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Abbreviations
APC antigen-presenting cells
BrdU bromodeoxyuridine
CFDA carboxyfluorescein diacetate
CFDA-SE carboxyfluorescein diacetate succinimidyl

ester
CFSE carboxyfluorescein succinimidyl ester
C-SMAC central supramolecular assembly
DAPI 40,6-diamidino-2-phenylindole
DC dendritic cell
DNA deoxyribonucleic acid
EGF epidermal growth factor
ES embryonic stem
G-CSF granulocyte-colony stimulating factor
GCytS general cyton solver
GM-CSF granulocyte-macrophage colony

stimulating factor

ICAM intercellular adhesion molecule
IFN interferon
IL interleukins
LCMV lymphocytic choriomeningitis virus
LFA-1 lymphocyte function-associated

antigen 1
MAPK mitogen-activated protein kinase
MHC major histocompatibility complex
MTOC microtubule organizing center
NGF nerve growth factor
ODE ordinary differential equation
PI propidium iodide
PKCd protein kinase Cd
pMHC peptide-MHC complex
p-SMAC peripheral supramolecular assembly
RKIP Raf kinase inhibitory protein
TCR T-cell receptor
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9.16.1 Introduction

This chapter reviews a few problems in immunology where
biophysics or (to be more current with present-day semantics)
systems biology or quantitative biology contributed critically
to scientific understanding. Immunology is not a discipline
often studied by biophysicists, physicists, or systems biolo-
gists. For historical and practical reasons, immunology has
been developed since the mid-1800s mostly by clinicians and
veterinarians. Accordingly, the ultimate goal of immunology is
to understand the immune system in order to unleash its full
potential against diseases – infection or cancer – or to tame
its spurious activity in autoimmune disorders. This medical
focus has led to the use of a sophisticated terminology and
many empirical observations that can appear challenging to
the newcomer. However, many key contributors to immu-
nology have relied on concepts or techniques borrowed from
other fields: For example, Pasteur’s insight on vaccination and
Lansteiner’s classification of blood groups heavily rely on
concepts from chemistry; Tonegawa’s study of antibody
diversity stemmed from a molecular biologist’s interest.1

Hence, despite the apparent opacity of immunology as a field,
the study of the immune system benefits from many different
scientific approaches. This chapter aims to opening up the
study of the immune system to ‘quantitative biologists’: It will
review the field to point out how quantitative measurements
on the immune system are calling for more sophisticated
modeling efforts that will develop a more quantitative fra-
mework in understanding immune responses.

The goal of this review is to entice biophysicists to study
the immune system as an ideal ‘complex’ system. As the omics
revolution (i.e., progress in genomics, proteomics, etc.) is
increasing the amount of experimental observations on bio-
logical systems, from neuroscience to development, biologists
are looking for systems whose complexity is ‘manageable’:
This implies an ease to manipulate the system, and a library of
perturbation tools that 150 years of immunology and specific
characteristics of the immune system deliver. As discussed in
this chapter, the immune system is a dynamic collection of
cells that communicate via cell-cell contact and chemical
secretion. Immune responses are readily studied as emergent
properties of these cells, and the network of their extracellular
interactions can be easily manipulated. Immunology benefits
from more quantitative approaches, but also quantitative
biologists should consider the immune system as a great
subject to study complexity in biology.

The immune system is classically divided into two com-
ponents:2 the innate immune system that relies on germline-
encoded genes that recognize molecular signatures derived
from pathogens (e.g., liposaccharides, single-stranded RNA)
and the adaptive immune system that relies on somatically
mutated receptors to recognize other molecular signatures
derived from pathogens (so-called antigens). Both systems are
comprised of a vast arsenal of cell types, but, for clarity and
brevity this chapter focuses on one subset of the cellular
arsenal, the T lymphocytes. These T cells are white blood cells
that orchestrate the adaptive immune response, by unleashing
cytotoxic destruction of infected cells. T cells activate/recruit
other immune cells, such as B cells or macrophages, by
secreting cytokines. They also suppress spurious triggering of

the immune system that otherwise may develop into auto-
immune disorders. Because of their varied functions, the study
of T cells has been the centerfold of the immunology field
since the 1980s.

