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ABSTRACT

The equilibrium of non—force-free twisted horizontal magnetic flux tubes is studied including gravity and an
arbitrary pressure perturbation on the tube boundary. To solve this free-boundary problem, we use general
nonorthogonal flux coordinates and consider the two-dimensional case in which there is no variation of the
physical quantities along the tube axis. For the applications in the convection zone and corona, we consider
the case of weak external stratification by assuming that the radius of the tube is smaller than the external
pressure scale height. This allows us to introduce a perturbation scheme which is much less restrictive than
the customary slender flux-tube approximation. In particular, it has the advantage of not imposing any limi-
tation on the strength of the azimuthal field as compared to the longitudinal field. Within this scheme, one
retains to zero order all the functional degrees of freedom of a general axisymmetric magnetostatic equi-
librium; the geometry of the perturbed azimuthal field lines is then obtained from the equilibrium equations
as a consequence of the zero-order density (or rather buoyancy) distribution in the tube and of the circular
wavenumber of the external pressure perturbation. We show that, as a result of the presence of gravity, the
field lines are no longer concentric, although they continue being circular. The resulting changes in magnetic
pressure and tension of the azimuthal field exactly counteract the differences in buoyancy in the tube cross
section. On the other hand, external pressure fluctuations of circular wavenumber higher than one can only be
countered by bending the azimuthal field lines. In general terms, the present scheme allows one to study in
detail the mutual dependence of the (differential) buoyancy in the tube, the intensity and field line geometry of
the azimuthal magnetic field, and the gas pressure and longitudinal magnetic field distributions.

The main application of the equations and results of this paper is to study the transverse structure of mag-
netic flux rings embedded in a stratified medium with a flow around the tube that causes pressure fluctuations
on its surface. This includes tubes in the deep convection zone, e.g., in its subadiabatic lower part, or those
kept in place by a meridional flow. It also applies to flux rings moving in a quasi-static regime in which the
drag force of the relative motion with respect to the external medium exactly compensates the total buoyancy
of the tube. In this way, this study can complement the numerical simulations of the rise of magnetized tubes

and bubbles toward the surface.

Subject headings: hydrodynamics — MHD — Sun: magnetic fields

1. INTRODUCTION

The problem of finding exact magnetohydrostatic configu-
rations for the magnetic field and plasma in the solar atmo-
sphere and convection zone is the key to understanding a large
number of solar phenomena and structures. These range from
prominences and coronal arches (e.g., Priest 1990) down to
photospheric structures (e.g., Lites et al. 1995) or even thick
magnetic flux tubes rising in a quasi-stationary regime through
the convection zone. Very often, the existing literature has con-
centrated on cases in which the field has a tubelike structure or
in which there was a special symmetry or simplification at
hand (force-free field, etc.). A full three-dimensional problem
including gravity and nonvanishing magnetic forces and a
general energy equation is still too complicated to be tackled
analytically, although clear progress has been made in the past
decade (see, e.g., references in Low 1993a).

A particular aspect of this problem, the equilibrium and
topology of twisted fields (i.e., fields with nonvanishing
helicity), is of special relevance at present, since it seems that
the magnetic field appearing in the photosphere must have
already a nonnegligible net twist in deeper layers in the convec-
tion zone (Lites et al. 1995; Tanaka 1991). In the present paper,
we study the equilibrium structure of straight horizontal non—
force-free magnetic flux tubes with a net amount of twist. We
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simplify the problem by assuming invariance of all quantities
in the direction of the tube axis. The study of the physics of
twisted magnetic flux tubes began with Liist & Schliiter (1954).
They, as well as Parker (1974, 1979) and Browning & Priest
(1983), considered force-free fields. The effect of gravity has
been studied in a general way by Low in his series of papers on
magnetostatic atmospheres (1975, 1980, 1981, 1993a, and refer-
ences therein). For the case of a two-dimensional plasma in a
uniform gravity field, Low (1975) showed that the equilibrium
can be reduced to a single scalar nonlinear elliptic partial
differential equation: the Grad-Shafranov equation. When
solving this equation, one should determine the thermo-
dynamics simultaneously with the flux function of the trans-
verse magnetic field (i.e., the components perpendicular to the
tube axis). However, this is not easy to achieve because of the
nonlinearity of the equation. One possibility is to simplify the
thermodynamics by assuming the temperature to be constant.
In this case, the Grad-Shafranov equation simplifies into a
form (similar to Liouville’s equation) which can be integrated
(e.g., Dungey 1953; Low 1981; Zweibel & Hundhausen 1982;
Webb 1986, 1988). Analytical solutions in which the plasma is
assumed to be a polytropic gas have also been found (Lerche &
Low 1980; Hundhausen & Low 1994; Low & Hundhausen
1995). Another approach is to choose a priori the magnetic
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field. The thermodynamic variables are then deduced to match
the given magnetic field configuration (e.g., Low 1980; Hu
1988; Lites et al. 1995), but the resulting temperature distribu-
tion may be unrealistic. There is also the possibility of choosing
the temperature as a nontrivial function of the flux distribu-
tion, the latter being obtained afterward by the integration of
the Grad-Shafranov equation. In the case of a horizontal mag-
netic flux tube surrounded by unmagnetized plasma, we are
confronted with an additional difficulty: we must solve the
equilibrium equations inside a region defined by a free bound-
ary, ie., the shape of the latter must be deduced from the
balance of forces. Progress can be achieved by transforming a
solution without gravity into a solution with gravity (Dungey
1953; Low 1981; Lites et al. 1995). Other solutions have been
found by forcing the boundary of the tube to match an external
potential field (Cartledge & Hood 1993; Low 1993b).

In this paper we are interested in obtaining magnetostatic
solutions by prescribing as little as possible the transverse
magnetic flux function. We want to study how gravity and/or
an arbitrary (external) pressure distribution on the boundary
determine the shape of the azimuthal field lines. On the other
hand, we want to allow for an arbitrary entropy distribution
across the tube. Finally, at least for the applications in the
convection zone, we are interested in cases in which the cross
section of the tube does not span a whole scale height. To find
a solution based on those premises, we first write down in § 2
the MHD equations in a generally nonorthogonal coordinate
system such that the transverse magnetic field lines are co-
ordinate lines. This transformation to flux coordinates has the
advantage of simplifying the boundary condition (e.g.,
Edenstrasser 1980; Hu 1988; Cally 1991).

To solve the equilibrium equations, we carry out a pertur-
bation analysis which allows solutions with an arbitrary
amount of twist in the tube (§ 3). The perturbation scheme used
requires only that the ratio of tube radius to pressure scale
height is small: it is not a radial expansion of the equations
around the tube axis, so that it is much less restrictive than the
so-called thin flux-tube approximation (Defouw 1976; Roberts
& Webb 1978). The latter requires, in particular, that the azi-
muthal field component be much smaller than the longitudinal
one, whereas our approach does not have this limitation. This
is explained in more detail in § 4. In the past, similar lineariza-
tion techniques have been used successfully to study toroidal
coronal loops (Lothian & Hood 1989; Emslie & Wilkinson
1994). They are also related to the expansion techniques used
in the fusion literature to study equilibrium configurations for
toroidal magnetic fields of small inverse aspect ratio (Greene,
Johnson, & Weimer 1971 ; Miller & Turner 1981).

One of the basic applications of the equations and calcu-
lations of the present paper is to twisted flux rings rising slowly
enough in the convection zone so that they are permanently in
a state of quasi-equilibrium. It can be seen (§ 7) that a sufficient
condition for this quasi-static rise is that the radius of the tube
be small in comparison to the scale height of the external
medium (i.e., the same condition as above). The equilibrium
distribution of magnetic and thermodynamic quantities for
this free boundary problem including gravity and an arbitrary
pressure distribution at the surface is studied in §§ 5 and 6.
Finally, § 7 contains a general discussion and conclusions.

2. DESCRIPTION OF THE EQUILIBRIUM

We consider a horizontal magnetic flux tube in static equi-
librium with a stratified external medium and concentrate on
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FiG. 1.—Diagram showing the coordinates and some of the symbols used
in the paper.

the case in which there is no variation of the physical quantities
along the tube axis. In cylindrical coordinates (r, ¢, y) with the
y-axis along the tube axis and ¢ = 0 coinciding with the verti-
cal z-axis (z = 0 at the center), this means no variation with
respect to y (see Fig. 1). We define B, as the projection of the
magnetic field, B, on the vertical plane (x, z), and V, as the
nabla operator also in the plane (x, z). The equations governing
the equilibrium of this system are then

0=V, B,, (0]
B? 1
0=-V|p+—)+pG+—(B-V)B,, )
8 4
1
0= ‘4—7': [(Bt ¢ V,)By]ey 5 (3)
BZ
Pe=P+ g at the boundary . 4

Here p,, p, p, and G stand for the external and internal gas
pressure, density, and gravitational acceleration, respectively;
e, is the unit basis vector in the y-direction. Equations (2) and
(3) are the components of the momentum equation in the verti-
cal plane and in the y-direction, respectively. Equation (3)
implies that B’ is constant along the lines of force of B,, which,
according to equation (1), are closed. The magnetic field thus
presents a simple leeklike structure: its lines of force are situ-
ated on disjoint tubular surfaces characterized by the value of
B’ on them, all around a common axis. A further consequer ce
of equation (3) is that the magnetic force vector must lie in the
plane (x, z) and, thus, it must be normal to B,.

