g., Parker 1982). The situation, in
fact, is comparable to what we would get along a rigid
cylinder in the sense that vorticity is produced within the
very thin resistive layer (the analogy is better in the limit

and di†used into the wider viscous layer where itRe
m

] O)
is transported downstream. In the convection zone, on the
other hand, one expects g to be larger than l ; whenever

the tangential velocity should fall to zeroO(Re
m
) ¹ O(Re),

over a distance d equal to the width of the resistive bound-
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ary layer, i.e.,

d BR/JRe
m

, (2)

since the magnetic Ðeld exerts a tangential stress on the Ñuid
everywhere within the resistive boundary layer. Because of
the constraints imposed by the numerics, in this paper Re

mand Re are of the same order of magnitude (g is a factor of 2
to 3 smaller than l).

Let us call the modulus of the velocity of the tube inVtubethe vertical plane. To obtain an estimate for the magnetic
vorticity source and the sink term we consider the(T2) (T3),asymptotic case in which the drag force exactly balances the
driving forces in the equation of motion of the tube, so that
the inertial term is negligible (this will be called the drag-
dominated regime). Setting the buoyancy force equal to the
drag force yields for the velocity of the tube the asymptotic
equilibrium value given byVeq,

VtubeB Veq4
c
s

b1@2
A R
H

p

B1@2
. (3)

With this value, and on the basis of equation (2), we obtain

(B
t
Æ $

t
)(J

y
e
y
)

co
\ O

CRe
m
1@2
b

Ac
s

R
B2 sin2 (

O(1)

D
,

GHI (4)

k
o

+2(u
y

e
y
)\ O

CRe
m
3@2

Re
1
b
Ac

s
R
B2A R

H
p

BD
. (5)

( is the pitch angle of the Ðeld lines. The use of equation (2)
restricts the validity of these estimates to the case O(Re

m
) ¹

O(Re ) (otherwise the tangential velocity would fall to zero
over a distance wider than ). The buoyancy sourceR/Re

m
1@2

term in equation (1) obeys a scaling law similar to (5) butT1without the dependence on the Reynolds numbers. The
main parameters of the problem are, therefore, the plasma
beta, the tube radius, and the viscous and magnetic Rey-
nolds numbers.

All three terms through depend on the plasma betaT1 T3as b~1. Hence the solutions obtained should show this
simple scaling. On the other hand, the asymptotic speed of
rise and, therefore, the inverse timescale for each solution
scale as b~1@2. A test for all these scaling laws is contained in
the following section, which is devoted to a numerical study
of the rise of buoyant tubes for di†erent values of b but
maintaining Re and constant. The dependence on theRe

mReynolds numbers is studied in ° 4.
For an actual tube in a stellar interior, Re (or and bRe

m
)

are not independent parameters : the speed of rise depends
on b, so that Re and The separation ofRe

m
P VtubeP b~1@2.

dependences used in the following sections is just a device
that facilitates the numerical test of the scaling laws : while
we can vary b within a range of a few orders of magnitude,
the current numerical codes do not allow the same for the
Reynolds numbers.

3. THE RISE OF BUOYANT MAGNETIC FLUX TUBES FOR

VARYING VALUES OF b

The actual trajectory of the buoyant tubes sensitively
depends on the nature and instabilities of the trailing wake,
which, in turn, results from the generation of vorticity in the
boundary layer. This section examines, using numerical
simulations, two di†erent types of trajectories, namely, rec-
tilinear (° 3.1), which applies when the wake does not

become unstable, and sinusoidal, after the vortex-shedding
instability has already set in (° 3.2). At the same time, we will
be testing the scaling laws discussed just above. To that end,
in this section we keep the Reynolds numbers Ðxed and use
di†erent values of the plasma beta.

