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ABSTRACT

The physics of a twisted magnetic flux tube rising in a stratified medium is studied using a numerical
magnetohydrodynamic (MHD) code. The problem considered is fully compressible (has no Boussinesq
approximation), includes ohmic resistivity, and is two-dimensional, i.e., there is no variation of the vari-
ables in the direction of the tube axis. We study a high-plasma f-case with a small ratio of radius to
external pressure scale height. The results obtained will therefore be of relevance to understanding the
transport of magnetic flux across the solar convection zone.

We confirm that a sufficient twist of the field lines around the tube axis can suppress the conversion of
the tube into two vortex rolls. For a tube with a relative density deficit on the order of 1/f (the classical
Parker buoyancy) and a radius smaller than the pressure scale height (R*> < H}), the minimum amount
of twist necessary corresponds to an average pitch angle on the order of sin~ ' [(R/H,)"/*]. The evolution
of a tube with this degree of twist is studied in detail, including the initial transient phase, the internal
torsional oscillations, and the asymptotic, quasi-stationary phase. During the initial phase, the outer-
most, weakly magnetized layers of the tube are torn off its main body and endowed with vorticity. They
yield a trailing magnetized wake with two vortex rolls. The fraction of the total magnetic flux that is
brought to the wake is a function of the initial degree of twist. In the weakly twisted case, most of the
initial tube is turned into vortex rolls. With a strong initial twist, the tube rises with only a small defor-
mation and no substantial loss of magnetic flux. The formation of the wake and the loss of flux from the
main body of the tube are basically complete after the initial transient phase.

A sharp interface between the tube interior and the external flows is formed at the tube front and
sides; this area has the characteristic features of a magnetic boundary layer. Its structure is determined
as an equilibrium between ohmic diffusion and field advection through the external flows. It is the site of
vorticity generation via the magnetic field during the whole tube evolution.

From the hydrodynamical point of view, this problem constitutes an intermediate case between the
rise of air bubbles in water and the motion of a rigid cylinder in an external medium. As with bubbles,
the tube is deformable and the outcome of the experiment (the shape of the rising object and the wake)
depends on the value of the Weber number. Several structural features obtained in the present simula-
tion are also observed in rising air bubbles, such as a central tail, and a skirt enveloping the wake. As in
rigid cylinders, the boundary layer satisfies a no-slip condition (provided for in the tube by the magnetic
field), and secondary rolls are formed at the lateral edges of the moving object.

Subject headings: convection — hydrodynamics — methods: numerical — MHD — Sun: interior —

Sun: magnetic fields

1. INTRODUCTION

The rise of magnetic flux from the deep levels of the solar
convection zone to the photosphere is a complex phenome-
non involving many different magnetic and hydrodynami-
cal processes. Particular attention has been devoted in the
past 20 years to the time evolution of a single buoyant
magnetic flux tube considered as a one-dimensional object
(Moreno-Insertis 1983; 1986; Choudhuri 1989; D’Silva &
Choudhuri 1993; Fan, Fisher, & DeLuca 1993; Fan, Fisher,
& McClymont 1994 ; Caligari et al. 1995. Further references
and a recent review can be found in Moreno-Insertis 1997a).
These calculations incorporate several aspects of the basic
physics of the rise of the magnetic tubes (buoyancy, mag-
netic and rotational forces, external stratification, etc.).
They have been successful in predicting morphological and
kinematic features of the resulting active regions that have
been observed at the surface of the Sun.

Yet, the assumption of one-dimensionality in the mag-
netic region is certainly a drastic simplification. From
laboratory and numerical experiments in different contexts,
we know that there are complicated hydrodynamical and

804

magnetic structure within and outside of a tubular object
that is moving with respect to the surrounding fluid. The
one-dimensional numerical models mentioned above, in
particular, do not include two ingredients that turn out to
be fundamental in studying the rise of buoyant magnetized
plasma regions, i.e., the vorticity of the velocity field and the
twist of the field lines around the main axis of the tube.
Vorticity and transverse field components may be crucial
for the formation of the tubes in the first place (Cattaneo &
Hughes 1988; Cattaneo, Chiueh, & Hughes 1990;
Matthews, Hughes, & Proctor 1995). They also play a
central role in the time evolution of the rising magnetic
region. A clear warning in this sense came from the work of
Schiissler (1979), who showed how the cross section of a
straight, buoyant magnetic tube initially at the same tem-
perature as its surroundings develops an umbrella shape
(two side lobes connected on their upper side by an arch).
The side lobes rotate in opposite directions around a hori-
zontal axis, each thus constituting a vortex tube; they
finally detach from each other and from the arch above
them. The whole process occurs at the beginning of the rise,
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namely, before the tube has risen across a height equivalent
to a few times its own diameter. The physics involved has
been considered in detail by Longcope, Fisher, & Arendt
(1996). These authors have studied the Boussinesq problem,
including untwisted and very weakly twisted magnetic
tubes. They clearly show how the two rotating side lobes,
when detached from the rest, are subjected to a downward-
pointing lift force, as a result of their flow being non—
circulation free. In the end, the lift cancels the buoyancy
force, this being the reason for their horizontal asymptotic
motion. If this were a universal mechanism operating on all
rising magnetic flux tubes, then magnetic buoyancy should
no longer be considered an efficient mechanism for bringing
magnetic flux to the photosphere.

In the present paper, we consider in detail the more
general case of a buoyant magnetic flux tube with an arbi-
trary initial twist of the field lines (but still horizontal and
with uniform values of all variables along the direction of
the axis). The transverse magnetic field (i.e., the component
of the field vector normal to the tube axis) imparts a certain
rigidity to the tube cross section. If it is strong enough, it
can prevent the conversion of the tube into a vortex tube
pair. The minimum amount of twist necessary for this corre-
sponds to an average pitch angle on the order of sin~!
[(R/H,B/2|Ap/p|)"/*], with R being the tube radius, H, the
external pressure scale height, and Ap the density difference
between the tube and its surroundings (see § 3.1). This
approximate criterion is indeed fulfilled by magnetic tubes
with classical Parker magnetic buoyancy, as shown in a
preliminary presentation of this paper (Moreno-Insertis &
Emonet 1996). In the present article, we explore in more
detail the physics involved in that process, discussing a
number of MHD processes occurring inside the tube, in the
boundary layer, at its periphery, and in the trailing wake.
We also show how the results of Schiissler (1979) and
Longcope et al. (1996) can be seen as limiting cases in which
the trailing wake in fact engulfs most of the original rising
tube. The pitch angle just mentioned thus signals the bord-
erline between the weak and strong twist regimes; a
buoyant tube with an initial twist above this level rises
without being strongly deformed and is followed by a wake
containing only a small fraction of the initial total magnetic
flux.

In addition to the work of Moreno-Insertis & Emonet
(1996), there is another paper in the recent literature dealing
with a related subject (Cargill et al. 1996). These authors
have studied the interaction of a twisted tube with a magne-
tized medium in the absence of gravity when the tube is
subjected to an ad hoc, spatially uniform acceleration.
Special emphasis was put on the reconnection of the
ambient magnetic field with the tube’s own. Neither buoy-
ancy, stratification, nor different degrees of twist were
studied in that article. Two further papers, submitted simul-
taneously with the present one, deal with the rise of buoyant
twisted magnetic tubes (Fan, Zweibel, & Lantz 1997;
Hughes, Falle, & Joarder 1998). The first authors, in partic-
ular, study the interaction between tubes rising in pairs. The
results of both papers concerning the rise of single tubes are
in general agreement with those of Moreno-Insertis &
Emonet (1996).

The layout of this article is as follows. After a brief pres-
entation of the equations and numerical procedure in § 2,
the basic features of the physical problem are considered in
§ 3. This includes the main parameters and a discussion of

the amount of twist necessary to prevent the deformation of
the tube and its conversion into vortex rolls. In § 4, the
simulation of the rise of a tube with that amount of twist is
presented. In particular, the initial acceleration phase, the
internal torsional oscillations, and the later asymptotic
phase are discussed. Section 5 deals with the structure of the
magnetic boundary layer around the tube, and § 6 examines
the trailing wake. Finally, the transition between the twisted
and untwisted case is explained in § 7. A general discussion
follows in § 8.