We will find it more convenient to work with a set of coordi-
nates (u, @, y) instead of (r, ¢, y), in which u is defined through
the requirement that (see Fig. 1) (a) it is constant along the
lines of force of the azimuthal field B, and (b) it should fulfill
u = r = z along the semiaxis ¢ = 0. We prefer this choice to
just choosing the magnetic flux function because of the advan-
tages it entails in dealing with the equations and their solu-
tions, as will become apparent along the text. In this
coordinate set, the boundary of the tube coincides with one of
the u = const surfaces, u = U, say. The set (u, ¢, y) is generally
nonorthogonal and thus more difficult to use than the custom-
ary curvilinear coordinates. This disadvantage, though, is
offset by the simple form which most of the equations and the
boundary conditions adopt in this system. The derivation of
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the elementary differential operators (divergence, curl, covari-
ant derivative, etc.) in these coordinates is carried out in
Appendix A using the techniques of differential geometry
(Auslander & Mckenzie 1977; Kobayashi & Nomizu 1963).
Here we just write the results of the calculation. The metric is
now nondiagonal, with arclength element dI given in the new
coordinates by

di?> =r 2 du* + (r ;2 + r?)d¢? + 2r,r ydudd + dy* . (5)

The subscripts ,u and ,¢ indicate the partial derivatives with
respect to u and ¢, respectively In the new basis of unit vectors
(e., €y, €,), with e, pointing in the direction u = const any
arbitrary vector can be written as v = v, + v e¢ + v’e,.
Special care must be taken with the scalar product (we write 1t
with a dot) and with the divergence operator:

r
v-e,,=v“+v¢+2, 6)
rol+r
v- e¢—v“—"’—+v , )]

N
1 w0 rr, v°
Ve = " |:8_ "+ % 0o (. /rsd + r2>] ' ®

Expressions (6) and (7) correspond to the orthogonal projection
of any vector » onto the directions of the vectors e, and e,
respectively, and, for r ;, # 0, they do not coincide with the u-
and ¢-components of v. The gradient of any arbitrary scalar f,
Vf, is also more complicated than for cylindrical coordinates,
since it contains derivatives with respect to u and ¢ in both the
u- and ¢-components. The exact expression is given in Appen-
dix A (eq. [A4]).
The transverse magnetic field, B,, has a single component :

B, = B, , )

i.e, B* = 0. Thus, in the coordinates (u, ¢, y) the magnetic field
has just one functional degree of freedom; the other degree of
freedom allowed by the Maxwell equation (1) has in fact been
incorporated into the geometry in the form of the unknown
function r(u, ¢).

The simple form of equation (9) permits immediate integra-
tion of the solenoidality equation (1) and of the momentum
equation in direction e, equation (3). Calculating the diver-
gence of the transverse field in equation (9), we find that equa-
tion (1) is identical with the requirement that there exists a
function b(u) such that

2 2
B =YL 1T gy,

U

(10)

where b has the dimension of a magnetic field. In fact, b is the
derivative with respect to u of the transverse magnetic flux A(u)
defined by B, = —V x (4e,). Finally, by calculating its scalar
product with e, and e,, the momentum equation, equation (2),
can be split into the pair of equations

] B*  b? 8z b?
0=— 6u( +8—+8—F) Q, §8))
op 0z
0 —a¢—PGa¢, (12)
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with
F ﬂ , (13)
rr., v

defaF e \/-I;
Y 2(r' 2 +r%) R’

C

(14

1 def 2ry? —rr gy + 1)
c (7,4,2 + r2)3/2

(15)

G is the modulus of the gravitational acceleration G, R, is the
radius of curvature of the B, line of force, and the coordinate z
is an unknown function of u and ¢, viz., z = r(u, ¢) cos ¢. From
the decomposition of B? introduced in equation (10), it is
apparent that the parameter F contains all the ¢ dependence of
the transverse field and thus provides a measure for the degree
of convergence or divergence of neighboring azimuthal field
lines. The last term in equation (11) is the scalar product of the
magnetic tension force (B, - V,)B,/4n with the vector r,e,.
Using the transverse magnetic flux A(u) instead of u as inde-
pendent variable, the “radial” momentum equation (11) trans-
forms into the well-known Grad-Shafranov equation (e.g., Low
1980). Equation (12) tells us that the gas is hydrostatically
stratified along the B, lines of force, which is a direct conse-
quence of the fact that the magnetic force is perpendicular to
the surfaces u = const.

Equations (11) and (12), together with the two boundary
conditions

2 2
po=p+2 4+ P F atu-v, (16)
8  8n
u=r for¢g=0, 17

and the equation of state, constitute a system of equations
equivalent to equations (1)—(4). The system of equations (11)-
(17) provides two differential equations and two boundary
conditions for five variables, viz., p(u, @), p(u, ¢), B’(u), b(u), and
r(u, ¢). Hence, the equilibrium possesses three functional
degrees of freedom.

For the application of this study to different regions of the
solar envelope, we have to keep the possibility open of high
and low values of the ratio of gas to magnetic pressure. To
analyze the effects of gravity in both regimes of high and low
plasma beta, it is then convenient to subtract the external gas
stratification from the inside equilibrium. To that end, we
define the (gas) pressure and density excess

Ap(u, $)= plu, ) — pelzw, #)] ,
Ao, )= p(u, ¢) plz(u, )1, (18)

and we introduce them in the equations using the condition of
hydrostatic equilibrium for the external stratification. The
resulting equations are identical to equations (11) and (12),
with Ap and Ap substituting for p and p, respectively. The
importance of the gravity force in modifying the equilibrium
can be quantified with the dimensionless parameter

U
==,

e

(19)

where H, is the external pressure scale height. If equation (19)
is vanishingly small, there will be no variation of the external

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...458..783E

J. = 2458, [783ED

BAD

rt

786 EMONET & MORENO-INSERTIS

pressure along the tube boundary, and the equilibrium can be
axisymmetric. On the other hand, if it is nonnegligible, some of
the forces in the tube must be ¢ dependent so that the external
pressure variation can be compensated along the tube bound-
ary. This can be best seen by integrating the momentum equa-
tion (2) over any arbitrary region 2 delimited by a line
u = const,

2
j (Ap +2- F)ndld, -G ‘”‘ ApdE =0,
) 8n 2

where dl, is the elementary arc length along a line u = const, n
is the outward unit normal vector at the point (u, ¢), dX is the
infinitesimal surface element, and the fact that B” = const on
02 has been used. We see that the integrand on the left-hand
side has to reorganize itself along 02 to compensate for the
buoyancy force acting on the region 2. To be more precise, it is
the transverse magnetic field which must adapt its ¢ depen-
dence to counteract the density difference Ap and achieve the
equilibrium: Ap is fixed by the hydrostatic condition in equa-
tion (12). Vice versa, the intensity of B, determines the spacing
of the lines u = const and, hence, it has a direct influence on the
“radial ” profile of Ap. If we expand the region 2 to the whole
tube section, the line integral in equation (20) disappears
because the total pressure excess is zero at the boundary, and
there remains the integral condition

2n (U
0=GJ j Aprr, dudd ,
1] 0

(20)

@n

which ensures that the total buoyancy force is zero.

Thus, the azimuthal dependence of the variables in the tube
plays a central role in the problem. In fact, later on in the paper
it will prove useful to use, instead of the “radial” momentum
equation (11) and the boundary condition (16), their ¢ deriv-
atives. We obtain therefore the equivalent system to equations
(11)—(17), namely,

(P800 amp 3\ o (¥ aF) b a0
O‘G( u 26 00 6u>—6u <8n 6¢>+4n a6’ @
J0Ap 0z
0=~ MG o 23)

dAp b* OF
0=5 *anag Mu=U. 24)
u=r for¢g=0, (25)

Equation (22) follows from the introduction of equation (12)
into the ¢-derivative of equation (11). To avoid the loss of
information associated with the partial derivatives, we must
consider, in addition, the restriction of equations (11) and (16)
to the vertical semiaxis ¢ = 0. With these two additional con-
ditions, the system of equations (22)—(25) is equivalent to the
system of equations (11)—(17).