We use an explicit code that integrates the complete set of
compressible MHD equations in two dimensions, including
viscosity, magnetic di†usion, and thermal conduction. No
special artiÐcial viscosity is implemented. The code is a
modiÐcation of a hydrodynamic code used to simulate the
dynamics and stability of compressible plumes (Rast 1998).
The background atmosphere is adiabatically stratiÐed, with
pressure and density ratios across the box of 6 and 3,
respectively. The initial tube is given by B

y
D exp ([2r2/

R2), with r drawn from the tube center,B
t
\ qr Â B

y
,

andqH
p
\ 10.5, R/H

p
\ 5.7] 10~2.

3.1. Rectilinear Trajectories
We have run simulations for initial values of b at the tube

center equal to 800, 400, 200, 100, 50, and 25. The viscosity
and ohmic di†usivity are adjusted (in factors of 2) for each
run so that the resulting viscous and magnetic Reynolds
numbers of the solutions are approximately equal. Calcu-
lating Re and based on the horizontal width of the tubeRe

mand its rise velocity, values during the asymptotic rise
regime fall between 200 and 300 for Re and between 700
and 800 for All other parameters are kept Ðxed. ForRe

m
.

these values of b, Re, and the wake is stable during theRe
m
,

rise across the integration box and the resulting trajectory
of the tube is a simple straight line (as in, e.g., Emonet &
Moreno-Insertis 1998).

To test the scaling laws of ° 2.2, we plot in Figure 1 the
time evolution of the positive vorticity integrated over the
right half of the tube wake. The region of integration is a
square spanning horizontally the right half of the box and
extending vertically all the way up to the stagnation point
at the rear of the tube. The unit of time is the same for all
curves and is taken as is the speed atH

p
/(VA)b/25 (VA Alfve� n

the center of the tube at t \ 0 and the subscript meansb/25that for the case with b \ 25 is used). Except during theVAinitial stages of evolution, when the asymptotic quasi-
equilibrium between buoyant acceleration and aero-
dynamic drag is being reached, the total amount of positive
vorticity in the wake increases linearly with time. At the
Reynolds numbers being considered, there is little dissi-
pation of vorticity in the wake over the elapsed time shown.
Thus the accumulated positive vorticity in the right half of
the tube wake is a good indicator of its rate of generation in
the right magnetic boundary layer. If we now rescale each
curve using (which is proportional to b1@2 and equalH

p
/VAto each curveÏs own timescale) and plot them again, we

obtain the curves of the lower panel. As can be seen, the
curves now overlap in the asymptotic quasi-equilibrium
regime. This clearly shows how well the scaling law of the
previous section applies. The quality of the result stems
mainly from the fact that both the generation and dissi-
pation terms depend on b~1. It also follows from the exclu-
sion from the measurement of the negative vorticity,
produced at the rear of the tube, which would have blurred
the results.

3.2. Vortex Shedding and the Zigzag Trajectory
If the initial condition is not perfectly symmetric, then for

the Reynolds numbers considered here the wake becomes
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FIG. 1.ÈTop: Amount of positive vorticity on the right-hand side of the
wake as a function of time for di†erent values of b. From left to right, the
curves correspond to b \ 25, 50, 100, 200, 400, 800. The time unit is

(which is common to all curves). Bottom: Same vorticityH
p
/(VA)b/25values but with a di†erent scalingÈboth the vorticity and inverse time of

each curve have been multiplied by i.e., the time unit for each curveVA/H
p
,

is made proportional to b~1@2. The nice superposition of the curves in the
asymptotic regime conÐrms the b~1 law.

unstable, and trailing vortices are shed alternatively from
either side of the tube. The detachment of a vortex roll from
the wake to the trailing von street causes a vor-Ka� rma� n
ticity imbalance, i.e., a nonzero net circulation around the
tube and an associated lift force. In this section, we show
how this leads to a zigzag rising path of the tube. In the
laboratory experiments, the instability takes place whenever

and is present for a few orders of magnitude aboveReZ 40
that Ðgure (Williamson 1996). Given the similarities
between rigid cylinders and buoyant twisted tubes (Emonet
& Moreno-Insertis 1998), we expect the latter to yield a
similar dependence of the instability on the Reynolds
numbers.