2. EQUATIONS AND NUMERICAL PROCEDURE

2.1. Equations
Our medium is an ideal compressible and stratified gas
governed by the general equations of magnetohydro-
dynamics (MHD), including Ohmic diffusion:
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where e is the internal energy per unit mass and # is the
ohmic diffusivity, which is assumed to be constant. All other
symbols have their customary meaning. Cartesian coordi-
nates (x, y, z) are adopted, so that the z-direction is anti-
parallel to g . In this paper, we consider a two-dimensional
problem,; i.e., we assume that there are no variations of the
physical variables along the y-axis (6/0y = 0), although B,
and v, are generally nonzero.

Equations (1)~(4) are cast in their conservative form and
solved with a code written by Shibata 1983. This is based on
a modified Lax-Wendroff scheme (Rubin & Burstein 1967)
and stabilized with artificial viscosity, as described by
Richtmyer & Morton (1967). The inclusion of physical resis-
tivity in our equations and the absence of any shock pheno-
mena in the solutions permit us to minimize the use of the
artificial viscosity. The latter is restricted, in any case, to
regions of very steep gradients only.

This code has been repeatedly tested and used for two-
dimensional simulations of the outbreak of the magnetic
field at the surface of the Sun by Shibata and collaborators
(see, e.g., Shibata 1983; Shibata et al. 1989; Kaisig et al.
1990). In addition, we have successfully run several tests for
our problem, checking for the convergence of the code as
well as for conservation of mass, energy, and magnetic flux
in the box.

In this article, we only consider a case with left-right
symmetry about a vertical plane containing the tube axis.
For each half of the tube, we use a numerical grid of 300
points in the horizontal direction and 700 points in the
vertical (although in the figures presented here, only a small
fraction of the box is shown). In the following discussion,
the results are given in dimensionless form, using as units
the background density, pressure scale height, and Alfvén
speed calculated at the center of the tube at time ¢t = 0.
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2.2. Initial Conditions

The initial condition consists of an unperturbed back-
ground atmosphere with pressure p, and density p,, and,
superimposed, a perturbation associated with a magnetic
flux tube. To avoid any confusion arising from pseudo-
convective effects, the background atmosphere is adia-
batically stratified. It spans vertically 80% of the pressure
scale height at the bottom of the box. The pressure contrast
between the top and bottom is 2.6. The density contrast is
1.8.

After inclusion of the magnetic tube, the resulting sys-
tem satisfies the following simple condition: —V Ap +
J/c x B =0, with Ap = p—p, being the pressure excess as
compared to the background stratification, J being the elec-
tric current density, and ¢ being the speed of light. In the
absence of gravity, this would be a perfect equilibrium con-
dition. The density profile in the magnetic region is deter-
mined by assuming that the entropy in the tube is constant
and equal to the unperturbed value in the atmosphere. The
tube at time ¢t = 0 is thus buoyant (p < p,) and fulfills the
condition

Ap _p—op. 1

~
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p p B

to first order in 1/, with y being the specific heat ratio. This
case is intermediate between the two extreme possibilities of
full thermal equilibrium, ie., T = T, (which would be a
factor y more buoyant), and the case of a tube with p = p,.
The evolution presented here is qualitatively very similar to
the first case, while it deviates in important respects from
the second.

In this paper we will deal with a number of different
magnetic field profiles at time ¢ = 0. The longitudinal field
B, = B, will be taken to have a Gaussian profile,

Byt = 0) oc exp (—7*/R?) . (6)

The transverse field B,(t = 0) is chosen to be purely azi-
muthal; calling » and ¢ the polar coordinates around the
tube center, we have Bt =0)= B,e,. For B,, we will
choose distributions such that the pitch angle P,

¥ = atan <%> , W)

1
adopts an asymptotically flat profile,
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or, alternatively, an exponentially decaying one,

1 r\" r n
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The choice of n determines the rigidity of the tube center.

In this paper, we consider the case n = 3 and a = 0.9. As we

will see, both profiles given by equations (8) and (9) yield

basically the same time evolution (§ 5.1). As explained in the

discussion, we have also run some tests with flat, top-hat
magnetic profiles (§ 8.1).

2.3. Boundary Conditions

The side and bottom boundaries are closed lids. A closed
boundary at the top of the box must be avoided for two
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reasons: (1) the sound waves generated by the tube in the
external medium must be able to leave the box and (2) the
rise of the tube should not be unduly braked through excess
pressure from a closed boundary at the top. An ideal free
boundary should be transparent for the outgoing dis-
turbances and should not introduce disturbances through
incoming waves. In the present calculations, we achieve this
by introducing a fiducial layer (Nordlund & Stein 1990) well
above the upper boundary of the box. At each time step, the
pressure in the fiducial layer is calculated by assuming that
each point in it is in static equilibrium with respect to the
point on the boundary of the box lying directly below it; the
densities are then obtained via the constant background
entropy, and the velocity is set to zero in the fiducial layer.
The net mass flux across the boundary is not necessarily
zero. However, the total mass of the box only varies by a
maximum factor of 10~ ¢ during each single run.

3. THE PHYSICAL PROBLEM: PARAMETERS GOVERNING
THE EVOLUTION

The present physical problem is characterized by four
basic dimensionless input parameters: (1) the thickness of
the tube in units of the local pressure scale height, R =
R/H ,; (2) the plasma f at the center of the tube, f,; (3) the
ratio between the transverse and the longitudinal com-
ponents of the field, as measured by, e.g., the pitch angle at a
representative position of the tube, W ,, to be specified;
(4) the ohmic diffusivity # in terms of, e.g., vy H,, with v,
being the Alfvén speed, 1 = n/(vy H,).

These parameters determine the properties of the initial
magnetic tube and are independent of the velocity of the
flow that develops along time. However, in this problem
there is a characteristic value for the flow velocity, namely,
the terminal speed of rise, v,.,,, given by the dynamical
equilibrium between buoyancy and aerodynamic drag:

SRNLE L) (10)
?»Cp p

where Cj, is the customary drag coefficient, C;, ~ O(1), and
¢, is the sound speed. Hence, the customary velocity-related
parameters, such as the Mach number, the Reynolds
number, and the magnetic Weber number, can be imme-
diately obtained as functions of the foregoing input param-
eters. For instance, using equation (5), we obtain that the
Mach number must be on the order of M? = O(R/B,). As a
result, we expect the rise to be very subsonic and, assuming
R < 1, sub-Alfvénic as well. This latter condition can be
violated for tubes rising to higher levels of the convection
zone.

The rest of this section is devoted to a discussion of the
values expected for the most important parameters in this
problem.

~
term

3.1. The Amount of Twist and the Deformation of the Tube

The central parameter for the present paper is the twist of
the tube as measured by the pitch angle of the field lines, P.
The values of this parameter of interest for our calculation
are those for which the transverse component of the field,
B,, is able to suppress the conversion of the tube into a pair
of vortex rolls. In the following section we study different
agents that tend to deform the tube. We come to the conclu-
sion that the minimum value of B, necessary to counteract
them is the same for all.



No. 2, 1998

3.1.1. Differential Buoyancy and Pressure Fluctuations
along the Boundary

The tube of the initial condition explained in § 2.2 is
increasingly buoyant toward its center. Thus, the central
regions rise faster than the periphery; the upper layers of the
tube are thereby compressed, while those located below the
center are expanded. The magnetic field lines are deformed
by this process; the transverse field, in particular, exerts an
increasing resistance against further deformation. One can
calculate the minimum transverse field that can effectively
withstand (and reverse) the buoyant deformation (Emonet
& Moreno-Insertis 1996). At this point, it is sufficient to
obtain an order of magnitude estimate for it that can serve
as a guide for the rest of the paper. This can be easily done
for tubes with smooth distributions, such as given in equa-
tions (6) and (8) or (9), and satisfying R*> < H?. The resulting
criterion is best expressed in terms of the pitch angle calcu-
lated at the position of the maximum of the transverse field,

W . it reads:
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For tubes with initial conditions as given in § 2.2, this
approximate criterion should hold to within about a factor
of 2. A more precise condition involving the detailed buoy-
ancy distribution in the tube can be obtained by studying
the magnetostatic equilibrium of a horizontal twisted tube
with a nonhomogeneous buoyancy distribution in the limit
R?> < H: (Emonet & Moreno-Insertis 1996). It can be
shown (see their eqs. [44] and [49]) that for the deformation
of the tube to remain small, the radial profile of the pitch

angle, ¥(r), must satisfy
Ap(r) — <Ap)(r)

. r 1/2 1/2
sin W(r) 2 <Fp> |: o) ﬂ(r):| , (12)

where { f)(r) is the radial average of f between the radii 0
and r. At each radius r, the deformation of the magnetic
field is directly related to Ap(r) — (Ap)(r), i.e., to the differ-
ential buoyancy at that radius.