Using equations (23) and (24), it is possible to express in an
exact way the deformation of the tube surface in terms of the
density excess, the plasma beta of the transverse field, and the
transverse size of the tube (as measured by the local scale
height):

a—F=%Q£—‘?—(5> atu=U. (26)

p. H, 0 \U
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If, for example, Ap were positive in the outer tube layers (this
must happen, e.g., if the core of the tube is buoyant), then
equation (26) indicates that the B, field lines must be closer
together in the upper part of the cross section of the tube than
at the bottom (see also Fig. 2 in § 3). The opposite applies if
Ap < 0 along the boundary (see Fig. 3 in § 3). More generally,
equation (26) shows that a stronger deformation of the tube
will be obtained for a smaller value of the transverse magnetic
field, a greater value of | Ap/p, |, and/or a larger radius of the
tube as compared to the external pressure scale height. From
equation (26), we can also immediately obtain an expression
for the variation of the pitch angle of the field lines:

0¥ _Smp Mp U 3 ()
% (B p. H, ¢ (U) au=0,

where W is the square of the trigonometric tangent of the pitch
angle.

Until now, the only restriction imposed on our model has
been the horizontal (or y-) invariance. This has allowed us to
eliminate two of the initial four differential equations.
However, as explained in the introduction, the resulting system
of equations (22)—(24) is still too complicated to solve analyti-
cally without some additional simplification. In the following,
we consider the gravitation as a perturbation in the equi-
librium equations. Using this approximation, we will be able to
linearize and integrate the equations.

@7

3. PERTURBATION SOLUTION FOR A HORIZONTAL TUBE IN
STATIC EQUILIBRIUM WITH A STRATIFIED EXTERNAL
MEDIUM

In this section, we look for solutions to the system of equa-
tions (22)—(25) in the limit in which the gravitational terms in
the equations can be considered a perturbation to the equi-
librium. Considering the parameter € defined in equation (19),
this approximation is equivalent to the condition

e<1, (28)

i.c., small tube radius as measured by the local scale height.
This limit is easily applicable to magnetic flux tubes located in
the convection zone (except in its uppermost layers, e.g.,
Moreno-Insertis 1992) and for the magnetic flux arcades in the
corona (e.g., Priest 1982). We carry out a perturbation analysis
by considering, first, an axisymmetric magnetic flux tube in
equilibrium with a background plasma of constant pressure
(G = 0), and second, the same equilibrium plus a linear correc-
tion attributable to gravity. For the sake of simplicity, we do
not consider nonaxisymmetric equilibria in the absence of
gravity.

3.1. Linearization of the Equations

We define for each physical quantity a zero- and a first-order
symbol:

P = po(W1 + pi1(u, $)] Pe = Peoll + Per(u, )1,

p = po)[1 + py(u, $)] Pe=Peoll + pos(u, 9],
Ap = Apo(u)[1 + Apy(u, )1 Ap = ApoW)[1 + Apy(u, $)] ,
B’ = By(uw)l1 + Bi(w] B?® = BYw)[1 + BY(u, $)] ,

b = by(w)[1 + by(u)] r=ull +ru¢)]. (29
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The zero-order variables correspond to the unperturbed
axisymmetric tube, whereas the first-order terms are linear in

the gravitational acceleration G (equivalently, in = U/H,).
Introducing equation (29) into equation (10) and neglecting the
second-order terms, we obtain

zero order:

=bo ; (30)

first order:

Bt = by — = (ury). )
ou

To zero order (G = 0), the external pressure is constant, and we

have assumed that the tube is axisymmetric. Thus, from the

equilibrium equations (22)—(25) there follows the customary

radial momentum equation and boundary condition describ-

ing the equilibrium of an axisymmetric flux tube

0 BY b b2 1
0—_£<APO+8_+871:> E;’ (32)
B} b?
0= Ap0+8 +8—° atu=U, (33)
whereas to first order equations (22)—(25) transform into
0Ap, o[b:o
0=— " Gu sin ¢+ |:41t6u( ury 4)
b1 o
+ ﬁ;[é—u (ury¢) 11,4+ "1‘¢¢¢:| ) (34)
0Ap,
0= —Apy—— 2% L+ Apy Gusin ¢ , (35)
08p, B30
0= Ap, 2 a1 Ou (ur,4) atu=U, (36)
O=r, for¢p=0. 37
Finally, the integral condition (21) yields, up to first order,
U
0=GJ Apoudu . (38)
0

Two useful quantities which will be used later on in the
paper are the total pressure and the total pressure excess at an
arbitrary point in the tube, viz.,

4@t B” B*
P = —+—,
P+ 8n  8n

and their zero- and first-order values 2, 2, A?,, and AZ;.

AP E P, §)

— Lz, $)], (39)

3.2. Solutions to the Zero- and First-Order Equations

To zero order we have only one differential equation and
one boundary condition for the four unknowns Apy(u), Apo(w),
bo(u) = BY(u), and B%(u). Thus, the nonperturbed tube has 3
functional degrees of freedom. A general solution to the
momentum equation (32) and its boundary condition (33) can
be obtained by choosing two among the following four func-
tions, by(u), APy(u), BY(u), and Apy(u), and obtaining the
remaining two from equation (32) in the form (see Liist &
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(40)

and the definition in equation (39). The choice of the two func-
tions is arbitrary except for the minimal requirement that all
the pressure values (gas and magnetic) derived from equation
(40) be everywhere positive, and that the boundary condition
in equation (33) be fulfilled. As seen below (calculation of r,), it
may be necessary to impose further restrictions on the zero-
order variables to avoid singularities in the first-order equi-
librium.

The last function to be determined, the density excess Apy(u)
[alternatively, the temperature excess ATy(u)], can be chosen
freely subject to the integral condition in equation (38). As
explained below for the first-order variables, the thermodyna-
mics of rising tubes in the convection zone helps in choosing a
reasonable value for Apy(u) (see § 3.2.3 later on in this
subsection).

Once the zero-order equations are solved, the first-order
system of equations (34)—(37) provides two differential equa-
tions and two boundary conditions for the five unknown func-
tions Ap,(u, ¢), Ap,(u, ¢), b;(u), B5(u), and r,(u, ¢). Therefore,
the first-order system also has 3 functional degrees of freedom.
This threefold freedom can be considerably restricted,
however. We will discuss the solution for the five variables
separated in three groups.

3.2.1. r,(u, ¢) and Ap,(u, ¢): The ¢ Dependence of the Problem

Solving for these variables will allow us to eliminate most of
the ¢ dependence from the problem. First of all, the momen-
tum equation in direction e,, equation (35), can be integrated
immediately to give

Apo Ap; = Apy Apt + Apo Gu(l — cos ¢),

%9

@1

where the superscript means restriction of a function to

the semiaxis ¢ = 0, i.e.,
def
Apt = Ap,(u, ¢ =0). 42

Concerning r,(u, ¢), the requirement of 2z periodicity in ¢
together with the form of equation (34) and the boundary con-
ditions (36) and (37) strongly suggest a solution with the same
¢ dependence as equation (41), i.e.,

ri(u, ¢)= aw)cos ¢ — 1) . @3)

Introducing equation (43) into the momentum equation (34)
completely eliminates the ¢ dependence. Two subsequent inte-
grations of that equation with respect to u yield the solution for

a(u):
4n G ( [* 0 Ap,
aw= -1 [ S(]" 2o

Looking in retrospect, the zero order variables Ap, and b,
must be such that a nonsingular a(u) results: as discussed in
Appendix B, this implies a condition on the approach to zero
for the function by(u) in the neighborhood of the tube axis.

Given the linearity of the equilibrium equations (34)-(37),
the difference between two sets (Apy, Ap,, B, by, ry) of solu-
tions to those equations is a solution for the case G = 0. Conse-
quently, equations (43) and (44) provide a unique solution for r,
in the sense that any other solution must be equal to it modulo
a nonaxisymmetric solution to the problem without gravity.

u'? du”)du’ . (44)
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Equation (41) solves for the ¢ dependence of Ap,(u, ¢) but
leaves its u dependence [i.e., essentially Ap¥(u)] undetermined.
The latter will be considered together with the remaining vari-

_ables in the following section.

3.2.2. Apt(w), by(w), Bi(w)

Two of these three functions can be chosen freely. The third
is then determined by the restriction of the radial momentum
equation, equation (11), and of the boundary condition in
equation (16), to the semiaxis ¢ = 0; similarly to equation (40),
2By B, _1a

8n _ 2u Ou

#2406+ 2|y

Apo Apt + (u? A2, APY)

4n
3.2.3. Ap,(u, ¢): Thermodynamical Considerations

The choice of Ap, (or, equivalently, AT;) completes the solu-
tion to the first-order system of equations (34)-(37). The
freedom of choice of this variable can be restricted by imposing
a condition on the temperature or entropy distribution in the
tube. For tubes that rise through the convection zone, for
instance, it is reasonable to assume that the entropy stays con-
stant, since the timescale of rise is much shorter than the time
for thermal exchange with the surroundings (Moreno-Insertis
1983). Thus, for a tube which comes from the deep convection
zone where € is very small, we can assume the entropy s to be
constant in the interior. Thus, s, = const and s; = 0. Conse-
quently, Ap/p, can be given as a function of Ap/p, (this also
applies to the zero-order variables).