To study the phenomenon of vortex shedding numeri-
cally, we have to induce its onset by giving the tube interior
an initial nonzero net vorticity. This is because, as shown in
the previous subsection, at the Reynolds numbers used in
the simulations, the vortex shedding takes too long to start
in the numerical experiments. We initiate a series of experi-
ments (b \ 50, 100, 200, and 400) with the same background
atmosphere and magnetic Ðeld conÐguration as those
described at the beginning of ° 3 but with a plateau-like
vorticity distribution within the tube and a circular vortex-

sheet of the opposite sign surrounding it. In keeping with
the scaling laws of °° 2.2 and 3.1, and using again asH

p
/VAtime unit for each curve, we expect the total vorticity to

scale as b~1@2 and thus choose the height of the vorticity
plateau to be proportional to b~1@2 as well : u0\ 0.8VA/H

p
.

On the other hand, we scale g and l so that Re and Re
mhave the same value in all the calculations.

As illustrated by Figure 2, the initial right-left asymmetry
in the external Ñow relative to the tube produces a strongly
asymmetric wake from the beginning. The vortex on the
side of maximum shear develops vigorously, while that on
the other side remains comparatively small. This causes a
vorticity imbalance, so that the tube is pushed sideways as a
result of the vortex force acting on it (see, e.g., Sa†man
1992). When the main vortex has developed sufficiently, it
detaches from the tube and is left behind. The remaining
wake, together with the tube, now has excess vorticity of the
opposite sign to the original value, and the vortex force
pushes them laterally in the opposite direction. The other
vortex in the wake grows vigorously and, when the horizon-
tal deÑection of the tube is close to its maximum, it too is
shed. These are the two Ðrst episodes in the formation of the
von vortex street.Ka� rma� n

The actual trajectories on the x-z plane followed by the
four cases with di†erent b are nearly identical (see Fig. 3), as
are their temporal evolution (see Fig. 5). This is because of
the b~1@2 dependence of speed of rise, inverse timescale of
the solutions, and total vorticity generated, which lead to a
b~1 dependence of all forces acting on the tube (buoyancy,
drag, and vortex forces). Thus, changing b in the range b ? 1
with constant Re and causes a change in the speed of riseRe

mbut not in the trajectory followed by the tube, as clearly
demonstrated by Figure 3. This result provides further con-
Ðrmation of the scaling laws derived in ° 2.2. The present
analysis does not apply if the plasma beta used for the
simulation is too small : terms of order 2 and higher in 1/b
must then be retained in equation (1).

The frequency of shedding of vortices has the same
scaling Pb~1@2 as all other inverse times of the problem.
This is a direct consequence of the dependence of the fre-
quency of shedding on the velocity of the tube as Vtube,which is a very general result also observed in the case of
Ñows around rigid cylinders in the laboratory. This is
explained in the following section.

4. VORTEX SHEDDING FOR VARYING

REYNOLDS NUMBERS

In this section, we study the dependence of the trajectory
of the magnetic tubes on the Reynolds number : we main-
tain the value of the plasma beta constant (b \ 50) and
carry out Ðve simulations with values of g and l di†ering by
factors of 2 from experiment to experiment. The corre-
sponding Reynolds numbers range from 50 to 300 (Re) and
100 to 600 (Re

m
).