This chapter is organized into three sections. The first sec-
tion introduces three classical problems of immunology and
explains why fundamental issues about immune responses
call for a quantitative understanding. To help biophysicists
acquire a modicum of the experimental arsenal available to
immunologists, this section also introduces the main experi-
mental techniques used in the study of the immune system.
The second section reviews work on T-cell activation that
combines theoretical modeling and experimental work. The
final section reviews different models of T-cell proliferation.
This chapter is not exhaustive, and it avoids the use of many of
the technical details and nomenclatures used by immunolo-
gists as it is to be used as an introduction to the burgeoning
field of systems immunology.

9.16.2 Overview of Systems Immunology

The immune system relies on the ability of its lymphocytes
to detect foreign polypeptides to focus a specific immune
response against infected cells or against the pathogens
themselves, without harming healthy tissues. Pioneering work
by Ehrlich introduced the notion of self/nonself discrimina-
tion, which turned out to be a powerful concept that led to
many discoveries in immunology.1

The central theory for modern cellular immunology was
initiated by Burnett in the 1950s and named clonal selection
theory. This work was truly theoretical in its formalism, as
Burnett enunciated four postulates that had to wait for
experimental confirmations later on. First, each lymphocyte (B
or T cell) is endowed with a single type of antigen receptor.
Second, these receptors need to be engaged by an antigen to
activate the carrying cell. Third, the activated cells gain new
functions while keeping the identity of their receptor. Fourth,
self-reactive cells (i.e., cells whose receptors are engaged by
antigens from self tissues) are eliminated. These four postu-
lates really constitute a theoretical framework to account
for the dynamics of immune responses: Upon implementa-
tion, they can establish how self/nonself discrimination in
the immune system emerges from the activation of indivi-
dual cells.

The impact of the clonal selection theory for the field of
immunology has been immense yet limited: Immense as it
constituted the conceptual framework for experimental dis-
coveries; limited in the sense that it could not deliver explicit
predictions for molecular mechanisms to be tested experi-
mentally. The clonal selection theory remains essentially cor-
rect even though it required major updates: Discoveries
highlighted the role of the innate system:3 inflammatory
responses against pathogen-associated molecules are necessary
to validate adaptive immune responses against pathogenic
antigens. Hence self/nonself discrimination by lymphocytes
is cross-checked with environmental status. Moreover, studies
have shown that there exists self-responsive T-cell clones cir-
culating in the body and peripheral mechanisms that enforce
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tolerance.4 As immunology progresses, knowledge of the
complexity of molecular and cellular controls of the immune
responses becomes ever more complete.5,6 Yet, there is a
need for more theoretical studies to both synthesize current
knowledge, identify conceptual problems but also to antici-
pate new experimental discoveries.7 Biophysics and systems
biology may help expand the theoretical understanding of the
immune system as discussed below.

9.16.2.1 Three Problems of Immunology for Biophysicists

In this section, three classic questions about the immune
system are discussed. Simplified examples are presented to
highlight how quantitative modeling can help address these
issues.

9.16.2.1.1 Affinity maturation
A classic field of study where quantitative modeling con-
tributed to the understanding of immunology is the issue of
affinity maturation for antibodies produced by B cells. At the
early stage of an infection, a large set of B-cell clones may
recognize antigens from pathogens and become activated. This
triggers a program of differentiation whereby B cells switch the
class of antibody it produces (from the low-affinity multi-
valent IgM to the higher-affinity divalent IgG or others) and
use somatic hypermutation targeted onto the Ig genes to
evolve a better set of antibody. As conjectured by the clonal
selection theory (and essentially validated with molecular
details later on), B-cell clones that are of higher affinity get
to proliferate and accumulate more mutations, while B-cell
clones of lower affinities die by apoptosis. The end result is
that, over the course of a primary infection, followed by a
recall infection, the average affinity of antibodies produced by
B cells to recognize a given pathogen can increase by more
than 104 fold.8