Summarizing the results for the zeroth and first-order solu-
tion, once a choice has been made for the distribution of the
thermodynamical variable s (or T) in the tube and using the ¢
dependence given in equations (41) and (43), the equilibrium
can be determined by choosing two functions of the triplet
[Apo, bo(u), B¥(u)], for the zero order, and another two from
the set [Ap¥(u), b,(u), Bj(u)] for the first order. Further
restrictions on this freedom can be imposed by requiring that
the magnetic flux of the perturbed and unperturbed equilibria
be the same.

To illustrate the general solution given in this subsection
and our considerations in the next subsection, we have calcu-
lated in Appendix B the equilibrium resulting when Bj(u),
B3(u), bo(u), and b,(u) have power-law profiles. In Figures 2 and
3, for the sake of simplicity, we just plot the particular equi-
libria obtained when

b2 aer u\2me def
BY et u\>™ 1 def
i ) , B0, @
a2 {(5) ) mEo @

where a,, a,, &, my, and m, are constants (my > 1 to avoid an
infinite current density along the axis of the tube). Since r; # 0,
the resulting tube is nonaxisymmetric.

3.3. Amplitude of the Deformation and the Intensity of B,

Using the results of the previous sections, we can study in
detail the equilibrium of the plasma inside the tube. In what
follows, we shall put particular emphasis on the momentum
equation (34), which indicates how the shape of the tube
depends on the profiles of by(u) and Apy(u).
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Up to first order, the radius of curvature R, and the geomet-
ric factor F, defined in equation (13), are

0
F;1+F1=1—25;(ur1),

1 1

~

R_c=Rc0

1
(1-R,y)= ; Q-r - T1.66) - (48)

Inserting r; = a(u)(cos ¢ — 1) into equation (48), one obtains
that the radius of curvature R, is ¢ independent. Further, the
latter is an intrinsic quantity, i.e., it is independent of the partic-
ular coordinate set being used. Thus, the azimuthal lines of force
are circles in this first-order approximation (Fig. 2). The ¢
dependence of the magnetic tension, necessary to compensate
for the effect of the gravitation, is therefore achieved by simply
shifting vertically the geometrical centers of the azimuthal field
lines with respect to their zero-order location (see Figs. 2a and
3a).

In § 2 we have seen that the equilibrium along a B, field line
depends on both Ap and the convergence or divergence of the
azimuthal field lines as measured by the parameter F. With
the linearized equations in hand, it is now possible to write the
following simple relation for F inside the tube:

v
F, = 3P0 AP0 = AP0 e[% (cos ¢ — 1)] L @9)

! bg Peo

The horizontal bar indicates an area average of the given func-
tion, viz.,

- def 1 [

fw) = = L S@W)2u' du' . (50)
In equation (49) Ap, is related to the variation of the gas
pressure excess along the line u = const, and Ap, corresponds
to the average buoyancy force. Therefore, the structure of the
azimuthal field lines is directly related to Apy(u) — Ap, (u), ie.,
to the differential buoyancy in the tube interior.

As an illustration to the interdependence between F, Ap,,
and Ap,, consider the equilibrium along the line u = 0.6 in
Figure 2 (marked by little plus signs). The plasma enclosed by
this particular azimuthal field line is buoyant relative to the
matter located on the field line itself: Ap, > Ap,. To counter-
act this buoyancy, the total pressure excess must increase with
height along u = 0.6 (Fig. 2f). This can only be achieved
through the increase of the magnetic pressure of the azimuthal
field (Fig. 2c), and that is why the field lines have to converge
toward higher levels, ie., F increases with height, as required
by equation (49). In Figure 3 we show an equilibrium similar to
that of Figure 2 but with the sign of the radial gradients of
B?/8np,, and Ap/p,, reversed. In this case, the plasma
enclosed by the field line u = 0.6 feels a net negative buoyancy
relative to the magnetic field line considered: Ap, — Apy < 0.
Therefore, the azimuthal field lines must separate from each
other with height, so that the original circles shift toward the
bottom of the tube.

The deviation from axisymmetry will be larger the greater
the first three terms on the right-hand side of equation (49). A
sufficient condition for this deformation not to be too strong
(so that F, remains of first order) is, then, that

Peo 87 Apo — Bho

<1 51
b(z) Peo ( )
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Fi6. 2.—Horizontal magnetic flux tube in static equilibrium with a stratified polytropic atmosphere which simulates the convection zone at a depth of 200,000
km. The first plot represents the isolines of the transverse magnetic flux normalized to its boundary value. The other plots are the profiles of (b) B**/8np,q, (c)
B**/87p,, (d) arctan (B%/B’), (e) Ap/p.q, and (f) AZ/p,, along the vertical z-axis (solid lines). The zero-order profiles are overplotted (dashed lines). The plus signs are
located at the intersections between the line u = 0.6 and the z-axis. The algebraic form of the zero- and first-order variables plotted here are laid out in Appendix B
(with zero substituted for b, and B}, and o, = 3 x 1077, 2, =6 x 1075, = —6 x 1079, my =1,and m, = 1).

in the whole tube. In Figures 2 and 3, for illustration purposes,
we have chosen an equilibrium for which F, is only marginally
of first order. Equation (51) sets a lower bound for the trans-
verse magnetic field intensity: b must be strong enough for the
change resulting from gravity to be no more than a pertur-
bation of the zero-order axisymmetric equilibrium. An upper
bound to b is given by the condition that the transverse mag-

netic field intensity is not above the threshold for the onset of
the kink instability (see the discussion in § 7).

4. COMPARISON WITH THE SLENDER FLUX-TUBE
APPROXIMATION

In § 3 we have used a perturbation analysis to solve the
system of equations (22)—(25) obtained in § 2. Another pertur-
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F1G. 3—Same as Fig. 2, but now with radial gradients of B”’/8np,, and Ap/p,, with reversed sign (but the same absolute value). The core of the tube is now
heavier than the outer layers. The parameters of the equilibrium are the same as in Fig. 2, except for the sign of £ and for the value of a,,, whichisnow 9 x 1077.

bation scheme used in the literature and applied widely to
calculations of magnetic flux-tube evolution is the so-called
slender flux-tube approximation, which consists of using trun-
cated Taylor expansions of the radial variation of all quantities
in the tube (e.g., Roberts & Webb 1979; Browning & Priest
1983; Feriz-Mas & Schiissler 1989). This approximation is
valid as long as the radius of the tube is much smaller than the
length scale of variation of all quantities inside and outside the
tube. In the case of a horizontal tube embedded in a stratified
atmosphere considered here, the slender flux-tube approx-

imation would rest on the following power expansions (we use
different symbols for the indices to avoid confusion with pre-
vious sections):

r=raWH,) + rou/H)* + -,
b= b(l)(u/He) + b(z)(u/He)z + -, (52)
F =Fq + Fyu/H,) + Fou/H)? + -,

and similarly for the other variables, with the coefficients f;, for
any function f given by the derivatives of f on the axis in an
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elementary way. Although apparently similar, there are impor-
tant differences between the perturbation approach of the pre-
vious sections and the slender flux-tube approximation. As
pomted out by Browning & Priest (1983), the use of the Taylor
expansions implicitly requires that the transverse field B® be
small compared to the longitudinal field B*: B® must be at least
of first order in the expansion parameter U/H,, whereas B” is
of zero order. This is not the case in our perturbation scheme:
we are not constraining the range of values of B%/B’. The only
limit is given by instability considerations, as explained else-
where in this paper.

The use of the Taylor expansions also has restrictive conse-
quences on the structure of the density excess in the tube. This
can be easily seen by expanding the equations of § 2 with the
help of equation (52). We show the difference in the case of the
boundary condition equation (24) obtained in § 2. The expan-
sion in u/H, of this equation leads to

order €':
0= AP(O) 5 (53)
order €*:
dF(O) 87D (o) AP(l) Ud <r(1) )
cos ¢ |, (54)
do b(l) Pe(0) H do
at the boundary. Thus, in addition to the inequality
$10a0 By < ), (59)
by  Peo

which is similar in form to equation (51), the use of the Taylor
expansion implies that

|Ap| < O(€") (56)

in the whole tube, whereas our perturbation study requires
only that

|Ap(U)| 5 O - 67

Summarizing, the slender flux-tube approximation is a more
restrictive expansion procedure than the perturbation scheme
used in this paper. The former can, in general, be applied only
to regions close enough to the axis of a tube. This limitation
has several consequences as to (at least) the degree of twisting
and the density distribution in the interior of the tube.

5. PERTURBATION CAUSED BY AN ARBITRARY EXTERNAL
PRESSURE DISTRIBUTION

In §§ 2 and 3 we have studied the modifications caused by
gravity in the equilibrium structure of a twisted horizontal flux
tube. With a view to studying flux tubes in relative motion to
their surroundings, we consider in this section the deformation
caused by an arbitrary pressure fluctuation along the bound-
ary of the tube, p.(¢) (as caused by, e.g., a flow pattern around
the tube), in the absence of gravity. The total external pressure
in this case is of the form p, + p(¢), with p, = const. The
deformation of the tube will be carried about via the boundary
condition instead of through a body force, as before.