The threshold due to the differential buoyancy (eq. [11]
or eq. [12]), however, cannot be the only criterion of inter-
est for our problem. In fact, even a uniformly buoyant tube,
if untwisted, is subjected to deformation and conversion
into vortex rolls. One deforming agent independent of the
initial differential buoyancy is the pressure profile (ie.,
the pressure fluctuations, p., above the background
stratification) built by the external flow around the bound-
ary of the tube (Emonet & Moreno-Insertis 1996); a simple
criterion for the resistance of the tube against those fluctua-
tions is

871: | Det |

——<1. 13
B2 (13)
Now, p, is itself on the order of the ram pressure of the
external flow relative to the tube. Thus, it is no higher than
about pv2,,./2. Substituting from equation (10), we obtain

again a criterion as in equation (11).

3.1.2. Vorticity Generation

Given the central role of the vorticity in the present
problem, it is adequate to understand the minimum condi-

tion given in equation (11) in terms of vorticity generation.
The time evolution of the longitudinal component of the
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vorticity, @,, is governed by the following equation:

D A V x F, 1
Dt \ p p p p
BZ
x [—V(Ap + —’> + Fh] . (14)
8

F;, represents the projection of the Lorentz force on the
transverse plane (x, z). For definiteness, when speaking
about the sign of the vorticity in the rest of this section, we
refer to the right half of the tube only.

At issue in this section is the generation of vorticity in the
main body of the tube (the vorticity in the tube periphery is
discussed in § 5.2). The first term on the right-hand side of
equation (14) is the counterpart in terms of vorticity of the
gravitational torque: it produces positive vorticity because
V(Ap/p) points outward. The second term on the right-hand
side of equation (14) represents the effect of B, and can be
rewritten as:

VxF, (B-V)
p co

with J; being the longitudinal component of the electric
current density. At the beginning of the run, the longitudi-
nal current is axisymmetric, so that V x F, is zero. As soon
as the tube center begins to rise relative to the periphery, the
longitudinal current is enhanced in the upper half and
diminishes in the lower half of the tube. According to
equation (15), this produces negative vorticity in the interior
of the tube, i.e., it tends to counteract the effect of the gravi-
tational torque. By setting these two terms to be equal, we
obtain a criterion for the minimum transverse magnetic
field that can effectively oppose the initial deformation of
the tube; the result is, again, equation (11). For the problem
we consider here, the last term of the vorticity equation (14)
is O(Ap/p + L/yH ) smaller than the other two terms and is
therefore not of primary interest here (L represents a local
characteristic length for the transverse magnetic field, e.g.,
the radius of the tube or the thickness of the tube
boundary).

Criteria equivalent to equation (11) can also be obtained
through other physical considerations. For instance,
Tsinganos (1980) obtained a similar threshold for ¥ by cal-
culating the stability of the tube against splitting due to the
development of Rayleigh-Taylor and Kelvin-Helmholtz
instabilities at its apex.

15)

3.2. Other Parameters
3.2.1. Plasma B and Tube Radius

The choice of values for the parameters f, and R must be
guided both by (astro)physical insight and feasibility of the
numerical calculation. f, is expected to be very high in the
solar interior, perhaps 0(10°) for the magnetic tubes at the
bottom of the convection zone. The Courant condition for
the numerical code, however, sets a stringent upper limit to
the value of §, that we can use. Using equation (10), we can
calculate the number of time steps necessary for our tube to
cross the whole integration box, n,, as

ﬁO 1/2
mz nz<ﬁ> : (16)
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with n, being the total number of cells in the vertical direc-
tion. A trade-off between field intensity and the magnetic
flux of the tube is then necessary. As a compromise, we have
chosen B, = 10° and R = 3.7 x 10~ 2. This should be suffi-
cient to understand qualitatively the flows in and around
the tubes with the field strength and flux expected in the
progenitors of active regions.

3.2.2. The Magnetic Reynolds Number

The magnetic Reynolds number can be defined in this
problem in terms of the terminal speed of rise and the tube
radius. Its order of magnitude is thus given by Re, =
O(R3?/ij). The choice of a value for this parameter must be
guided primarily by numerical criteria: large magnetic field
gradients develop in the tube along the evolution, especially
at its upper rim. We have chosen the ohmic diffusivity so
that the resulting value of Re,, is a few times 102. This yields
good numerical performance, but causes some unwanted
diffusion of the field outward from the tube. A measure for
this diffusion can be obtained from the y-component of
Walen’s equation, obtained by combining the continuity
and induction equations (1) and (3):

D (B B
— <—’> = (— - V>vy +1 AB,. (17)
Dt \ p p p

In the central region of the tube, the variation in B,/p is
basically a result of diffusion. The calculations presented in
the following discussion are not diffusion dominated (as
expected from the high Re,,), in the sense that the decrease
of this quantity is small in the tube center during the time
period shown in the figures. This can also be checked
through an order of magnitude estimate; the diffusion term
in equation (17) for the initial Gaussian distribution can be
compared to the rate of change of the field (left-hand side of
the same equation) imposed by the rise of the tube. The
ratio between them is (Re,, R) ™!, which is 0(107!) in the
present case.

3.2.3. The Weber Number

In the hydrodynamical literature on air bubbles, the
Weber number is used to measure the relative importance
of the inertial forces of the flow to the surface tension at the
boundary of the bubble (e.g., Ryskin & Leal 1984b). The
role of surface tension is played in our case by the jump in
magnetic tension of the transverse component at the
boundary of the tube. Hence, we define the magnetic Weber
number as

__vp
~ B/@n)’

Inserting for v the terminal speed, we easily obtain We =
RBo|Ap/plo/(2 sin? ¥,). The condition on the minimum
pitch angle to avoid splitting of the tube, given in equation
(11), can thus be reformulated as the condition that the
Weber number be at most of order one, We < 1.

We

(18)

4. THE RISE OF A TWISTED TUBE IN A MODERATELY
STRATIFIED ENVIRONMENT : A REPRESENTATIVE CASE

The critical value of the pitch angle parameter ¥,
obtained by substituting in equation (11) the chosen values
of By, R, and Ap/p is 6°. In the present section, we describe
some major features of the rise of a tube with a pitch angle
¥, close to that value, ¥, = 7°. The time evolution is

illustrated in Figure 1, which shows a fraction of the inte-
gration box used (30% and 70% of the box in the horizontal
and vertical directions, respectively). In § 7, we compare the
results for flux tubes with different values of the initial ¥ .

4.1. The Initial Acceleration Phase

In the absence of external flows to keep it in place, the
tube lacks equilibrium globally and starts to rise, at the
same time sending out sound waves all across the box. The
initial global acceleration is basically free-fall, ie.,
(9/i\Ap/p), with an overbar indicating average values in the
tube and i standing for the enhanced inertia factor, which
turns out to be 2 (see § 4.3.1).

Superimposed on the global rise, different kinds of
motions within and around the tube take place that tend to
deform its initial axisymmetric shape (Fig. 1, upper row).
One of these is the faster rise of the tube center compared to
the periphery as a result of the differential buoyancy
(§ 3.1.1). As a consequence of this, the magnetic tension
associated with the transverse field builds up at the tube
front; the relative motion of the tube center is thus stopped
and reversed. A vertical oscillation of the tube center ensues
within the tube’s cross section. The compression/expansion
in the upper/lower half of the tube, together with the inter-
nal oscillations, are clearly visible in Figure 2, where we
have plotted the position as a function of time for several
Lagrange markers located along the vertical symmetry axis
of the tube.

Simultaneously with the processes just explained, the
external matter slides around the tube and drags toward the
rear the outermost tube layers, where the magnetic field is
too weak to oppose any important Lorentz force. The field
is thus stretched all along the boundary (§ 5). Vorticity is
being generated in the matter being dragged; as a result,
two magnetized vortex rolls are created that trail the tube
motion (Fig. 1, third panel). The main body of the tube
thereby loses about 30% of its original magnetic flux. This
figure sensitively depends on the initial pitch angle (§ 7).
Given the sign of the vorticity, the matter between the rolls
is moving upward with respect to the back of the tube. A
pressure excess appears at the upper end of the intervortex
space, directly below the lowermost tube layers.