This observation has been a defining moment for bio-
physicists, leading them to quantify this affinity maturation,
and dissect it at the structural level. Moreover, early efforts
in modeling (as reviewed in the classic ‘Immunology for
physicists’9) implemented the clonal selection theory and
demonstrated how phenomenological models based on
prey-predator frameworks could account for antibody affinity
maturation. However, the impact of these models remained
more conceptual (with a huge impact in the field of artificial
immune systems by computer scientists10) than functional as
many molecular details remained unknown at the time.

Progress has identified key mechanisms involved in affinity
maturation, from the mutation machinery,11–14 to the kinetics
of formation of germinal centers,15 where B and T cells interact
to orchestrate affinity maturation. Hence, numerous quanti-
tative details of antibody affinity maturation are being mea-
sured and calling for more integrated, molecularly accurate
and self-contained models.

9.16.2.1.2 Explosive and controlled cell proliferation in
the adaptive immune system

One striking feature of the immune system is its explosiveness
in response to pathogenic challenges. To match the rapid
proliferation of viruses and bacteria, the immune system must

rely on the rapid proliferation and expansion of B- and T-cell
clones that can specifically target the pathogen.

The amplification of the response can be large, up to 105-
fold expansion for T cells within days following infection.16,17

Amazingly, despite being always ready to mount such explo-
sive responses, the immune system rarely misfires in response
to spurious challenges. Autoimmune disorders, which are
attacks to self-tissues, are relatively rare considering the con-
stant pathogenic challenges that the body experiences daily.
This controlled explosiveness is an important property of
immune responses for systems biologists to ponder.18

Importantly, the process is highly dynamic because the
immune system cannot and does not maintain this large
population of proliferating T cells. Instead it uses contraction
by apoptosis to return a T-cell clone population to its original
frequency, albeit in a memory stage with extended lifetime
and enhanced responsiveness rather than a naı̈ve stage.17

Understanding quantitatively how expansion and contraction
are finely tuned to match the pathogenic onslaught while
maintaining the overall long-term organization of the
immune system remains a quantitative challenge for systems
immunologists.

9.16.2.1.3 Immune memory and vaccination
The oldest and most fascinating observation pertaining to the
science of immunology came with the historian Thucydides.
As a first witness of the great Athenian plague in 429 BC,
Thucydides reported how sick individuals that survived their
infection, were ‘immune’ to subsequent infection and could
tend to sick patients without risk to their own health. Such
circumstantial evidence of immunity was repeated after that,
but the first example of practical implementation of this
observation belongs to Indian physicians of the eighth century
of our era19 who used variolation (the inoculation of smallpox
on skin scabs) to immunize people against smallpox. Such
manipulation of the immune system to generate a memory of
past infections was generalized and conceptualized by Jenner
and Pasteur in the nineteenth century and enabled the eradi-
cation of diseases by vaccination during the twentieth century.

Immunological memory (and its importance for public
health) cannot be underestimated, and remains a fascinating
question in immunology.20,21 The immune system is able to
maintain a set of cells that differentiated during a first expo-
sure to a pathogen to lead the response during a second
exposure. Amazingly, these memory cells and their associated
immunological memory can be maintained across the whole
lifespan of an individual. Memory cells are plasma B cells (that
produce high levels of neutralizing antibodies that recognize
the pathogen with high affinity) or cytotoxic T cells (that
specifically kill cells infected with viruses that do not induce
degeneration). At the quantitative level, the striking char-
acteristic of these memory cells is their enhanced capacity to
eradicate an infection right from its onset based on faster
kinetics and stronger amplitude of their response. At the
molecular level, immunological memories can be quantified
with the amount of antibodies and their affinity to pathogenic
antigens or by the number and efficiency of cytotoxic T cells
that participate in infection clearance (during a so-called
recall). In fact, these quantitative characteristics are what
mostly distinguish memory cells from naı̈ve cells (faster
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arming of cytotoxic capabilities, faster proliferation, etc.): At
the cellular level, the difference between naı̈ve and memory
cells is practically quantitative rather than qualitative. Thus the
establishment of immune memory must be modeled as a
preconditioning of the immune system for faster/stronger
response. Immunologists have focused on identifying markers
of memory states (this has practical consequences when
testing and optimizing new vaccines), but systems biology is
needed to analyze quantitatively the dynamics of the genera-
tion, maintenance and recall of memory lymphocytes.22