For simplicity of notation, we define here the pressure and
density excess in the tube using again equation (18), although
now p, is no longer a function of z(u, ¢), and it is only part of
the total external pressure. The equilibrium in the present
problem is governed by the following system of equations:

b? 3Q

0__i b_za_F + —
T ou\8nd¢g

prtrd (58)
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JAp
0=— Py (59
Opes bzaF _
26 Snaq& atu=U, (60)
u=r for¢p=0. (61)

Like equations (22) and (24) of § 2, equations (58) and (60)
result from the ¢ derivatives of the “radial ” momentum equa-
tion and of the boundary condition, respectively. Thus, they
must be completed with the restriction of the “radial ” momen-
tum equation and of the boundary condition AZ(U, ¢) =
Pe(®) to the vertical semiaxis ¢ = 0. As a consequence of the
absence of gravity, Ap drops out of the equilibrium equations:
we now have only four unknown functions (Ap, B’, b, and r) for
the same number of equations.

The momentum equation in direction e, equation (59), indi-
cates that Ap, like B’, is ¢ invariant: apart from the gas pres-
sure gradient, there is no force along the B, field lines.
Therefore, the only variable which can vary along ¢ to achieve
the equilibrium is r, and consequently, B? (see eq. [10]). The
transverse magnetic field must then organize itself to counter-
act the pressure fluctuations along the boundary (eq. [60]) and
to sustain its own ¢ dependence inside the tube (eq. [58]). Asin
§ 2, the boundary condition can be transformed into an exact
expression for the variation of the mutual proximity of the
transverse magnetic field lines:

OF _ 0 (8mpy _
6¢—6¢< b2> atu="U.

We see that the deformation of the magnetic pattern depends
on the intensity of B,: only if b2/8n > | p.,| will the tube be able
to withstand the external perturbation with only minor defor-
mation. We will come back on this point in the discussion (§ 7).

In order to have a static equilibrium, the net force exerted by
the total pressure along any B, line of force must be zero.
Applied to the line u = U, this condition implies that

0= — j pecndly, ,
)

i.e., the total force exerted by p.; must cancel. One can only
relax this condition in the presence of gravity: see § 6.

(62)

(63)

5.1. Perturbation Analysis

If | pes | /p. < 1, we can perform a perturbation analysis fol-
lowing the scheme of § 3: we consider, to zero order, an
axisymmetric tube in equilibrium with an external medium of
constant pressure p,, = p,. The perturbation caused by p,; is
then taken into account with the first-order variables;
| Deg I/P. < 11s a good approx1mat10n whenever p, is caused by
external subsonic flows.

We have given p,, the following general form:

pu) | B pig) it

P@) = Po+ 3, [Py c05 (k) + Poc sin (k)]

and we have excluded the k = 1 terms so that no net pressure
force results (as required by eq. [63]). The deformation of the
tube shape caused by the external pressure fluctuation p,; can
then be quantified with the dimensionless parameter

€f=mfx LIP@)I].

(64)

(65)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...458..783E

J. = 2458, [783ED

]

[T99BA

792 EMONET & MORENO-INSERTIS

With these definitions in hand, we can linearize our system
of equations, (58)—(61). The zero-order equilibrium is the same
as in § 3. The only difference is that, now, the mean density
excess in the tube need not necessarily be zero. To first order,
we obtain

o[b2 o b
6u[4 % (rw):l+ﬁ—[—(ur,¢)+r1¢+r1¢¢¢:|

(66)
_0Ap,
0= 3 (67)
opP 0
%— —2a(url,¢) atu="U, (68)
O0=r, for¢p=0. (69)

For each set (Apy, B}, by) of solutions to the zero-order system,
the most general function r,(u, ¢) which can be a solution of
equation (66) and satisfy the boundary conditions (68) and (69)
has the form

ri = a) + ) [a.(u) cos (k¢) + ag(w) sin (k¢)] . (70)
k=2

The introduction of equation (70) in equation (66) permits

elimination of the ¢ dependence and leads to the following

linear homogeneous differential equation:

2 2
2B f |+ 2] Lo - ka].

for each g, = a,, ay, and k = 2, 3, 4, ..., independently of the
others. Similarly to what happens in § 3, the nonsingularity
condition for the g, values in the center of the tube may restrict
somewhat the functional freedom of b,. Once equation (71) is
solved, equation (70) yields r,. The other unknowns B}(u),
by(u), and Ap,(u), are determined in a similar way as in § 3.2.2:
two of these three functional degrees of freedom can be freely
chosen; the third follows from the restriction of the “radial”
momentum equation and of the boundary condition to the
vertical semiaxis ¢ = 0.

To illustrate the general process described above, we have
calculated in Appendix C a class of solutions to the present
equilibrium problem with power-law distributions of the zero-
and first-order variables similar to those of Appendix B. For
comparison with Figures 2 and 3, we plot in Figure 4 the
equilibrium configuration that is obtained for the particular
case B} = b, = 0 (see the definitions in eqs. [46] and [47]) and
P = P, cos (3¢).

5.2. The Shape of the Tube
Integration of the boundary condition in equation (68) gives

Fi(¢) = P(¢) — P(¢ =0), (72

so that, at the boundary, p.; completely determines the trans-
verse magnetic field pattern. Inside the tube, the state of affairs
is more complicated because B, must sustain its own variation
with respect to ¢: the magnetic tension must vary in order to
compensate for the magnetic pressure gradient associated with
B, (see eq. [58]). Thus, unlike what happens to a tube per-
turbed by gravity, the azimuthal magnetic field lines will have
to deviate from a circular shape in order to maintain the equi-
librium.
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An exact expression for the relation between the variation of
the mutual proximity of the field lines of B, and their radius of
curvature can be obtained by integrating equation (66) over the
surface enclosed by a line u = const:

by oF, ok,

(o) (73)

(R.y =71y + 7y 44 is the correction to the zero-order radius of
curvature u). The variation of B* /8w along any particular line
of force of B, depends on the variation of the radius of curva-
ture of all the lines u = const which are enclosed by the partic-
ular field line we are considering. For the general case,
equation (73) implies that the radius of curvature will be larger
in regions with higher azimuthal field intensity. This can be
clearly seen in the simple equilibrium plotted in Figure 4. In
the places in which the tube is compressed from outside, the
field lines are closer together because of the boundary condi-
tion (72) and the curvature is smaller: the weaker “radial”
gradient of the total pressure excess (Fig. 4f) allows the inward
magnetic tension to diminish. On the contrary, in the places in
which the tube is expanded, F and R, must become smaller.

6. EFFECT OF GRAVITY AND EXTERNAL PRESSURE
FLUCTUATIONS: VERTICAL MOTION OF A TWISTED
HORIZONTAL FLUX TUBE

In §§ 2 and 3 we have studied the effect of gravity on the
equilibrium of a horizontal magnetic flux tube. In § 5 we have
considered the perturbation resulting from an arbitrary fluc-
tuation of the external pressure distribution along the bound-
ary. It is natural to ask now if an equilibrium is possible when
the tube feels the effects of both gravity and the external pres-
sure fluctuations. As explained in the discussion, § 7, a solution
to this problem could enable us to understand the transverse
structure of a horizontal magnetic flux tube rising in the con-
vection zone of the Sun.

In order to make use of the results obtained in previous
sections, we separate the external pressure into p,[z(u, ¢)],
which is determined by the stratification of the polytropic
background medium, and p.{¢), which represents the pertur-
bation of p, along the boundary of the tube. Finally, we define
the pressure and density excess as in § 2, equation (18), even
though now p, no longer corresponds to the whole external
pressure. As can be seen by performing the integration of the
momentum equation (2) over the whole tube section 2,

0= —J pefndl¢+GJJ ApdZ ,
oo 2

the net force exerted by p.«(¢) along the boundary must com-
pensate for the buoyancy force of the tube.

In the coordinate system instantaneously at rest with respect
to the tube, the resulting equilibrium equations coincide with
those of § 2, equations (22)—(25). The only difference appears in
the boundary condition: the total pressure excess at the
boundary is now different from zero, and we have

6pef J0Ap b? OF
op  0¢p  8m 6¢
instead of equation (24). Equation (75) shows that the shape of
the tube results from the concurrent action of gravity (via Ap)

and of the external pressure fluctuation along the boundary.
The mutual separation of the field lines of B, close to the

(74)

atu="U, (75)
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boundary will therefore reflect both effects. This can be seen in

the following equation, which is a generalization of equation
OF 8mp,Ap U 0

Thus, if the deformation of the tube shape is to be small, both

terms on the right-hand side of this equation must be much

(26) of § 2:
i + i 8npef
p. H 09 \U/) ¢\ b* ]’
smaller than one (see also the discussion in § 7).