4.2. Torsional Oscillations of the Tube Interior

The vertical oscillations of the tube center are in fact part
of a torsional oscillation in which most of the tube interior
is taking part (Fig. 3). The torsional oscillation has left-right
symmetry; each tube half is rotating back and forth around
a horizontal axis offset by a fraction of R from the midplane.
The energy of this oscillation is being radiated away from
the tube via pressure forces; it is also damped through the
diffusion (physical and numerical) present in the code. Thus,
it slowly decreases in amplitude. The frequency of these
oscillations is on the order of w,,, = O[v,,/(27R)]. Hence,
one expects a few torsional oscillations to be completed
while the tube is rising across a scale height.

4.3. The Asymptotic Regime of Rise

The strong initial acceleration phase is followed by a
quasi-stationary asymptotic regime (Fig. 1, lower row). In it,
the rate of change of the tube interior and external flows
becomes small compared to the initial phases. The tran-
sition occurs at about ¢ = 3 (between the third and fourth
panels of Fig. 1). The asymptotic regime is characterized by
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F1G. 1.—Rise of a twisted tube through a stratified environment. The initial pitch angle ¥, is 7°. The gray scale and the contours correspond to the
longitudinal magnetic field intensity. At each time step, white corresponds to the maximum of B, at this instant and black to 1% of this maximum. The arrows
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Fic. 2—Distance to the stagnation point at the tube front of 50 mass
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axis, represented as a function of time (solid lines). The compression of the
tube front and the oscillations of the central regions along the vertical axis
can be clearly seen. The curves plotted vertically (stars) are profiles of the
transverse field intensity, B,, along the vertical symmetry axis at regular
intervals of time.

the adoption of a terminal speed of rise, a sharp separation
of the tube interior from its surroundings, and a well-
developed trailing wake. Simultaneously, the tube stops
losing magnetic flux to the wake, and there is no further
important deformation of the magnetic field lines in the
head of the tube. The following subsections deal with some
of the features characterizing this asymptotic regime.

4.3.1. The Terminal Velocity

Once the wake is developed, the resistance of the sur-
roundings to the advance of the tube can be calculated
using the customary aerodynamic drag force with the
almost constant drag coefficient C,. In the asymptotic
regime, the total buoyancy of the tube is a slowly varying
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quantity. Thus, we can expect the tube to reach a terminal
speed of rise given by

B ZQSA_p 1/2
Uterm - <CD dpe> H (19)

where S and d are the cross-sectional area and horizontal
diameter, respectively. The order of magnitude of this speed
has been estimated in equation (10). The best fit to the
numerical results yields a value for C;, of approximately 1.6.
It is not obvious how to formulate analytically the
approach to this asymptotic regime, since the coefficient C,
is not constant while the tube is changing its shape and
developing a wake. The initial acceleration of the tube as a
whole is

€

9

a= ; (20)

|

ip

the factor i allows for added inertia arising from the coaccel-
eration of the external medium (i = 2 for a rigid straight
cylinder). To approximate the velocity of the tube in the
initial and intermediate time-dependent phases, we use an
expression for a tube starting from rest with acceleration a
being acted upon by a constant driving force with a fixed
Cp,ie.,

Urise = Uterm tanh < at > H (21)
Uterm
where v,.,,, is still given by equation (19).

The numerical results show a surprising closeness to
equation (21). In Figure 4, we show with a dotted line the
velocity given by equation (21), while the actual speed of the
tube apex, v,,.,, is indicated by circles. As can be seen, the
tube speed oscillates around the mean speed given by
equation (21). This effect is due to the strong oscillations of
the tube interior; in fact, the tube center oscillates with a
much larger amplitude, as is shown by the curve with aster-

-0,04

-0.02 0,00

0,02 0,04

FiG. 3—Close-up view of the tube interior showing the velocity vectors of the internal torsional oscillation at time ¢t = 1.57. The arrows in the figure
represent the relative velocity of the individual mass elements with respect to the tube apex.
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F1G. 4—Velocity of the tube center (stars) and of the apex (circles) as a
function of time. The dotted line corresponds to eq. (21). The dashed line
represents the initial acceleration of the tube center, (| Ap/p|),—, g/i, with
i=2.

isks. The tube center pushes the apex, so that the circles and
asterisks are slightly out of phase. The amplitude of the
oscillation diminishes as its energy is radiated to the exter-
nal medium and both curves converge toward the dotted
line. The initial acceleration of the tube apex is very close to
equation (20) with i = 2, ie., it corresponds to the global
buoyancy of the tube. The tube center, in turn, has a higher
acceleration, corresponding to the local value of the buoy-
ancy, namely (|Ap/p|),=o9g/i (this value is shown in the
figure as a dashed line). Here again, the enhanced inertia
factor i must be set to equal 2.

As a test of the validity of the terminal velocity formula,
we have calculated the evolution of tubes starting with the
same initial condition as that used for Figure 4 (in particu-
lar, the same tube radius, R), but with §, chosen in a range
between 1000 and 100. The velocity curves of all these tubes
are similar to those shown in Figure 4, with the timescale
contracted by a factor B3/2 and the velocity scale enlarged
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Fi1G. 5—Equipartition line at ¢t = 3.8, together with the flow field rela-
tive to the apex of the tube. The simple structure of the wake at this time is
clearly visible. The envelope of the tube and the wake has a well-defined
elliptical shape. This figure bears a strong resemblance to the experimental
results of air bubbles rising in liquids (e.g., Collins 1965; also reproduced
by Batchelor 1967, Plate 15).

by the same factor. More precisely, if all these tubes reach
the aerodynamic drag regime with the terminal velocity
given by equation (19), then the curves depicting the veloc-
ity of the apex normalized by the plasma B, v,,,, f5/>, versus
the position of the apex must all basically coincide (the drag
coefficient Cj, does not change much with varying Reynolds
number in this regime). The results of the tests indeed show
a large degree of superposition of those curves; the

maximum relative deviation between them is a factor of 1.1,
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F1G. 6.—Profile of the total pressure excess along the boundary of the tube, defined by the equipartition line (see § 4.3.2) at time ¢ = 2.5. The boundary of
the tube (the equipartition line) is shown as a thick line in the left panel. The feature in the middle of the profile (between 110° and 130°) results from the shape
of the equipartition line at the lateral edge of the tube. The arrows in the left panel correspond to v,,,, and the radial lines are drawn at constant azimuthal
angles.
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which can be attributed to the change in C;, consequent to
the variation in the Reynolds number.

4.3.2. The Equipartition Line at the Tube Periphery

As a result of the resistance to deformation provided by
the transverse field, there is a neat separation between the
tube interior and exterior in the asymptotic regime. A good
indicator of the location of the tube boundary can be
obtained by comparing the kinetic energy density of the
relative flow field, v, = v — v,,,, i.€., 3, = pv/2, with the
energy density of the transverse magnetic field, e, =
B?/(8w). We define the equipartition line as the locus of those
points in the tube periphery where the two energy densities
are equal. Figure 5 shows, at time ¢ = 3.8, the relative flow
field v,.; and, superposed on it, the equipartition line. The
flow field changes markedly when crossing the equipartition
line; the velocities inside are much smaller than those
outside. In other words, once the terminal velocity has been
reached, the tube rises basically as a unity, with only a weak
internal flow pattern, corresponding mainly to the torsional
oscillations described in the previous section. A comparison
of Figure 5 with the results of laboratory experiments (e.g.,
Collins 1965; Plate 15 in Batchelor 1967) shows that there
are striking similarities between buoyant magnetic tubes
and air bubbles rising in a liquid, both in the shape of the
rising object itself as in the wake, in spite of the very differ-
ent parameter values involved (such as, e.g., the density
deficit).

All along the initial phase, a pressure profile is set up
around the tube periphery that closely resembles the pres-
sure distribution around rigid cylinders in relative motion
to their surroundings. To show this, we can plot (see Fig. 6)
the pressure in the points along the equipartition line. In
this figure, the pressure excess associated with the return
flow between the vortex rolls of the wake is clearly visible.
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5. THE SHARP INTERFACE AT THE TUBE BOUNDARY :
MAGNETIC BOUNDARY LAYER

All around the equipartition line there is a region with
nonzero vorticity. This contains (1) a boundary layer sur-
rounding the tube and (2) the trailing wake. Farther out,
there is the external medium, with a largely vorticity-free
flow. In this section, we study the structure of the boundary
layer; the wake is considered in § 6.