9.16.2.2 The Scalable Complexity of the Immune System,
in Time and Space

The main components of the adaptive immune response
will now be introduced. As described previously, mounting a
successful immune response invokes many processes, from
targeted mutations to cell proliferation and death to cell
maintenance. Hence, many timescales must be integrated in
any model of the immune system. For example, when focusing
on then T-cell response, activation occurs on molecular
timescales, with the recognition of foreign-derived ligands
taking place within seconds of engagement with antigens; the
signaling response associated with ligand recognition by its
receptor has characteristic timescales from minutes to hours; a
cytotoxic response (release of hole-forming proteins to kill
infected cells) takes minutes to hours, transcriptional pro-
grams are activated on timescales from hours to days; the
proliferation and death program starts typically after 24 h and
terminates after 1 week; finally, the maintenance of memory
T cells must be understood across the lifetime of the organisms
(years).

Hence, immune responses broach many timescales (from
seconds to years) and these timescales are not necessarily
well separated: For example, the activation of transcriptional
programs implies new surface receptors that modulate
the signaling responses of T cells over long timescales, or the
proliferation and death of T cells influence the size of the
effector pool and the amount of available cytokines secreted
by T cells. The rich dynamics involved in T-cell activation is
critical in enabling the immune system to adapt to dynamic
challenges rapidly: From its ability to trigger macroscopic
responses in terms of cytokine secretion or cell proliferation,
to the need to terminate the response upon pathogenic
clearance and to maintain homeostasis.

9.16.2.3 A Simplified List of Key Players in the Immune
Response Orchestrated by T Cells

The exceptional molecular and cellular complexity of the
immune system implies a large corpus of knowledge necessary
to navigate the field and read immunology papers. This has
often been a limiting step for physicists, mathematicians, or
even biologists outside of immunology to participate in the
study of the immune system.

Here a modicum of information has been complied to
help newcomers entering the field of systems immunology.
For reason of space and clarity, the section focuses solely on
the ‘adaptive immune response’ mediated by T cells. This is of

course a major simplification considering the diversity of cell
types involved in an immune response, such as dendritic cells
(DCs), eosinophils, macrophages, mast cells, basophils, nat-
ural killer cells, etc. The contribution of these cells to an
immune response is critical, since their activation is the green
light that triggers the adaptive immune response. As a further
simplification, B cells will not be covered despite the fact that
they contribute critically to the adaptive response by present-
ing antigens to T cells and by releasing neutralizing antibodies
upon activation. Understanding the role played by all these
cells will require large experimental data sets that will have to
be integrated into a complete dynamic model of the immune
system.

T cells in the immune system can be categorized in three
main states. As thymocytes, T cells are undergoing a strict
developmental program of positive and negative selection for
responsiveness against self antigens in the thymus. As naı̈ve
lymphocytes that live in peripheral lymphoid tissues, T cells
survive in a quiescent state until they recognize an antigen that
triggers their activation, differentiation, and proliferation. At
that point they are called T-effector cells. Finally, T cells also
exist as memory cells, which maintain the expression of the
same receptor as the naı̈ve cells from which they originated.