A number of complications appear when analyzing the
vorticity in the wake of a rigid cylinder in high-Re ranges.
For instance, as explained by Berger & Wille (1972), the net
circulation in one rolled-up vortex is diminished by the
sweeping of vorticity from one side to the other of the wake,
which mixes Ñuid parcels with opposite signs of vorticity.
The importance and consequences of this transport of vor-
ticity depend not only on the di†usivity but also on the
geometry of the wake (size of the rolls, etc.), which, in turn,
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FIG. 2.ÈRise of a twisted tube with b \ 400 through a stratiÐed environment. Gray scale represents the intensity of The initial tube is rotatingB
y
.

according to a vorticity plateau with The Ðrst two stages of formation of a von vortex street are apparent in the Ðgure. They lead tou0\ 0.8VA/H
p
. Ka� rma� n

a sideways oscillation of the rising tube.

depends on the Reynolds number in a nontrivial way. In a
three-dimensional situation, we know, moreover, that for
Re[ 200 the wake develops a rich structure (Williamson
1988b, 1996). Despite these difficulties, one can Ðnd in the
hydrodynamic literature clear results for the measurement
of at least two magnitudes relating to vortex shedding
behind cylinders : the frequency of shedding of rolls and the
amplitude of the associated Ñuctuations in the lift force.
These measurements can serve as a rough guide for the
behavior of rising Ñux tubes with unstable wakes.

From the hydrodynamic literature, we know that the fre-
quency of vortex shedding, f, changes little (in dimensionless
terms) over a wide range of Re. This is measured by the
Strouhal number, with being theSt \ fDtube/Vtube, Dtubehorizontal size of the tube. In the hydrodynamic measure-
ments, the deviation of St from the mean value is never
larger than about 10% for 200¹ Re¹ 2 ] 105 (see, e.g.,
Norberg 1994 and Fig. 4 in this paper). Can we expect a
similar behavior for the case of buoyant magnetic tubes as

is increased?Re
mFor each of our simulations, we measure the Strouhal

number and Ðnd values close to the hydrodynamic data.
This is shown in Figure 4. The solid line represents the
hydrodynamic results on the Strouhal-Reynolds number
relationship for vortex shedding of a circular cylinder (see
Williamson 1988a, 1988b ; Norberg 1994 ; and Williamson
1996). The circles correspond to our simulations. The error
bars account for the latitude in evaluating andDtube, Vtube,Re (the speed of rise oscillates around the terminal velocity,
the Reynolds number is proportional to the density, etc.).
The discrepancy between magnetic tube and hydrodynamic
data is less than 20% in all calculated cases except the most
di†usive one (which, in any case, is on the border of the Re
range for which the deÐnition of St makes sense).

For the range of Reynolds numbers considered in our
simulations, the motion is basically vertical with a small
horizontal oscillation superposed, so that the vertical speed

is not far from the forward speed of the tube, TheVtube.vertical wavelength of the oscillation is thus j B Dtube/St.
This provides a simple method for measuring St. Moreover,
since St does not change too much, as long as VtubeB Veq(see eq. [3]), one should expect the wavelength to be close to
that shown in Figure 3 independently of Re or Re

m
.

Alongside the vorticity production, the amplitude of the
Ñuctuations in lift force grows with increasing experi-Re

m
;

mental data on vortex shedding conÐrm this for a wide
range of Reynolds numbers (see Fig. 5b in Szepessy &
Bearman 1992). The exact proportionality and power of
equations (4) and (5), however, can only hold for not too
high beyond a threshold in does not reachRe

m
: Re

m
, Vtubethe equilibrium value of equation (3). In fact, when theVeqlift force is dominant, the trajectory of the tube may become

quite complicated. All this renders the comparison with the
rigid cylinder experiments difficult and blurs the notion of a
single frequency of vortex shedding for the Ñux tube. In ° 5,
we show through an analytical model how the velocities
and trajectories are a†ected when the lift force becomes
important compared with the other forces.