Assume, as before, that the effect of gravity (as measured by
€) and of the pressure fluctuations along the boundary is small.
The pressure fluctuation p, can be split up into two terms,
each one having a different effect on the tube: a drag contribu-
tion, whose integration along the boundary gives the down-
ward force necessary to cancel the buoyancy of the tube; and a
second term which perturbs the internal plasma without
producing a net force on the tube. Both effects need not be of
the same order of magnitude: the effect of the drag force has to
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be of order € if it is to compensate the total buoyancy force, but
the rest of the perturbation caused by the pressure fluctuations
may be of different order. For simplicity, however, we will
assume in the following that all perturbations appear in the
momentum equations and boundary conditions as terms of
order e with respect to the zero-order equilibrium. A gener-
alization of this constraint is not difficult to obtain but is not of
primary interest in this paper.

We define zero-order and first-order symbols as before. The
projection of equation (74) onto the z- and x-direction yields,
up to first order,

2n U
0=—f percosquq&—Znt Apoudu , (77)
0 0

2n
0=—J Pes U sin ¢pdop , (78)
0
respectively. Equation (78) implies that the pressure fluctuation
cannot contain any term of the form sin ¢, otherwise a net
lateral force on the tube would ensue which is not compen-
sated by any other force. Thus, the most general form for p.; is
given by

2
Pul®) = 2L (U)P) + Pro Pang 05 6, (19)

where P(¢) is defined in equation (64). Introducing equation
(79) into equation (77), one then obtains

Apo

Peo

Pyrag = —€ =", (80)
ensuring that the drag force effectively compensates the total
buoyancy force.

To first order, the boundary condition in equation (75) yields

b3 oP . dAp, b% 0

87‘[ a¢ PeOPdrag Sln¢“AP0 a¢ 4n au
The rest of the zero- and first-order equations which describe
the equilibrium are the same as in § 3 (eqgs. [32]-[37] with eq.
[81] instead of eq. [36]).

The zeroth-order equilibrium is determined as in § 3.2 with
the only difference that now Ap, need not satisfy the no-
buoyancy condition of equation (38). Next, we must find the
solution r,(u, ¢) to the ¢ derivative of the “radial ” momentum
equation, equation (34), together with the boundary conditions
in equations (81) and (37). The r, we are searching for is simply
the sum of the solutions obtained in §§ 3 and 5: if we introduce

(ury,g) - (81)

ry = ag(u) + a,(u) cos ¢

+ kZZ [ac(u) cos (k@) + aq(w) sin (k¢)]  (82)
into the momentum equation (34), we obtain that a, is given by
equation (44) of § 3 and that the a,, and a,, with k > 2 must be
a solution of equation (71) of § 5. The difference with the pre-
vious sections arises from the boundary condition in equation
(81) which, for a,, gives
b3 0
—.peOPdrag=ApoGU+_a_(ual) atu=U,

4m Ou ®3)

whereas for k > 2 we obtain the boundary condition of equa-
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tion (68) like in § 5. Once r, is known, the other first-order
variables are obtained in the same way asin § 3.2.

As in §§ 3 and 5, we have calculated in Appendix D the
particular equilibrium resulting when by, b,, B}, and B have
the power-law form given in Appendix B. In Figure 5 we show
the case for which b, = B} = 0 and where the external pressure
fluctuation is ps = p,o Pag €08 ¢ + b3/87P, cos (2¢). In those
plots, the signature of both perturbations is visible. As in
Figure 2, the core of the tube is more buoyant than the outer
layers. This differential buoyancy shifts upward the B,-field
lines. The potential flow-like term cos (2¢) of the external per-
turbation, in turn, forces the transverse magnetic field lines to
bend (see § 5). Finally, the cos ¢ term of p,; exerts a net down-
ward drag force which counteracts the total buoyancy of the
tube.

7. DISCUSSION

In this paper we have studied the equilibrium resulting from
the perturbation of an axisymmetric flux tube through external
agents. We have included a few cases relevant for the study of
flux tubes in the solar convection zone: first, the perturbation
caused by the gravitational field (including the effects of the
ensuing external stratification); second, the perturbation
caused by an external flow field via a nonuniform pressure
distribution on the tube surface and, finally, a combination of
the two. We have written the general equilibrium equations
using a system of flux coordinates (§ 2). The equations
obtained correspond to the general case of arbitrary plasma f
with gravity, i.e., generally to non—force-free fields. They are
complex, so that, with a view to applications in the convection
zone and perhaps in the corona, we have considered the case of
a weak external stratification (i.e., small change of the external
variables across the tube radius) and small pressure fluctua-
tions on the tube boundary. We have found solutions to the
equations for generalized power-law distributions of the
unperturbed and perturbed physical variables in the tube. In
the following we discuss several points concerning the applica-
tions of the present study, the information on the transverse
structure it provides, and some stability considerations.

7.1. Tubes Rising in the Convection Zone

A first application of the foregoing equations is to flux tubes
(specially in the form of toroidal flux rings) rising through the
convection zone toward the surface. Although the rise of tubes
in general is a dynamical phenomenon, it customarily proceeds
in a quasi-static manner. One condition for this to happen is
that the tube adopt at every instant the terminal velocity, ve,m,
in which the drag force exerted by the flow surrounding the
tube exactly compensates the forces that drive the rise (in our
case, the total buoyancy force on the tube). If we assume the
flow resistance to be given by the aerodynamic drag formula
(e.g., Batchelor 1967), then the drag force is proportional to
v2/U, the square of the relative speed of the tube as a whole
with respect to the surrounding divided by the tube radius. If
so, the condition for instantaneous adjustment of rise speed
and terminal velocity is that the tube radius be small compared
to the length scale for spatial variation of the external variables
(Moreno-Insertis 1983), e.g., the pressure scale height. Hence, it
coincides with the condition of a weak external stratification.
Moreover, v, X Ve implies that

A . (H,
> o =¢
25 0( U) :

(84)
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FI1G. 5—Twisted horizontal magnetic flux tube embedded in a stratified polytropic atmosphere which simulates the convection zone of the Sun at a depth of
50,000 km. The mean density excess of the tube is negative, and the resulting buoyancy force is canceled by the net downward force exerted by the external pressure

fluctuation along the boundary. Apart from the contribution to the drag, p,; produces also a potential-flow-like perturbation proportional to cos (2¢) along the
boundary. The exact form of the functions plotted here is given in Appendix D. The parameters are oy =107 s, o, =2 x 1074 &= —10"%and my=m, =1

so that, if U < H,, then the timescale for the establishment of
the magnetic equilibrium in the tube is much smaller than the
timescale of change of properties in the medium surrounding
the tube:
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In deriving equation (84), Ap/p has been assumed to be of
order the magnetic buoyancy. Summarizing, whenever
U/H, < 1, the rise may be said to be quasi-static: the inertial
terms are negligible in the equations, and the tube adopts at
each height the structure of a static tube that were subject to
the same local external stratification and pressure pertur-
bations at the boundary as our rising tube. The condition of
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the smallness of the tube radius is amply satisfied in the con-
vection zone for the field strength and magnetic flux values
expected in tubes that later give rise to active regions (Moreno-
Insertis 1992; Caligari, Moreno-Insertis, & Schiissler 1995).
The approximation of quasi-static rise will only break down in
the uppermost scale-heights of the convection zone: in addi-
tion to the large buoyancy of the tube associated with the
entropy difference with the surroundings, the external scale
height becomes small and the tube radius very large because of
the expansion associated with the rise.

Considering the pressure fluctuations around the boundary
of the rising tube, an additional condition has to be met for the
perturbation scheme to be applicable. We saw in § 2 that the
longitudinal field is constant on the azimuthal field lines and
that the internal gas pressure is hydrostatically stratified along

them. This remains true when the external flow perturbation is

added (see § 5). Thus, it is the spatial variations in the azi-
muthal field which must compensate for the external pressure
fluctuations along the boundary. As a result, if the deformation
is to be small, one has to require that

2

pef<§'

(86)
Now, p,; will be of the order of the ram pressure pv?, so that
the condition for the azimuthal magnetic field to absorb the
external flow pressure without large deformation is that the
rise speed be much smaller than the Alfvén speed of the azi-
muthal field, which is more restrictive than equation (85).
Setting again v,;,, X v, and the buoyancy of the tube of order
the magnetic buoyancy, one can then write the foregoing con-
dition in equation (86) in the following approximate form:
U b
E < B

These conditions can also be inferred directly from equation
(76) if one requires that the deformation of the tube from the
axisymmetric shape be small. The inequalities (87) and (86)
provide a lower bound (to order of magnitude) for the azi-
muthal fields that can easily resist the external deformation.
The actual ability of the azimuthal field to absorb the external
pressure fluctuations will change along the rise: both ratios on
the right- and left-hand side of equation (87) typically grow as
the flux tube rises through the convection zone, as a conse-
quence of the general increase of the tube radius (Parker 1979).
In the next paper of this series, a study of the processes taking
place in rising tubes will be presented, and the actual depen-
dence of both sides of equation (87) on the level reached by the
tube in the convection zone will be studied in detail.