The two main physical features that characterize the
magnetic boundary layer around the tube are a strong shear
of the tangential flow and high magnetic field gradients.
These lead to enhanced generation of vorticity, ohmic diffu-
sion, and the generation of entropy. In the following sub-
sections we study these items in turn.

5.1. Shear Flow and Field Gradients

A pronounced shear is taking place in a thin band around
the equipartition line (Fig. 5). As a result, the matter ele-
ments and the transverse field are being stretched at the
tube periphery all around the tube. To visualize this pheno-
menon, we use Lagrange markers that follow the motion of
the tube’s mass elements (Fig. 7). We choose six groups of
markers at time ¢t = 0 (left panel) at a distances of the tube
center such that B, is 5% (white asterisks), 27% (triangles),
and 77% (diamonds), respectively, of B, (the maximum
value of B, in the tube) in both the upper and lower half of
the tube. The markers are set in the neighborhood of the
tube axis and are left to evolve with the tube. As time
advances, the markers of the outermost group in the upper
tube half are stretched by a very large factor along the tube
periphery (Fig. 7, center and right panels); in fact, many of
them are brought all the way down to the wake. The
markers of the group immediately below them (triangles)
are brought close to the uppermost group and stretched,

T™E = 0.0 TIME = 1.9 T™E = 38
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Fi1G. 7—Motion of individual mass elements in the tube, showing the stretching of the matter and field along the tube boundary. The panels correspond
tot =0, 19, and 3.8. At time zero, the Lagrange markers are located at R/H, = 0.024, 0.044, and 0.068, where B, is equal to 77%, 27%, and 5% of its value at
the center. Radial compression, azimuthal stretching, and shearing of the upper layers of the tube are apparent. The elements indicated by black triangles at

the back are also somewhat stretched as a result of flow in the wake.
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albeit by a smaller factor than the other group. Large com-
pression and stretching occur basically only in the neigh-
borhood of the interface between the tube and its
surroundings; closer to the tube center (diamonds), the mass
elements are only periodically moved following the internal
torsional oscillation. At the rear of the tube, the Lagrange
markers with B, = 0.27B,, (triangles) are also somewhat
stretched by the flow of the trailing wake (see § 6). The
outermost parcels at the back of the tube (white asterisks)
are trapped in the tail and no longer rise with the tube.

Corresponding to this shearing, the pitch angle increases
to large values at the tube periphery; in Figure 8 we plot the
pitch angle distribution along the vertical axis of symmetry
for the three instants shown in Figure 7. The pitch angle
becomes large in the interface at the tube front (middle
panel). In the quasi-stationary regime, its distribution shows
a horizontal asymptote outside the tube similar to that of
the initial condition. This feature is not merely a conse-
quence of our initial condition given in equation (8). In fact,
an initial pitch angle distribution with exponential decline
for large radius at time t = 0 (see eq. [9]) yields in the
quasi-stationary regime a horizontal asymptote similar to
that of Figure 8. It is then perhaps more natural to choose
the initial condition of equation (8) from the outset.

The large pitch angles apparent at the right of Figure 8
are all in a region of the tube where the magnetic field
intensity is very low; the central regions, on the other hand,
have low pitch angles. Thus, one should not expect a global
kink-unstable behavior of the tube. This can be checked by
calculating the net tension in the tube over background (see
§ 9.2 in Parker 1979). With the convention that tension is
positive and pressure negative, we obtain a positive value
indicating that the tube is under longitudinal tension rather
than compression. Thus, there should be no tendency to
buckling of the tube.

5.2. Vorticity Generation in the Boundary Layer

The large jump in tangential speed visible across the equi-
partition line in Figure 5 marks the presence of a vortex
sheet surrounding the tube. In fact, vorticity (more precisely,
its longitudinal component ®)) is generated at the boundary
layer during the whole duration of the run. From there, it is
advected toward the wake.

These processes are governed by equation (14). As in
§ 3.1, the right-hand side of this equation is dominated by
the first two terms [the third is again O(1/8,) smaller].
However, along the front of the tube, those two terms, i.e.,
the gravitational and magnetic vorticity sources, reinforce
each other rather than mutually cancel, as in the tube inte-
rior. This is because the radial derivative of the transverse
field component reverses its sign in the neighborhood of the
equipartition line. For instance, in the simple case in which
the field lines are still not far from circular (e.g., along the
front) the magnetic contribution is approximately

Vrhi B OT10 g B0
o cp 0 | r or cp 0¢p
so that J; changes sign at about the maximum of B,. As a
result, (and taking into account the sign of the azimuthal
derivative 0/0¢), in the right half of the tube, positive vor-
ticity is generated all along the front of the tube, and nega-

tive vorticity is generated at the rear, ie., at the interface
between the tube and the wake. At the rear, V(Ap/p) is

Ji, (22)
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Fic. 8.—Pitch angle distribution (stars) along the vertical central axis
at three different times corresponding to the three panels of Fig. 7. The
profiles of B, (dashed line) and B, (dot-dashed line) are overplotted.

approximately parallel to g, and therefore the magnetic
stress is at any rate the main source of vorticity there.

In Figure 9, we show the distribution of vorticity in the
box at four different times during the evolution. White and
black indicate positive and negative vorticity, respectively
(i.e., clockwise and anticlockwise rotation), while the gray
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F16. 9.—Distribution of the y-component of the vorticity vector in and around the tube at t = 0.3, 1.6, 3.1, and 5.7. White corresponds to positive vorticity
(clockwise rotation) and black to negative. The two leftmost panels clearly show the vorticity associated with the torsional oscillations. The boundary layer
and vortex sheet at the tube front are visible in the three rightmost panels. In the two last panels, the vortex sheet at the interface between the wake and the

tube is also visible.

background is the zero vorticity level. Soon after the begin-
ning (leftmost panel, t = 0.3) the gravitational torque is cre-
ating positive and negative vorticity in the right and left
tube halves, respectively, across the whole tube interior. In
the second panel (t = 1.6), this has already been countered
by the magnetic tension of the transverse field; the reversal
of the sign of the vorticity in the interior reveals the first
backward torsional oscillation. In addition, a vortex sheet is
already apparent all around the tube front. At the rear,
there is only an incipient wake and no clear vortex sheet yet.

The third and fourth panels correspond to the asymptotic
phase (t = 3.8, i.e, close to the beginning of the stationary
regime, and at an advanced stage, t = 5, respectively). Vor-
ticity generation now occurs basically close to the equi-
partition line only. Vortex sheets along both the front and
the rear of the head of the tube are visible. As expected, the
signs of their vorticity are opposite. A detailed distribution
of w, in the boundary layer around the tube (from top to
bottom), can be seen in Figure 10. The vorticity indeed
changes sign at the edge of the tube; the abrupt shape of the
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zero crossing is due to the acute shape of the latter. The
small maximum at the right end of the distribution is char-
acteristic of the tail (§ 6.2).

5.3. Ohmic Diffusion and Field Advection

The structure of the magnetic boundary layer is domi-
nated by ohmic diffusivity, which in part, in the present
case, takes on the role played by viscosity in the standard
hydrodynamic boundary layers. An important difference
between viscous and purely magnetic boundary layers,
however, lies in the no-slip condition for the flow; in the
purely magnetic case, there is no counterpart to the viscous
second-order derivative term that could force the tangential
velocity to reach a zero value at the boundary. In our case,
however, the flows on the inner side of the equipartition line
are reduced or suppressed by the magnetic forces. In other
words, in the present boundary layer, the Lorentz force
imposes a no-slip condition that does not allow either pen-
etration of the external incoming flow into the tube or large
fluctuations of the transverse velocity inside. This is clearly
visible in Figure 11, where we have plotted v, (v)),, B, and
B, along a vertical axis slightly offset from the symmetry
axis.