5. THE ZIGZAG PATH AS A CONSEQUENCE OF

AERODYNAMIC LIFT, DRAG, AND BUOYANCY

5.1. Analytical Model
The trajectory followed by the tubes in Figure 3 can be

described approximately using a simple equation of motion
for a vortex Ðlament subject to the buoyancy and drag
forces. Let ) be the mean value of the y-component of the
total vorticity in a vertical cross section, p, of the tube and
the recirculation region, and the)\S~1 /p u

y
dS, ¿,

average tube velocity in the vertical plane. An inÐnitely thin
horizontal vortex Ðlament of strength ) experiences the
vortex force in addition to any other external force)¿ Â e

yacting on it (Sa†man 1992). If we add to that the drag and
buoyancy forces, the following equation of motion results :
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FIG. 3.ÈTrajectories of the center of the tube for buoyant magnetic
tubes with b \ 50 (solid line), b \ 100 (dot-dashed line), b \ 200 (dashed
line), and b \ 400 (dotted line). Time and length units are andH

p
/VA H

p
,

respectively. The four trajectories almost coincide. Plus signs represent the
solution from eq. (6) that best Ðts the trajectory : A\V A2(q2H

p
2

and F\ 2.] 4)/(16cH
p
), )\ 0.6VA/H

p
sin (1.18t ] 0.465), K \ 18.2/H

p
,

The deviation seen for t [ 10 (z[ 0.6) is caused by the tube expansion
associated with the decrease in the external pressure.

F
d¿
dt

\ Ae
z
[ )¿ Â e

y
[ K o ¿ o ¿ , (6)

where F is the enhanced inertia factor, A is the global buoy-
ancy acceleration of the tube, and the last term on the right-
hand side is the mean drag exerted on the tube by the
surrounding medium. The value of K cannot be determined
except to within a factor of order unity. Following labor-
atory measurements, we take with theK \ C

D
/(nR), C

Daerodynamic drag coefficient. It is of order unity for the
range of Reynolds numbers used in this paper (see Emonet
& Moreno-Insertis 1998). Equation (6) obviously can
provide only a crude approximation to the actual motion of
the tube. A major shortcoming is the fact that it does not
account for the e†ect on the tube of the Ñows associated
with the vortices as they move away from the wake. While it
would not be difficult to reform the equation formally to
account for the e†ect of external Ñows on a vortex Ðlament,
it would add a substantial complication to approximate the
time-dependent velocity Ðeld associated with the moving

FIG. 4.ÈFrequency of vortex shedding (Strouhal number ; circles) as a
function of the Reynolds number for the Ðve numerical experiments :
b \ 50 and k, g, and i changed by factors of 2. The solid line represents the
hydrodynamic results on the Strouhal-Reynolds number relationship for
vortex shedding of a circular cylinder (see Williamson 1988a, 1988b, 1996 ;
Norberg 1994). Error bars correspond to the uncertainty in the determi-
nation of and Re. The large error bar for the point with theDtube, Vtube,lowest value of Re is caused by the relatively large size of the boundary
layer.

external vortices. Such complication is unjustiÐed in the
present case ; indeed, we show below that equation (6)
accounts sufficiently well for the calculated trajectories
within the limited accuracy required by the present test.
Equation (6) is valid, strictly speaking, when all coefficients
are constant.

Equation (6) has di†erent families of solutions depending
on the values of the coefficients. The important dimension-
less parameter is

s 4
)2
KA

\ q
D
2

q)2
, (7)

where is the characteristic time necessaryq
D

\ F/(KA)1@2
for the drag force to bring the velocity to its asymptotic
regime and is the timescale over which the liftq) \ F/)
force modiÐes the speed of rise. For constant A, K, and ),
the solutions can be understood as follows. In the drag-
dominated regime (s2> 1), equation (6) yields a rectilinear
trajectory that subtends an angle h to the vertical given by

cos h \ [ s
2

]
S

1 ]
As
2
B2

, (8)

along which the tubes move with speed

v2\ (A/K) cos h . (9)

In the drag-free regime (s2? 1), equation (6) describes a
horizontal drift of speed combined with verticalvdrift\ A/)
oscillations of frequency and amplitude FA/)2. In the1/q)following two subsections, we discuss the application of
these results to model the zigzag trajectories of rising Ñux
tubes. First (° 5.2), we discuss the drag-dominated case,
which serves to explain the trajectories shown in ° 3.2. In
° 5.3, we study the trajectories obtained in s [ 1 regimes.