@7

7.2. The Transverse Structure of the Tube and the Thin
Flux-Tube Approximation

The equations developed in this paper allow one to study in
detail the effects on the magnetic structure of (1) the differential
buoyancy of the various parts of the tube cross section and (2)
an arbitrary external pressure distribution on the tube surface.
The main effect of the gravity is to shift vertically the centers of
the azimuthal field lines in the interior of the tube without
changing their circular shape, so that the resulting changes in
magnetic pressure and tension exactly counteract the differ-
ences in buoyancy in the tube cross section (§§ 2 and 3). On the
other hand, an external pressure distribution on the boundary
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with Fourier components of circular wavenumber greater than
1 forces the field lines to bend to achieve the equilibrium (§ 5).
If, in addition, the external pressure fluctuation contains a
cosine and/or a sine term, it will produce nonvanishing
resulting forces on the tube (“drag” and “lift,” respectively).

In the case of our prototype rising flux rope, both effects of
gravity and external flow field determine the shape of the tube
(§ 6 and Fig. 5): the external flow bends the azimuthal field
lines, and in the interior the gravity shifts the centers of the field
lines without deforming them. The equilibrium is achieved
because the drag exactly counteracts the total buoyancy of the
tube. For a tube of this sort, the density deficit typically has its
maximum value in the center and diminishes toward the
boundary. Thus, in general, we expect the azimuthal field of a
rising magnetic flux tube to be stronger in the upper half than
in the lower half of one of its sections. Keeping in mind that the
stabilizing agent against the external flow is the azimuthal field,
we deduce that the stability of the tube will be enhanced in its
frontal part and diminished at its rear (see also § 7.3).

There are important differences between the perturbation
scheme introduced in this paper and the customary expansion
procedure known in the literature as the thin flux-tube approx-
imation. As pointed out in § 4, the latter does not allow for a
large twist of the tube (i.e., the pitch angle must be small), so its
applicability to rising tubes in the convection zone (as well as
possibly to flux tubes in the corona) is limited. In fact, by going
close enough to the axis one encounters a “thin flux-tube
region” within every more general tube, since the pitch angle
tends to zero toward the axis. However, that region is arbi-
trarily small in strongly twisted tubes; in rising tubes, in partic-
ular, the fraction of the tube occupied by this region may
become very small. In addition, the pressure and density excess
fluctuations may be larger in the tubes treated in this paper
than in slender flux tubes, so that even the core of the tubes
may not be easy to study with the thin flux-tube approach.

7.3. Stability Considerations

The stability of the basis (or zero-order) axisymmetric equi-
librium has been studied in the literature, in particular for the
case of force-free magnetic configurations (Anzer 1968 ; Parker
1979; Priest 1982). The first of those papers, in particular,
showed that a cylindrically symmetric, twisted force-free tube
is unconditionally unstable, although there may exist configu-
rations close to the original one but with helical symmetry
which are stable. In the non—force-free case of the present
paper, the presence of gas pressure and gravity complicates the
stability study considerably. Giachetti, Van Hoven, & Chiu-
deri (1977) have shown in a series of papers that the stability of
a coronal flux tube is enhanced by a positive gas pressure
gradient in the radial direction. The range of plasma g in their
papers, however, is of order unity, and the extrapolation of
their results to our high-f problem is not straightforward.
Gravity, on the other hand, brings in a range of further pos-
sible instabilities: for instance, Rayleigh-Taylor and convective
stability criteria will mingle with purely MHD conditions, and
this applies also to the weakly stratified case. In addition, insta-
bilities with flows along field lines (“ Parker -like instabilities)
for twisted flux ropes may appear, rendering the global stabil-
ity problem quite intractable. Finally, for the rising tubes,
motion-related instabilities should be included (e.g., Kelvin-
Helmholtz).

A few comments on partial aspects of the stability problem
can nevertheless be of interest at this point. The inequalities
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(86) and (87) are conditions for the external flow field to cause
only small perturbations to the axisymmetric equilibrium.
These conditions are similar in form to the stability conditions
obtained by Tsinganos (1980) (with, in his case, <signs in place
of our < signs). The latter author has studied the hydrody-
namic instability of buoyant fields. Making an analogy between
a nonmagnetic fluid cylinder and a magnetic flux rope, he
found that a magnetic flux tube embedded in a fluid velocity
field is hydrodynamically unstable if it has no azimuthal com-
ponent. Thus, all this indicates that a net amount of twist may
be important for the flux tube to reach the surface of the Sun in
a coherent state.

The amount of twist cannot be indefinitely large because the
presence of an azimuthal component renders the tube vulner-
able to the kink (lateral, helical) instability (e.g., Priest 1982). As
a minimum condition, the intensity of the azimuthal field is
limited by the requirement that the net tension in the tube
above background be positive (see Parker 1979). That is, for an
axisymmetric flux tube, the magnetic pressure of B® must not
exceed the magnetic tension of B’:

(88)

If the total tension becomes negative, the tube is placed under
longitudinal compression and therefore slips into helical form.

7.4. Tubes with Curved Longitudinal Field and Further
Applications

The configurations of this paper may help to understand
possible flux-tube equilibria in the convection zone: these
include tubes in the overshoot region (Moreno-Insertis,
Schiissler, & Ferriz-Mas 1992; Ferriz-Mas & Schiissler 1994),
tube equilibria resulting from a meridional flow (van Balle-
gooijen & Choudhuri 1988), possible nonlinear equilibria
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resulting from the evolution of Parker-unstable tubes with a
strong initial magnetic field (Anton 1983), as well as the quasi-
equilibrium of rising flux rings discussed in § 7.1.

In all the above-mentioned equilibria, the longitudinal struc-
ture of the tube, i.e., the possible variations of its physical and
geometric variables along the axis, can be ignored, as has been
done in the present paper: one can assume that the influence of
the longitudinal structure on the equilibrium depends on the
ratio, 7, of the inner radius of the tube cross section to the
radius of curvature of the torus. This ratio is smaller than the
parameter € which controls the importance of the gravity per-
turbation by the same factor as the ratio of the local scale-
height to the solar radius, i.e., typically a factor 10 smaller. In
fact,

~ -3 P22

n=~4x10 B’
with ®,, the magnetic flux in units of 10?2 Mx and B; the
magnetic field in units of 10° G. Even if # became comparable
to €, one could study the effect of the curvature of the flux ring
without great difficulty; in fact, it produces a deformation
similar to the effect of differential buoyancy (Emslie & Wilkin-
son 1994). The longitudinal structure of the tube may become
dominant in determining the equilibrium whenever the radius
of curvature of the tube becomes smaller than the local pres-
sure scale height. Hence, the results of the present study may
not be directly applicable to coronal tubes nor to the very late
stages of the rise of sea-serpent—shaped tubes (also called Q-
loops) in the convection zone, shortly before they arrive at the
photosphere.

(89)
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APPENDIX A
GEOMETRY
The natural basis in the coordinates (u, ¢, y) is (see Auslander & Mckenzie 1977; Kobayashi & Nomizu 1963)
Jd 0 0
=, =, =], Al
(au’ 53) (D
and an arbitrary vector v can be written in this basis as
0 0 0
v—v—-—+v"’é;+v”— (A2)
so that # #*, and #” are the contravariant components of v in the basis (A1). The matrix g of the metric is
guu gu¢ guy r.uz r,u r,dz 0
9=|9u 960 Yoy Tule To +17 0], (A3)
0 0 1

I Iy Gy

Here g is not diagonal because the basis is not orthogonal. The gradient of an arbitrary scalar function f'is the contravariant vector

corresponding to the one-form df, i.e.,

Vf <guu gf+g¢" g_)é%_'_(g

0

u¢6f+g¢¢6f> +6f3

(A4)

0 op) 0p  dy dy’
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and the divergence is
0 0 1
Vev= det (g) 7 det ﬁ"’:l + = [ det ﬁ”]} — AS
{ % [\/ (9) } %% [\/ (g P Vdet (g) Gt ) (AS)

Here g“% is an element of the inverse matrix g ! of g. For the covariant differentiation (B, - V)B, of the transverse magnetic field
~, 0

-
B =5 e (A6)
we obtain
(B?)? 394, 09 09455 | 0 ((B#? 094 Og dg o [(B**) o
B, V)B, =—— | g* 99¢u _ 9990 up ZJ¢¢ | = T | 0u ) 2Py ZIé o0 “Io¢ —- —= .
BeVB="19"2%0 o )T 6 JaaT U2 TP o0 o)t o0 || 2 |(26 A7
The corresponding basis of unit vectors is
1 0 1 & 0
€y €4, €y) = A PYEREW E) A8
( ¢ y) ( Gon au /—g¢¢ a ¢ ay) ( )

and we shall write the coefficients of a vector v in this basis without tilde. This yields the following relation between the coefficients of
the natural and unit basis:

V=G, VP =0SGps, =D (A9)
Using equations (AS) and (A6), equation (1) can be transformed into

% [ /det (g) §¢] =0. (A10)

Taking then the scalar product of equation (2) with 6/0u and 6/6(}5 and of equation (3) with 0/dy, we obtain

0 B’  (B%g (B [, %9¢u g o [(B%?
= — — — 1o Zd¢u _ “5¢¢ il
0=-% [”+ 8z T 8x PG 6u+ 3w 2o ou )V 945s| am | (All)
op 0z
0=— ) ”Ga¢ (A12)
oB’
0= %’ (A13)
respectively. The boundary condition yields
y2 B
p. = p+: +L—%;ﬁ atu="U. (A14)

Introducing equations (A3) and (A9) in the system of equations (A10)—(A 14), we obtain easily equations (10)—(16).