The activation of a T cell starts with the engagement of the
T-cell receptor (TCR) with agonistic antigens. T-cell antigens
consist of short peptides (made of 8–10 amino acids) that are
loaded onto major histocompatibility complexes (MHCs).
These complexes are presented on the surface of other cells,
such as DCs, macrophages, or B cells, which are the main
antigen-presenting cells (APCs). Following their activation,
T cells can follow various routes depending on the coreceptors
that they express (CD4 or CD8), and the inflammatory
environments they encounter. T cells can become cytotoxic,
that is, release proteins (perforin, granzymes) that punch
holes into target (infected) cells. T cells can also gain helper
functions, whereby they synthesize and secrete proteins
(cytokines or interleukins (IL)) that diffuse in the extracellular
medium to orchestrate the immune response of other cells
beside themselves. There exist three main types of helper cells:
So-called Th1 cells trigger a cellular immune response by
releasing interferon (IFN) cytokines that boost cytotoxicity
and macrophage phagocytic activity; Th2 cells trigger the
humoral immune responses by driving B-cell differentiation;
Th17 cells orchestrate the adaptive immune response to con-
trol microbial populations in mucosal tissues. These three
main subtypes of helper T cells can be quantitatively recog-
nized based on the pattern of ILs they secrete: IFNU and IL-12
for Th1 cells; IL-4 for Th2 cells; and IL-17, IL-21, and IL-23 for
Th17 cells.

9.16.2.4 Experimental Toolkit for Biophysicists Studying
the Immune System

The experimental toolkit that biophysicists could and should
borrow from immunologists to study the immune system is
now introduced, emphasizing how the immune system may
be an ideal system of study for quantitative biologists who
aim at tackling biological complexity, both experimentally and
theoretically.
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9.16.2.4.1 Extracting quantitative parameters about the
immune system

Single-cell phenotyping is the most ubiquitous tool used by
immunologists. In a typical immunology experiment, a mouse
is exposed to a pathogen, sacrificed at different time points,
and its spleen and lymph nodes are harvested and prepared in
a single suspension. Next the harvested cells are stained with
fluorophore-coupled antibodies that target different proteins
expressed on the surface or (if the cells have been fixed and
permeabilized) intracellularly. Immunologists then analyze
this sample through a flow cytometer to acquire the multi-
distribution of staining within the cell suspension.

Such single-cell phenotyping has largely been limited to
analysis of surface markers or secreted proteins such as cyto-
kines. Typically, an immunology experiment tracks a particular
cohort of cells (e.g., T lymphocytes) during an immune
response: In terms of differentiation (up-/downregulation
of surface markers of secretion of cytokines), in terms of
location (expression of chemokine receptors, localization in
different organs) or in terms of numbers (monitoring of
proliferation and death). In these cases, qualitative differences
between experimental conditions (e.g., wild-type vs. some
genetic modifications) are being sought. However, it must
be emphasized that more quantitative information can be
extracted from similar experimental measurements and that
such data are critical to develop quantitative models.

Very simple calibration protocols have been used to yield
more quantitative measurements on the immune responses.
In order to quantify the immune responses, the number of
cells needs to be measured, molecules that they are secreting
or presenting on their surface need to be identified, and
it must be determined how these molecules are sensed by
other cells.

First, rate constants and binding affinity between receptors
and ligand can be measured. The generalization of the surface
plasmon resonance techniques,23 and better experimental
protocols to purify soluble versions of proteins of immuno-
logical interest, have led researchers to measure the biophy-
sical characteristics of the components of the immune system.
For example, in Section 9.16.3.1, the example of the TCR/
peptide-MHC complex (pMHC) and few cytokine/cytokine
receptor interactions are presented.

Second, absolute numbers of proteins are readily measur-
able. For example, using calibration beads and well-char-
acterized monoclonal antibodies, researchers can measure the
absolute level of expression for surface proteins (e.g., TCR,
CD4/CD8, etc.). Using purified proteins, western blot mea-
surements can be calibrated to determine the number of
proteins per cell in a lysate. Note that quantitative mass
spectrometry24 is being generalized to provide systematic
quantitative information on the levels of expression of
proteins and post-transcriptionally modified proteins (phos-
phorylation, glycosylation, etc.)