5.2. Drag-dominated Regime: Modeling the Zigzag Path
An actual buoyant tube rising in a stratiÐed medium does

not have constant values of A, K, or ), but A and K are
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nearly constant over the timescale on which the systemq
Ddescribed by equation (6) adapts to changes in those param-

eters. The integrated vorticity ) varies in a cyclical fashion
(roughly sinusoidally) on a timescale that, although shorter
than that of A or K, is long compared with Therefore,q

D
.

evaluating equations (8) and (9) with the instantaneous
values of A, ), and K, we obtain approximate values for the
vertical and horizontal components of the velocity vector
along the trajectory as follows :

v
z
\ (A/K)1@2, v

x
B )/K . (10)

Equation (10) predicts an upward trajectory with a super-
posed sinusoidal horizontal oscillation.3

We can now try to reproduce the simulated trajectories
using the full equation (6). Analytical integration of the
initial condition yields FromA\V A2(q2H

p
2] 4)/(16cH

p
).

the numerical simulation, we obtain andK \ 18.2/H
pF\ 2. ) is difficult to obtain. We set it equal to a sinusoidal

function with amplitude Ðxed by an optimum Ðtting to the
experimental paths. This yields s \ 0.25 for all the cases
calculated in ° 3.2. The resulting solution to equation (6) is
overplotted in Figures 3 and 5 with plus signs.

The actual trajectory of the tube is remarkably well
approximated by this solution : this suggests that equation
(6) does indeed contain the essential ingredients that deter-
mine the zigzag path of the rising tube and that the trajec-
tories are mainly sensitive to the parameter s. Deviations in
the upper third of the integration box are caused by the
expansion of the tube following the rapid decrease in the
external pressure, an e†ect not included in equation (6).

In the drag-dominated regime we thus have the result
that neither s nor the trajectories vary if we modify b
keeping the Reynolds numbers Ðxed. In fact this is a direct
consequence of the scaling law, equation (4). This can be
seen as follows : The vorticity amplitude for any particular
case is proportional to the product of vorticity generation
rate eq. [4]) multiplied by the timescale (Pb1@2).(PRe

m
1@2/b,

Using AP b~1 in (7), we immediately obtain withs P Re
m
,

no direct dependence on b. The maximum horizontal elon-
gation of the trajectory is, from equation (10), proportional
to the amplitude of ) divided by the frequency of vortex
shedding. The latter two quantities are proportional to
b~1@2 and the result follows. In all the foregoing, we have
used the fact that the drag coefficient K does not depend on
b or (we assume that the drag is entirely aerodynamic,Re

mnot too bad an approximation as long as 102¹ Re¹ 2
] 105 ; see Tritton 1977).

5.3. T he Trajectory of the Tube in the Drag-free and
Intermediate Regimes (s [ 1)

As shown in the previous section, in the drag-dominated
regime s is directly proportional to the Reynolds number.
Modifying the di†usivities so that and Re grow butRe

mleaving unchanged all other parameters of the problem
causes two kinds of modiÐcations in the trajectories : Ðrst,
both the amplitude of the horizontal velocity and of the
horizontal elongation of the trajectory increase (eq. [10]) ;
second, the frequency of vortex shedding grows, although
only very weakly, with Re (° 4). If we continue raising the

3 Interestingly, it can be shown (T. Bogdan 1999, private com-
munication) that, in the drag-dominated regime, the asymptotic trajec-
tories to eq. (6) are stable to small perturbations. In the drag-free regime, a
perturbation will induce a decaying oscillation on the trajectory.

FIG. 5.ÈTime evolution of the horizontal and vertical velocities and
positions of the center of the tube for the four cases of Fig. 3. Time and
length units are and respectively. As in Fig. 3, the four curvesH

p
/VA H

p
,

almost coincide. Plus signs represent the solution from eq. (6) that best Ðts
the numerical result.