The slope of the profile of B, and B, across the boundary
layer results from the equilibrium between the outward
ohmic diffusion and the field advection through the external
flow. For B,, for instance, this is controlled by the transverse
component of the induction equation (eq. [3]). Written in
terms of the magnetic potential A4, this reads:

® V) A=nAA, with B,=Vx(4i). (23)

As the transverse field diffuses outward, it swallows some of
the incoming external matter (which, in this way, slowly
enters the magnetic field system). Simultaneously, this same
external matter advects the magnetic field back toward the
tube interior. The equilibrium between those two terms is
reached for a given thickness of the boundary layer, Ly,. To
obtain an estimate for L,;, we note that the external flow
has a length scale comparable to the tube radius (a common
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Fic. 11.—Plots of B, and B, (dash-dotted line) together with v, (solid
line) and (v,,,), (dashed line) along a vertical axis at x = 0.01 at time
t = 6.60. The vertical dotted lines correspond to the positions where
e
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feature of cylinders moving in fluid media), so that

R
~Rel?

This estimate is in agreement to within a factor of about 2
with the results of the numerical calculation (see Fig. 11). An
analogous advection-diffusion equilibrium can be seen to
hold for B, in the boundary layer.

5.4. Comparison with Air Bubbles and Rigid Tubes

In spite of the striking similarities between the present
problem and the rise of an air bubble, the corresponding
boundary layers at the periphery of the rising object differ in
important ways. The boundary of an air bubble is basically
a free surface for the external medium, since the density and
viscosity in the interior are negligible compared to those
outside. The external flow must then satisfy a zero tangen-
tial stress boundary condition rather than the no-slip condi-
tion of the present magnetic tube (e.g., Batchelor 1967,
§ 5.14; Ryskin & Leal 1984a, 1984b). As a consequence, the
tangential velocity at the gas/liquid interface in the air
bubble does not vanish, but must instead satisfy the follow-
ing equation:

Ly, 24)

W, = 2K(vrel)tg H (25)

with x being the curvature of the boundary layer and (v,),,
the tangential component of the relative flow speed. The
resulting jump in tangential velocity across the boundary
layer of a bubble is therefore only on the order of Re ™1/,
while it is O(1) for a no-slip boundary layer, as in the present
problem.

The magnetized boundary layer of the rising tube, in fact,
more closely resembles the boundary layers around solid
bodies with a no-slip condition than those around air
bubbles. The distribution of vorticity along the equi-
partition line shown in Figure 10 is quite similar to that
around the boundary of a rigid cylinder at Re ~ 300 (e.g.,
Ta Phuoc Loc 1980). In our case, however, the reversal of
the sign occurs more abruptly because of the particular
geometry of the equipartition line.

5.5. Entropy Generation

The enhanced ohmic dissipation in the boundary layer is
creating entropy at a rate given by

D (As y—1(V x B)?
LICOMREIT.LT. S
c, Y 47p
To order of magnitude, this entropy increase can be written

as
D (A 1 v,
_ <_S> ~— vnse , (27)
Dt \c, B R

with f,, being the local plasma f in the boundary layer. The
entropy increase for a matter element moving all along the
tube boundary is then of order 1/8,;. As a result, the density
difference Ap/p of those elements can be substantially modi-
fied. This, however, is unlikely to cause important modifi-
cations in the dynamical behavior of the tube boundary.
The main driving force there, the pressure gradient, is on the
order of pvZ,/R; therefore, it should be more important
than the local gravitational term g Ap by the ratio B3/BZ, >
1, where By, is the magnetic field strength in the boundary
layer.
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In our numerical simulation, we also find some increase
of entropy because of the artificial viscosity. Its influence,
however is only secondary, because of the low value of Re,,
chosen.

6. THE WAKE

Wakes have been the object of active research in fluid
dynamics for at least the past four decades. This includes
the wake behind solid cylinders (e.g., Collins & Dennis
1973a, 1973b; Ta Phuoc Loc 1980; Bouard & Coutanceau
1980; Ta Phuoc Loc & Bouard 1985), drops (Dandy & Leal
1989; Stone 1994), and air bubbles (Davies & Taylor 1950;
Collins 1965; Parlange 1969; Wegener & Parlange 1973;
Hnat & Buckmaster 1976; Ryskin & Leal 1984b; Christov
& Volkov 1985). In this chapter, we briefly describe the
formation and structure of the wake behind the rising mag-
netic tube and pay special attention to the similarities and
differences with other wakes known in the literature.

6.1. The Time Evolution of the Wake

Solid cylinders, air bubbles, and drops all have a clearly
defined boundary from the beginning. Vorticity is created
along the boundary and advected downflow. The wake is
formed out of external fluid only, via, e.g., in solid bodies,
the detachment of the boundary layer. In our case, in con-
trast, there is no such clear boundary at the beginning. The
layers of weak magnetic field in the outskirts of the tube
(1) are unable to resist the incipient external flow, so that
they are bodily convected to the rear, and (2) increase their
vorticity through the mechanisms explained in § 3.1.2 and
§ 5.2. It is the accumulation of this rotating material at the
back of the tube that constitutes the wake. The material
making up the wake may in fact be a large fraction of the
initial tube in the case of small initial pitch angles (see § 7).

The formation process of the wake is basically complete
by t = 3.0 (see Figs. 1 and 5), and this signals transition to
the asymptotic regime of rise (see § 4.3). The latter, however,
is not exactly stationary, since the wake does not remain
unmodified in the rest of the evolution. In fact, it slowly
grows in size and episodically changes its shape. This
growth can be seen in Figure 12, where the vertical size of
the rolls is depicted as a function of time. The elongation is

26f .
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22f X ]

20F * .

VERTICAL DIMENSION OF THE WAKE
*
b3

TIME

F1G. 12.—Vertical size of the wake as a function of time, calculated as
the distance between the stagnation point at the rear of the tube and the
stagnation point at the bottom of the wake. The growth is quasi-linear,
with oscillations superposed.
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roughly linear, with a small-amplitude oscillation superim-
posed. This kind of behavior is not unknown in fluid
dynamics. The elongation of the wake is indeed similar to
what is observed behind a rigid cylinder moving at constant
speed, with Re ~ 300, after an impulsive start (see Ta Phuoc
Loc 1980); in the laboratory experiment, the linear growth
of the wake with time continues well after the high-Re flows
have been set up around the cylinder and Cj, has reached a
constant value close to 1. For higher values of Re (=3000),
the growth of the wake with time is exponential rather than
linear (Ta Phuoc Loc & Bouard 1985). In our case, a small
part of the growth of the wake is due to stratification, but its
main cause is the transport of rotating material from the
boundary layer along the boundary of the tube to the wake.
This is clearly visible in the third and fourth panels of
Figure 9: a white streamer of positive vorticity coming from
the tube front is being wrapped up first around and then
into the roll on the right-hand side of the wake. Simulta-
neously, a black tongue with its origin at the back of the
tube is also making inroads into the wake, next to and
following a path parallel to the white streamer.

In the case of rigid tubes and bubbles moving through a
fluid (and assuming perfect symmetry about the object’s
midplane), the growth of the wake normally lasts until a
dynamical equilibrium is adopted. In this, the vorticity gen-
erated in the boundary layer is advected to the wake, where
it is redistributed through viscous diffusion and further
advection. Simultaneously, the energy gained through the
driving force (the potential energy for the bubbles) is trans-
formed into heat in the wake, again through viscous dissi-
pation (Parlange 1969; Wegener & Parlange 1973). Further
changes may occur if there is no mechanism to dispose of
the heat so generated.

In the results presented here, no dynamical equilibrium is
reached, since there is no equivalent mechanism to diffuse
the vorticity effectively. This can be seen quantitatively from
the fact that the characteristic time for the adoption of a
stationary state in the wake through viscous diffusion and
dissipation is Re (L,,,,./R)? times longer than the character-
istic time for the formation of the wake itself, L., . being the
transverse dimension of the wake and Re the viscous Rey-
nolds number. In our case, L, ~ R, and we expect Re
(calculated on the basis of the numerical viscosity) to be at
least as high as Re,. Therefore, the establishment of
dynamical equilibrium lasts much longer than the evolution
presented in this paper. The consequence of this is the very
inhomogeneous vorticity distribution apparent in Figure 9.
A high-Re case, in fact, may never come to full dynamical
equilibrium, because an instability interrupts the approach
to a steady state; the two standing rolls develop asymmetric
oscillations until one of them is released downstream (see,
e.g., Batchelor 1967, Plate 10). In contrast, in low-Re bubble
experiments, the trailing vortex rolls are similar to a Hill’s
vortex (e.g., Collins 1965; Parlange 1969; Wegener & Par-
lange 1973; Ryskin & Leal 1984b; Christov & Volkov
1985).