Third, beyond molecular components, counting the abso-
lute number of cells within an organ can be done by flow
cytometry.

These various techniques yield ‘hard’ numbers that can
generate complex statistical observations and superbly con-
strain any mathematical model of the immune response.25,26

The generalization of multicolor cytometers equipped with

multiple lasers (4), and multiple detectors (typically 16) allow
researchers to monitor the complexity of immune responses27

typically, 10 detectors can be used to separate different sub-
population of lymphocytes (B and T cells) or of monocytes
(DC, macrophages, etc.). Within each subpopulation, the
cellular state of differentiation can be characterized by staining
for cytokines under production or by monitoring the dilution
of fluorescent markers or other cellular characteristics. Ulti-
mately, the complexity of the data set to be acquired is
determined by the panel of available antibodies. For historical
reason, immunology is quite unique in that respect, because
such a repertoire of antibodies can be quite exhaustive. Note
that the high flow rates of acquisition managed by modern-
day flow cytometers allow researchers to acquire up to 25 000
cells per second. Hence studying a whole spleen (150 million
cells) or focusing on a rare subpopulation is easily achievable
with modern-day machines.

To conclude, immunology is a field that yields an unpre-
cedented wealth of quantitative measurements on a complex
biological system. Such experimental parametrization should
enable the development of computer models that maintain
molecular realism while aiming at understanding macroscopic
function. So far, computer models in immunology have not
taken advantage of this wealth of information and have
remained mostly phenomenological. As a result, these models
have had a reduced impact on the field of immunology, as
their lack of molecular details made them hardly falsifiable by
experimental measurements.

9.16.2.4.2 Measuring cell division and death
As detailed in Section 9.16.4, a large part of modeling
the immune system relates to the ‘complete accounting‘ of
lymphocyte proliferation during an immune response. There
exists a large panoply of experimental tools that allow
researchers to quantify proliferation and death in the immune
system.

To detect cell division, researchers can rely on the pre-
sentation of surface markers (Ki67) or the incorporation of
tagged nucleotides (e.g., bromodeoxyuridine (BrdU)) into the
newly synthesized deoxyribonucleic acid (DNA) of replicating
cells (during the S phase of the cell cycle). The latter requires
further permeabilization and denaturation, followed by anti-
body staining to detect the BrdU incorporation. Researchers
have also used specific antibodies against cyclins or DNA-
incorporating dyes to monitor the mitotic stage of individual
lymphocytes.24

But the most classical method to monitor lymphocyte
division in vivo or in vitro is the carboxyfluorescein succini-
midyl ester (CFSE) dilution method. Cells of interest are
stained with CFSE (or carboxyfluorescein diacetate (CFDA))
that penetrates the cell, becomes esterified and covalently
linked to a random and small fraction of all the proteins
within that cell. Upon activation and cell division, the amount
of CFSE fluorescence per cell is divided by two for each des-
cendant, and up to eight divisions can be readily resolved by
fitting the distribution (because of size homogeneity in the
naı̈ve state, this CFSE staining yields a very narrow distribution
of fluorescence for generation 0). Quantitative analysis of
these CFSE profiles is a field onto itself,24 and some of
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the results derived from this method will be reviewed in
Section 9.16.4.

To detect cell death, researchers can expose a population
of cells to dyes whose fluorescence is turned on by incor-
poration within DNA. Indeed, dead cells lose the integrity
of their plasma membrane and let these dyes permeate
the nucleus such that they become brightly fluorescent. Two
commonly used dyes are propidium iodide (PI) and 40,6-
diamidino-2-phenylindole (DAPI). It is also possible to use
specific markers (e.g., annexin V or residues of caspase acti-
vation) to monitor the fraction of cells undergoing apoptosis.