Reynolds numbers, s will grow upward of 1 and the tube
will enter an intermediate regime and, for still higher s, the
drag-free regime.

In the high-s regime, some of the approximations made
in this paper are no longer granted, such as the form of the
drag term, the scaling laws of equations (4) and (5), possibly
also the simple periodic shedding of vortices, etc. However,
it may be instructive to see the kind of changes in the solu-
tions of equation (6) as we let s grow upward of 1. In Figure
6, we are showing the trajectories corresponding to the solu-
tions for s \ 1, 10, and 20 keeping for ) the sinusoidal
shape and dimensionless frequency used in the foregoing
section. Note that the s \ 20 trajectory may well be unreal-
istic since there is no guarantee that the simple sinusoidal
shape for ) is kept in this regime. As we see, while s \ 1 still
yields a trajectory very much like those in the drag-
dominated regime, as soon as s2? 1 the trajectory shows
one or more epicycles superposed on each of the horizontal
oscillations. As s grows, so do the number of epicycles on
each lateral excursion of the tube : they increasingly resem-
ble the purely inertial oscillations predicted by equation (6)
for constant ) and large s. The trajectory thus has periods
of mainly vertical buoyant rise with low lift force (when o) o
is going through a node) separated by stretches of mostly
horizontal motion with inertial oscillations superposed
(when o) o is not far from its maximum amplitude). The
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FIG. 6.ÈTrajectories calculated by integrating numerically eq. (6) for di†erent values of s (or )) and constant F, A, and K (for these we use the same values
as for the plus signs in Figs. 3 and 5).

horizontal excursions cause a delay in the rise : that can be
seen directly in Figure 6 from the fact that the right-left
oscillation of the tube has the same frequency in all cases,
whereas the successive vertical cuts of the trajectories with
the central vertical axis are closer together the higher the
value of s. More precisely, we Ðnd the time necessary for the
tube to reach a certain height to increase approximately as
s1@2.

It is not clear in how far the involved trajectories for the
higher values of s in Figure 6 will be realized in an actual
experiment with a Ñux tube. However, at least the curves for
the lower s-values shown in the Ðgure seem to have been
reported in the literature, as we comment in the following
section.

6. SUMMARY AND DISCUSSION

We have studied the generation of vorticity in the bound-
ary layer surrounding a buoyant Ñux tube and how it a†ects
the rise trajectory depending on the values of plasma beta
and Reynolds numbers. The parameter ranges used here are
25 to 800 for b, 50 to 300 for Re, and 100 to 600 for Re

m
.

The generation of vorticity is caused mainly by the mag-
netic stress. In a drag-dominated regime (i.e., with the drag
force exactly matching the driving forces), the vorticity gen-
eration rate scales as (° 2). The b~1 proportionalityRe

m
1@2/b

is conÐrmed by our numerical results (° 3.1). We have
modeled the rise of a tube with a wake that is unstable and
leaves behind a von vortex street. The tube is thusKa� rma� n
surrounded by a Ñow with nonzero circulation for which
the sign changes periodically in time. The ensuing oscil-
lating lift force on the tube causes the rising trajectory to be
sinusoidal instead of just rectilinear. Still, if the conditions
of drag domination and Ðxed Reynolds numbers below
1000 apply, all forces in the equation of motion of those
tubes also follow a scaling b~1. Since the timescale of the
rise is proportional to b1@2, the equation of motion yields a
trajectory that is independent of b.