6.2. Further Structural Features in Common with
Laboratory Experiments

6.2.1. The Skirt
In experiments with buoyant air bubbles, it is often

observed that a small quantity of air is torn off (or sucked
from) the bubble corner and becomes stretched all around
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the wake. The result, commonly called the skirt, is a sheet of
air aligned with the interface between the wake and the
external medium that remains attached to the bubble (e.g.,
Hnat & Buckmaster 1976). A similar feature can be identi-
fied in our numerical simulations, coinciding with the
streamers or tongues of vorticity of both signs mentioned in
the last section. In contrast to the air bubbles, the skirt here
is made of magnetized material. During the whole rise, the
magnetic field in the skirt is continuously compressed and
stressed by both the wake and the external flows.

6.2.2. The Tail

All along the central symmetry plane, the rising tube
leaves behind a tail of weakly magnetized matter (Fig. 1). Its
upper part is compressed by the two rolls of the wake. In
fact, the tail is not only magnetized, but also has nonzero
vorticity. This can be seen both in the distribution of Figure
10 (maximum of positive vorticity at the right end of the
figure) and as a light shadow in the vorticity map of Figure
9. Similar structures are seen behind moving pairs of vor-
tices, as well as in bubble experiments (e.g., Wegener &
Parlange 1973). The total amount of magnetic flux lost by
the tube to the tail is small (only 6% of the total flux).

6.2.3. The Secondary Rolls at the Edge of the Tube

Close to the lateral edges of the tube (see Fig. 13 and the
last panel in Fig. 9), small secondary rolls are built from
time to time; they grow for a while and then are released to
the downflow. These features are reminiscent of the second-
ary rolls observed near the detachment point of the bound-
ary layer around solid cylinders (Ta Phuoc Loc 1980; Ta
Phuoc Loc & Bouard 1985). These secondary rolls strongly
perturb the skirt and the wake when they are released; this
is the main cause of the irregular shape of the wake in the
last panels of Figures 1 and 9.

7. THE RISE OF TUBES WITH DIFFERENT INITIAL
DEGREES OF TWIST

The initial value of ¥, for the tube with the rise we have

TIME = 4.7

T T

described in the foregoing sections was close to the value
given by the criterion of equation (11), namely, ¥, = 6°.
This criterion provides a lower bound for the twist neces-
sary to withstand the destruction of the tube through vor-
ticity generation in its interior, external pressure forces, and
so forth; we do not know yet how sharp that bound is. In
the present section, we investigate the transition from low-
twist to high-twist regimes. We conclude that the change
from one to the other is gradual and takes place over a
range of, say, 5° in ¥,,, around the value given by the
right-hand side of equation (11). In Figure 14, we show the
relative flow, v, (upper panels), and the contours of longitu-
dinal magnetic intensity, B, (lower panels), for four cases
with ¥, =, 1399, 7°, 225, and 0°, respectively. There is a
clear gradation of properties and evolutionary patterns
along the four columns of the figure. The amount of flux
remaining in the head of the tube is an increasing function of
Y ,.... This can be seen in Figure 15; the stars, representing
the percentage of the initial flux remaining in the head, go
from more than 80% for ¥, = 1399 to about 20% for
Y.« = 2°5 and (trivially) 0% for ¥, = 0°. In this figure, the
change between the two regimes occurs between, say, 3° and
8°.

Not only the size, but also the shape of the remaining
head varies markedly from one case to the other (see Fig. 14,
upper panels). For ¥, = 13?9, the tube maintains its round-
ish shape all along. This is especially striking at the rear of
the tube; the rising return flow between the two rolls in the
wake cannot dent the back of the tube. This case is closest
to the motion of a rigid cylinder in a fluid. For ¥, decreas-
ing down to 226, the back of the tube becomes first flat and
then concave through the action of the return flow. This
transition coincides with the increase of the magnetic
Weber number up across unity; We is 0.19, 0.74, and 5.75
for ¥, = 1329, 7°, and 25, respectively. In the untwisted
case, there is no longer a neat separation between tube
interior and external flows. The rolls in the wake now
contain 70% of the original magnetic flux, with most of the
rest contained in the upper arch linking them. The evolu-
tionary pattern in this case is similar in many respects to the
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Fic. 13.—Formation and release of a secondary roll at the edge of the tube. The panels contain a time series showing the equipartition line and the
relative flow field. The secondary roll is being released to the downflow; later on, it gets dragged all around the wake and noticeably perturbs the shape and
velocity distribution. Note also the jumps in velocity inside the main roll of the wake, revealing the presence of vortex sheets that have been advected from the

tube front.
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Fi1G. 15—Percentage of the initial magnetic flux remaining in the head
of the tube once the terminal velocity has been reached (stars) as a function
of ¥,,. Also shown is the percentage of flux that has been dragged to the
wake (circles).
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FiG. 16.—Initial and asymptotic profiles of the distribution of magnetic
energy in the transverse field, e, along the vertical axis of symmetry
compared, in both cases, with the asymptotic kinetic energy density e, ,, at
the apex of the tube. The asymptotic values were calculated at t = 5. The
different curves correspond to cases with initial pitch angle ¥, = 13?9
(dashed line), ¥, = 7° (solid line), and ¥ ,,, = 225 (dotted line).

results of Longcope et al. (1996).

Further insight into the structural differences of the tubes
in Figure 14 can be obtained by comparing the energy
density of the transverse field, e,,,,,, with the kinetic energy
reached asymptotically by the head of the tube. The order
of magnitude of the latter is (B?/8m)R(1 + tan? ¥). This
varies little (about 6% only) between ¥, = 2°5 and ¥, =
1329. The magnetic energy of the transverse field, in con-
trast, varies by a large factor (approximately 30) between
those two extremes. For the comparison in Figure 16, we
plot the distribution of e,,,,, along the vertical axis at times
t = 0 (upper panel) and t = 5 (lower panel), divided in both
cases by the kinetic energy density at the upper stagnation
point of the tube in the asymptotic regime, e, (calculated
in the figure at time ¢t = 5). In the case with the highest ¥,
(dashed line), at t = 0 only a thin skin at the outermost tube
boundary is below the terminal kinetic energy level; we
expect a skin of roughly that size to be dragged into the
wake. For ¥, = 7° (solid line) and W, = 2°5 (dotted line),
most (or all) of the tube at time ¢ = 0 has e,,,,, below the e,
level. However, in the initial phases of the evolution, the
transverse field is substantially intensified through the com-
pression and stretching phenomena explained in § 4. This
allows the head of the tube to be formed and its energy e,
to be at (or above) the e, level in the asymptotic regime
(Fig. 16, dotted line in second plot).

8. DISCUSSION

The results presented in this paper can be discussed from
a twofold perspective. First, they can be applied to the
theory of magnetic activity in the Sun, in trying to under-
stand different aspects of the rise of magnetic flux across the
convection zone. On the other hand, the simulations
described here bear a strong resemblance to the results of
laboratory and numerical experiments on the motion of air
bubbles and rigid cylinders; it would be as well to clarify
similarities and differences. The following subsections
discuss different aspects of those topics.

8.1. The Parameters and Distribution of Basic
Physical Variables

The numerical calculations of the present paper are nec-
essarily idealized. The calculations were done in a high-§
regime with a small ratio of radius to pressure scale height.
In this, they are within the parameter regime expected for
the magnetic tubes in the deep convection zone. The latter
have a larger f, by a factor between 10 and 100, than
adopted here, but many qualitative features of the rise
should be similar in both cases. The only diffusive process
considered, however, the ohmic resistivity, taken together
with the numerical viscosity and diffusion, yields laminar
flows in and around the tube with a Reynolds number of a
few hundred. This cannot be expected to hold in the actual
Sun, where the rise of the tube will be accompanied by
turbulent flows (with, in particular, a turbulent wake).