To conclude, there exists a panoply of quantitative assays
that researchers have developed over the years to monitor cell
proliferation and death during an immune response.

9.16.2.4.3 Single-cell phospho-profiling
There also exist new technological developments for which the
contribution of biophysicists within immunology is very valu-
able. The production of a wide array of phospho-specific anti-
bodies that can detect modified forms of proteins involved in
cell-signaling cascades and optimized for flow cytometric use,
allows researchers to monitor the phospho-profile of individual
cells. In particular, researchers can now directly relate individual
cellular phenotypes to the same cell’s functional behavior.24 In
the context of the study of the immune system, single-cell
phospho-profiling enables the monitoring of the activation and
response of individual cells within a mix of varied cell types
(e.g., lymphocytes, monocytes, stromal cells, etc.).

For example, Irish et al.28 used multiparameter fluores-
cence-activated cell scanning (FACS) to characterize the
responsiveness of tumor cells toward a panel of chemokine/
cytokine/growth factors. The strength of their method led to
the identification of many cell subtypes within single tumors,
ultimately offering a refined statistical predictor for clinical
outcome in chemotherapy treatments. Most strikingly, a par-
ticular phenotype (e.g., sensitivity to chemotherapy or Flt3
mutation) could not be assigned to a single molecular phe-
notype (e.g., upregulation of receptor) but rather to the con-
volution of many signaling ‘signatures’. For example, Irish
et al. identified a subpopulation of cells with distinct func-
tional responses: Phosphorylation of the transcription factor
STAT5 after exposure to specific cytokines (e.g., granulocyte-
macrophage colony stimulating factor (GM-CSF) treatment
and/or granulocyte-colony stimulating factor (G-CSF) and/or
IL-3 and/or IFNU and/or phosphorylation of the kinase ERK1/
2 after treatment with a specific ligand FL28).

For the purpose of understanding the biophysics of T-cell
activation, single-cell analysis enables the identification of
multiparametric determinants for lymphocyte responsiveness
that can be tested through computer modeling. Note that this
constitutes a technical advantage in studying mammalian cells
compared to Escherichia coli or yeast (systems in which the
issues of robustness in cell signaling or gene expression have
classically been studied29): Facile intracellular staining and
FACS analysis of native proteins is only readily achievable in
these higher-organism cells, opening the gate to a rich analysis
of phenotype/function relationships not readily accessible in
cell-wall-endowed cells. On a practical note, the overhead
investment of flow cytometers as well as the readily avail-
able libraries of antibodies against immune determinants for

clinical diagnostics make immunology the best field to apply
single-cell phospho-profiling.

9.16.2.4.4 Genetic perturbation of the immune response
Since the beginning of the 1990s, cellular immunologists have
relied on the creation of transgenic models and knock-out
models to address the role of specific genes in the establish-
ment of immune responses. To generate a transgenic model or
a knock-out mouse, a gene of interest is added or removed by
homologous recombination or by gene trapping within the
nuclei of an embryonic stem (ES) cell, and this ES cell is grown
in vitro and added to an embryo to reconstitute a full geneti-
cally modified model. This knock-out technique has become a
routine (albeit time-, effort- and money-consuming) proce-
dure in immunology laboratories. Using the same approach,
many transgenic mice, whereby an additional gene (e.g., TCR
or mutant signaling protein) is added to the genome of a
mouse, have been generated. Moreover, there exists a whole
genetic toolbox (TET system, Lox-Cre) that facilitates the
external control (in time, location, and differentiation state) of
these genetic perturbations. This enables immunologists to
perturb the immune network with specificity and flexibility.