APPENDIX B

POWER-LAW MODEL FOR A HORIZONTAL MAGNETIC FLUX TUBE IN EQUILIBRIUM WITH A
STRATIFIED EXTERNAL MEDIUM

To illustrate the study carried out in § 3, we present here a simple power-law solution to the system of linearized equations
(30)—(38). Before dealing with the equilibrium in the interior of the tube, we lay down the stratification of the external medium.
Within the small-radius approximation, one can use a polytropic expression for the external atmosphere as follows:

u u u oc, (u
Por = _E(E> Cos P, po=¢€ll— V)<5> cos¢, H,= _€V<5) cos¢p, 5,=—¢€ ;: (5) cos¢. (B
In the foregoing, V is the logarithmic temperature gradient, V = dlog T,/d log p,, and ¢ is the superadiabaticity of the external
stratification,d =V — V,,.
The azimuthal and longitudinal magnetic field components can be chosen freely. For the zero-order equilibrium, we take here the

following power laws:
B¢’ e 2ms
N ®2)
8TCpeO 8npe0 U
B aef u\2m 1
= - _— 9 B3
2+ 4(8) 5 ®
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where a,, a,, £, my, and m, are constant parameters that fix the limit values of the field at the center and boundary of the tube and
the steepness of the profile. Those parameters can be chosen freely with the restriction that the functions on the right-hand side be
finite and positive and that m, > 1 to avoid an infinite current density along the axis. From equation (40), there follows the total and

gas pressure profiles; e.g., for the total pressure,
2my
A% %oy (%)™, (B4)
Deo m¢ U

We are assuming for simplicity that the internal entropy s, is spatially constant (see § 3.2.3), so that the third functional degree of
freedom of the zero-order equilibrium, Ap,, is given as a function of Ap, through

80 o1 8)" o e 12 o
Pe ¢ Y Pe

The approximate expression on the right is only valid for large enough plasma beta and small enough entropy difference between
inside and outside the tube [which are very good approximations for flux tubes in the convection zone except its uppermost levels;
e.g., for B = 10° G, B = ((10°) at the bottom of the convection zone]. The nonbuoyancy integral condition in equation (38), finally,
fixes the value of the constant internal entropy:

P

A
0= B & _ZPoqy, (B6)
cp Y Peo
Once the zero-order values are known, r,, which determines the geometry of the tube, follows from equations (43) and (44), viz.,
1 £ u\2m=2me 1y . def m
=¢—+— K| - th K = Y . B7
alu) 6[4)) + 4ya, <U> ](U) W (m, + 1)(m, —my, + 1) (B7)

To avoid singularities in the center, we require that
2m, —2m,+1>0. (B8)
Condition (B8) is a restriction to the functional degrees of freedom of the zero-order equilibrium (as seen in § 3.2, after formula

[44]). It has a general significance for flux tubes with arbitrary (i.e., not necessarily power-law) profiles. For, close to the axis, one can
always expand b, and B} in Frobenius series

bo = bOm.,sum‘I"{_b0m4’+lum¢+l + B3 =B{)myumy+ B%my«uumy_H +s (B9)
where, as above, m, > 1. The corresponding power expansion of equation (44) is then
a=c u+ @(uZ) +c, ulmy—2m¢+l + @(“Zmy—2m¢+2) , (BIO)

with ¢, and ¢, positive constants. The nonsingularity of equation (B10) at the axis is then guaranteed by equation (BS).
As before, we define power series for B¢ and B through

2bZ b, det u\"
def | (¥ Bi11
87'l:peO L Y ’ ( )
2B¥ B, det u\™ 2
= : TW=) — B12
87Peo e{txy " €[<U ) m, + 2]} ' (12

where, again, oy, o), ', my, and m;, are constant parameters. The corresponding solution for the total pressure and entropy are

AP, APT 20, _ _u_"':i’ [ 3 12"-4&1 —<l)2my+l:|}
N N AT P R

AsoBs _ SoS1 eé(%) cos ¢ . , (B14)

cP CP
The pressure distribution can be easily derived from equations (B13), (B11), and (B12). The constants in equation (B13) are given by

Lo € ) _As% _ 1| —ayms +2) 1 ax -2
Ci= Y <m¢ % m, + 1) » € [2m¢(2m¢ + 1)] ’ 37y [2(2my + 1)] ’ (B15)

Cp 2 b4
APPENDIX C

POWER-LAW MODEL FOR A MAGNETIC FLUX TUBE PERTURBED BY AN ARBITRARY EXTERNAL
PRESSURE DISTRIBUTION

In this Appendix we calculate a particular solution to the zero- and first-order systems of equations (32)—(33) and (66)—(69), which
describe the equilibrium of a magnetic flux tube perturbed by an arbitrary external pressure distribution of the form of equation (64).
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For simplicity we will use the same zero-order magnetic field distributions as in Appendix B, namely, equations (B2)—(B4). The
first-order equilibrium will depend on the external pressure fluctuations. If we assume that

P=P,+ i [Py cos (k¢) + Py sin (k)] , (C1)
k=ko

where k, is an integer greater than or equal to 2, then the integration of equation (71), with b, given by equation (B2), leads to the
following solution to equations (66), (68), and (69):

r=ao+ Y [aaw) cos (k) + ag) sin (kg)] , (€2
k=ko
with
aw) = = 5 autw), (C3)

u\ "1 me+V/—1+k2+mg
) , (C9)

aep®) = A(:.‘:)(E
Y Pk
@ 2A—my+ /14 K+ md) (C5)

Here a, follows from the boundary condition in equation (69), and the 4 and A values are obtained by means of the boundary
equation (68). To avoid singularities in the center, we must then require that

kb
my<— 1. (C6)

Equation (C6) is a necessary condition for the magnetic tube to find a new equilibrium with the same zero-order field distributions
once perturbed by the given external pressure fluctuation (C1). In the case of a potential flow, for example, k, = 2, and therefore m,,
must be equal to 1. An analysis similar to the one carried out in Appendix B (eqs. [B9] and [B10]) shows that equation (C6) is valid
in the neighborhood of the center for general cases (i.e., also if b, is not a power law for all radii).

Once r, is known, the first-order variables Ap} and A2¥ follow easily from the restriction of the “radial ” momentum equation
and its boundary condition to the vertical semiaxis ¢ = 0: with b, and B defined by equations (B11) and (B12), we obtain

* / my L 2 mp+2mg
%=€_21;&|:1_(_u_) :|+a¢P*+ZMI:1—<1) :l’ (C7)
Peo my U k=ko My + 2m¢ U

where

m=—1—my+./—1+k*+mj, (C8)
in addition to the parameters given in equation (B13).
APPENDIX D

POWER-LAW MODEL FOR A HORIZONTAL MAGNETIC FLUX TUBE SUBJECT TO GRAVITY AND AN
ARBITRARY PRESSURE DISTRIBUTION ON ITS SURFACE

To zeroth order, we assume that we have the same power-law equilibrium as the one used in Appendix B, namely, equations
(B2)—(B4). The only differences are that the total buoyancy is now different from zero and that the choice of the entropy excess is
restricted by the fact that the total buoyancy force must be compensated by the drag force, as required by equation (80), viz.,

Ao
_%&=ﬂ(u)=_%_ﬁ‘ (D1)
€ peO cp Y

Once we have the zero-order variables, we obtain r, from the momentum equation. With the external stratification given by
equation (B1), and the external pressure fluctuation p of the form

b2
Det = Peo Pdrag Cos ¢ + i (U)P(d’) ’ (D2)
where P(¢) is given in equation (C1), the solution to equation (34) and its boundary conditions is

ry = ao(u) + a,(u) cos ¢ + i [ac(w) cos (k¢) + aq(w) sin (k¢)] , (D3)
k=ko

with ay(u), a,(u), and a_(u) and a (u) given by equations (C3), (B7), and (C4), respectively.
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The other first-order variables follow from the restriction of the momentum equation and its boundary condition to the vertical
semiaxis ¢ = 0 once b; and B are chosen. To allow the comparison with the particular equilibria calculated in Appendices B and C,
we choose b; and B as in Appendix B. Thus, the rest of the first-order variables describing the internal equilibrium are the same as

in Appendix B, with

st (o[- - () ]l ()

0 2a¢ Ack k2 u 2mg+my
4y Defal |y (X *
k;co m, + 2m, U + Parag + 04 P

instead of equation (B13).

(D4
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