In spite of the above considerations, one conclusion
seems unavoidable: for the transport of the magnetic flux to
the surface in the form of buoyant magnetic flux tubes to be
effective, the latter must be twisted from the early stages of
their rise. We have shown that for a tube with a density
deficit on the order of the full isothermal value (Ap/p ~
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—1/B), an average pitch angle of around sin ™" [(R/H)"/*]
is indeed necessary for the tube to withstand the various
deforming agents. Otherwise, they lose most of their mag-
netic flux to the trailing wake. As shown by earlier authors,
the vortex rolls of the wake can easily end up moving hori-
zontally rather than rising. The condition on the minimum
pitch angle may be less stringent, however, if we consider
that the rise may actually be driven by the Parker instability
in tubes that are stored in a neutrally buoyant equilibrium
(Caligari, Moreno-Insertis, & Schiissler 1995). The insta-
bility occurs with the upgoing mass elements being driven
by a vertical force that remains well below pg/f while the
amplitude is not too large. Through equation (11), corre-
sponding to a driving force of fpg/p (f < 1) is a minimum
pitch angle that is about a factor of f!/*> smaller than for
isothermal straight tubes. For example, in the case dis-
cussed by Caligari et al. (1995), f < 0.04 for the top of the
rising loop in the lowermost 10,000 km of the rise, i.e., for
distances equivalent to about 5 times the tube radius.

Even if the tubes are strongly buoyant [ | Ap/p| = 0(1/6)]
from the beginning, their time evolution may depend to
some extent on the precise distribution of the density deficit
in the tube at time ¢ = 0. A Gaussian profile, as used in this
paper, yields a fast deformation of the initial magnetic con-
figuration, followed by internal torsional oscillations. This
is directly associated with the torque of the buoyancy force
throughout the tube interior. A top-hat profile (p; < p,, but
Ap = const), on the other hand, has no buoyancy torques
associated with it except at the tube boundary. Yet, the time
evolution of such a tube for smooth pitch angle distribu-
tions, such as those of equations (8) or (9), is qualitatively
similar to the cases studied in this paper, as has been tested
through a series of numerical experiments. This can be
understood in different ways: first, the hydrodynamic forces
associated with the external flow depend on the speed of rise
of the tube, which is a function of the average buoyancy
rather than of the precise shape of the Ap profile. To
counteract them, one needs to have a sufficient pitch angle
in the tube interior. On the other hand, the gravitational
term in the vorticity equation (14) for a top-hat profile is
concentrated at the periphery of the Ap distribution, but is
correspondingly more intense. To counteract it, it is neces-
sary to have a large current density J,, which can only be
achieved if B, is sufficiently intense, at least close to the tube
boundary. Through both arguments, one arrives at criteria
basically similar to equation (11).

8.2. Twisted Tubes in the Convection Zone:
T hree-dimensional Effects

If the magnetic tubes that yield active regions at the
surface must be twisted already in the early stages of the
rise, the Sun should have a mechanism to routinely produce
twisted tubes in the dynamo layers. If one relaxes the condi-
tion of symmetry along the tube imposed in the present
paper, one might think that the twist could result through
torsional shearing. This might come about as a natural sub-
product of the generation of vorticity explained in this
paper, if it took place at different rates on the different cross
sections of the tube along the axis. This can be the case, for
instance, if the originally horizontal tube develops an
omega-loop shape in which a stretch of it rises while the rest
remains at the original level. If the tube was originally
untwisted (or only weakly twisted), the rising sections would
tend to turn into vortex tube pairs that contain most of the
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original magnetic flux. Now, in contrast to the two-
dimensional case, this rotation produces a transverse field
component in the flanks of the rising section of the loop. If
enough B, is built up, the rotation in the vortices could be
braked. Yet, a simple calculation shows that for this mecha-
nism to be at all effective, the footpoint separation, 4, of the
omega loop must be small—in fact, smaller than one pres-
sure scale height. More precisely, if we require that the tube
develop a transverse component of the level required by the
criterion of equation (11) after rising a distance equivalent
to a few of its own radii, we obtain

y) 1/2
4 S <H5) . (28)

14 p,

This is a very small footpoint separation; the ratio of the
Lorentz force associated with the curvature of the field lines
to the buoyancy force in such a tube is at least of order
H /4. Consequently, it is not easy to raise a loop that is
narrow enough for a sufficient pitch angle to develop at all.
This is an indication that the tubes may need be formed
with the necessary amount of twist before they start to rise.
An interesting possibility for generating magnetic tubes
with a nonzero total twist has been discussed by Cattaneo,
Chiueh, & Hughes (1990); they consider a Rayleigh-Taylor
unstable slab of plasma with a horizontal magnetic field
such that the angle subtended by the field vector with a
fixed horizontal axis monotonically changes with depth.
Upon development of the instability, the layer yields mag-
netic tubes with nonzero degrees of twist. In their experi-
ment, the authors showed how the resulting tubes were
more resistant to deformation through the surrounding
flows than in corresponding untwisted cases (Cattaneo &
Hughes 1988). A corresponding three-dimensional problem
has been calculated by Matthews, Hughes, & Proctor
(1995). They show how an unstable layer with a parallel
horizontal field produces magnetic tubes with nonzero vor-
ticity. Through nonlinear interaction, these tubes arch as
they rise in a vertical plane, thereby becoming twisted.
Another open question concerns the fate of a twisted tube
as it rises across successive density scale heights in the con-
vection zone. The internal and external densities are essen-
tially equal for most of the rise (except for the small relative
difference, on the order of up to 1/ < 1); the tube thus
expands, and its field intensity weakens by several orders of
magnitude along the journey (see Moreno-Insertis 1986,
1992, 1997b). In fact, the beginning of this process can be
seen by comparing the maximum field intensity of the three
panels of Figure 8. The rate of decrease associated with an
off-axis expansion of the tube, however, is different for the
longitudinal and transverse components of the field (see
Parker 1979, § 9). A rough but simple argument based on
the conservation of flux in two dimensions yields a rate of
change of the twist that follows an approximate law,
tan ¥ oc R. If this holds, the tubes could reach the upper
convection zone with very large degrees of twist, possibly
such that they can become kink-unstable. Yet, three-
dimensional effects could render that simple law of little use.
The stretching of the tube apex in the longitudinal direction,
for instance, a phenomenon common in Parker unstable
rising loops, may reduce the level of twist there. Also, the
conservation of the total helicity in the tube could put an
upper limit to the number of turns in the field lines around
the axis at any single point. However it is, large pitch angles
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should be a common feature in rising tubes when they reach
photospheric levels. The sheared field structures observed in
emerging active regions (Lites et al. 1995; Leka et al. 1996)
may be a consequence of this (see also Tanaka 1991;
Kurokawa 1989; Rust & Kumar 1996).

8.3. Magnetic Tubes, Air Bubbles, and Rigid Cylinders:
Similarities and Differences

Throughout this paper we have compared our results to
the laboratory experiments of flow past rigid cylinders and
air bubbles at Re ~ 200-300. We here summarize the simi-
larities and differences found.

1. Magnetic tubes and air bubbles—Remarkable simi-
larities were found in (1) the general shape and structural
features (skirt, central tail) and (2) the protection of the inte-
rior of the rising object through surface tension. These simi-
larities are all the more striking given the difference in
buoyancy [density deficit |Ap/p|<1 for tubes, O(1) for
bubbles] and in the physical source of the surface tension
(capillary effects versus jump in the tangential field
component). As a result, defining the Weber number on the
basis of the corresponding surface tension mechanism, one
can formulate a common law of dependence of structural
properties on We.

2. Magnetic tubes and rigid cylinders—A clear similarity
is evident in the boundary layers; both objects have a
no-slip condition along the boundary. Consequently, the
relative jump of the tangential velocity across the boundary
layer is large, [v,,]/v,, ~ O(1). In contrast, there is a zero
tangential stress condition along the fluid/air interface of a
bubble; correspondingly, [v,,]1/v,, ~ O (Re™'/?). As a result
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of the no-slip condition, both buoyant magnetic tubes and
rigid cylinders produce (and shed downstream) secondary
rolls near the point of separation of the boundary layer.

3. Features specific to the buoyant magnetic tubes with
twist. In the magnetic tubes of the present simulations, the
wake is formed in the initial phases of the rise out of
material bodily transported from the initial tube. Thus, the
wake is magnetized and maintains a magnetic connection to
the head of the rising tube along time. The behavior of the
magnetic rope depends directly on the amount of magnetic
flux incorporated into the wake, which, in turn, depends on
the initial twist. In the case of an initially highly twisted tube
(¥, = 1329), the magnetic rope is almost rigid and its shape
and the flow around it strongly resemble those of a solid
cylinder. If the initial pitch angle is closer to the threshold of
equation (11), then the tube deforms and adopts a bubble-
like shape (although it still satisfies a no-slip condition
along its boundary). Finally, if ¥,,, is very small, the tube
behaves like a rising thermal (Longcope et al. 1996).
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