If we maintain b constant, then for increasing values of
the Reynolds numbers we Ðnd (° 4) that the dimensionless
frequency of vortex shedding (the Strouhal number, St) o†
the magnetic tube in our simulations is close to the
Strouhal-Reynolds number relationship for vortex shedding
of a circular cylinder found in the hydrodynamic literature
(the discrepancy is less than 20%). Unlike the changes in b,

the increase in the Reynolds numbers produces a change in
the trajectory, which becomes more involved. These modiÐ-
cations of the trajectory can be explained using a simple
analytical model : We have shown in ° 5 that an equation of
motion including buoyancy force, drag, and the lift ade-
quate to a vortex Ðlament (eq. [6]) can well approximate the
rising zigzag path of the tube. The important dimensionless
parameter in that equation, s, is the square of the ratio
between the characteristic timescale of the drag in ° 5.1)(q

Dand the period of the inertial oscillations associated with the
lift force The parameter s is found to be independent of(q)).
b (for b well above 1) and proportional to Re. The drag-
dominated regime can be expected whenever s2> 1. The
results of °° 2 and 3 have been obtained for tubes that fulÐll
that condition.

Raising Re and beyond, say, 500 while holding bRe
mconstant leads to increased vorticity production for the

same buoyancy and drag coefficient K. Thus, the parameter
s increases and eventually becomes larger than 1. The solu-
tions to equation (6) in this dynamically very di†erent
domain still show a trajectory oscillating from left to right
around the vertical, but now the horizontal excursions
contain epicyclic episodes (° 5.3). The number of the epi-
cycles and the duration of the horizontal excursions grows
with increasing s.

As explained in ° 5.3, when s2? 1 (drag-free regime) the
approximations made in this paper are no longer granted :
the form of the drag term and the assumption of a periodic
shedding become inaccurate. Yet, our analysis may still
account for the behavior of magnetic tubes with s not far
above 1, i.e., in an intermediate regime between drag domi-
nated and drag free. In fact, comparison between our Figure
6 and the trajectories found by Hughes & Falle (1998 ; see
Figs. 3 and 4 in their paper) seems to indicate that the
complicated behavior of their tube when the Reynolds
number is high (Re^ 4000) can be explained with our
simple analytical model. Using grid-reÐnement methods,
those authors present trajectories for two tubes with the
Reynolds number di†ering by a factor of 16 while holding
b \ 10 for both. The curve for the higher Reynolds number
shows a quasi-epicyclic episode not unlike case s \ 10 of
our Figure 6. Lower b-values, however, render a compari-
son with the scaling laws of equations (4) and (5) difficult
since the lower order terms of equation (1) may cease to be
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negligible (at any rate, the magnetic tubes in the convection
zone have b of order 105 or higher).

The range of Reynolds numbers accessible to numerical
calculations with the currently available computer power is
very limited in comparison with what would be needed to
properly simulate astrophysical Ñuids. The problem is not
so severe for the plasma beta parameter, which, in stellar
interiors, is probably just a factor of 10 to 100 larger than
values within computational reach. In contrast, Re and Re

mfor, e.g., buoyant magnetic tubes of total magnetic Ñux 1022
Mx at the bottom of the convection zone, are o† by several
orders of magnitude from the values that can be dealt with
by todayÏs computers and codes. Hints for the behavior in
higher Reynolds number ranges must come, therefore, Ðrst
from more expensive simulations with adaptive reÐnement
techniques and then, for Reynolds numbers closer to the
stellar ones, from the hydrodynamic literature of experi-
ments on Ñows around rigid cylinders.

The instabilities appearing in very high Reynolds number
Ñows (turbulence, three-dimensional wake instabilities, etc.)

change the Ñow structure around the tube from the rela-
tively simple cases seen in the numerical simulations and
may thus also alter the total amount of vorticity around the
tube to an unknown extent. However, even when the Rey-
nolds number becomes fairly high, O(2] 105), attached
recirculation regions and vortex shedding are still observed
in the wake of rigid cylinders in water (Williamson 1996).
This indicates that the process of vortex shedding and its
e†ect on the trajectory of the tubes is likely to be an impor-
tant ingredient of the dynamics of at least some of the mag-
netic structures moving through the solar convection zone.
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