One experimental aspect of fundamental value for systems
immunology is the ability to reconstitute immune systems
from such genetically varied parts. Injecting cells from a donor
mouse into a recipient mouse (as long as they share the same
repertoire of MHC to avoid graft rejection) via the tail-end
vein of the mouse or via the retro-orbital sinus vein is per-
formed routinely in immunology laboratories. Such adoptive
transfer of genetically modified cells is used to build or perturb
the immune system. For example, immunologists commonly
rely on bone marrow chimera whereby the immune system of
host mice is deleted via sublethal X-ray radiation, and recon-
stituted with cells isolated from the bone marrow extracted
from femurs of donor mice (i.e., hematopoietic progenitor
cells). This classical approach of adoptive transfer short-cuts
the time-consuming breeding of genetically modified organ-
isms, and allows researchers to test different combination of
genetic perturbations within a subpopulation of an otherwise
undisturbed organism rapidly.

There are limitations to the use of such genetic models, as
the intricacies of feedback regulation in a biological network
as complex as the immune system may yield to compensations
limiting the impact and interpretability of the genetic pertur-
bation. For these reasons scientists have been building a
quantitative systems immunology approach to complement
the genetic one. This novel quantitative approach consists of
tracking how individual lymphocytes decide at the molecular
level between activation and tolerance. Indeed how local sig-
nals (e.g., antigen response) and global signals (e.g., inflam-
mation status) are integrated to make the immune response is,
at the fundamental level, a systems property. Recent develop-
ments in immune monitoring and computer modeling have
been presented in Sections 9.16.3 and 9.16.4.

9.16.2.4.5 The immune system as an ideal complex
biological system to study

As delineated in this chapter, immunology is, at its core, a
‘number’ game. The difference between antigens (derived from
foreign proteins) and nonantigens (derived from self proteins)
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is essentially a difference in the dissociation rates of the anti-
gen/receptor complex; understanding differentiation in a
population of activated lymphocytes implies estimating the
amount of produced cytokine and the ensued signaling cas-
cades; estimating the amplitude of an immune response
implies quantifying lymphocyte proliferation and death, etc.
For these reasons the immune system is an ideal ‘complex’
system of study for biophysicists.

It may be argued that the immune system might indeed be
an ideal biological system whose complexity remains man-
ageable experimentally. Classically, more mathematically
inclined biologists have focused on the nervous system where
the issues at stake (consciousness, memory, etc.) are deep and
far-reaching. However, nervous systems are hard to tackle
experimentally, in the sense that their experimental mod-
ification stumbles on the hard-wiring of its cellular compo-
nents. The immune system is more fluid by nature: It is
essentially a collection of agent cells that communicate and
self-organize (via fluid cell-cell contacts or cytokine exchange)
to generate an immune response.

The experimental tools are allowing quantitative biologists
to address issues in immunology with remarkable acuity: In
order to understand immune responses as emerging properties
of a collection of cells, immune system must be ‘built’ from
the ground up. In other words, as for any self-organized sys-
tem,30 understanding the immune response implies being
able to rebuild one ‘from scratch’ simply by assembling the set
of components deemed critical.

9.16.3 Modeling T-Cell Activation Quantitatively

9.16.3.1 Biophysics of Ligand-Receptor Interactions in
T-Cell Signaling

One of the early experimental observations that spurred
modeling efforts in the field of T-cell activation is the corre-
lation between lifetime of pMHC-TCR interactions and
strength of activation. As the surface plasmon resonance
technique became ubiquitous in biophysics laboratories in
the mid-1990s, as well as an optimized protocol to prepare
and purify recombinant peptide-MHC complex and TCR,
researchers unraveled the biophysical characteristics of pMHC-
TCR interaction.

The first surprise was the relatively weak affinity of the
pMHC-TCR interaction (in the range of 1–10 mM) when
compared, for example, with antigen-antibody interactions,
which can reach 1 pmol range for B cells. Further studies,
however, revealed that the weak affinity of pMHC to TCR
stems from the randomness of somatic mutation of the
binding interface and the lack of affinity maturation for the
TCR. Interestingly, this weak affinity is critical to enforce spe-
cificity and therefore being able to distinguish between agonist
and nonagonist, because single mutation in the antigenic
peptide can commute the pMHC ligand from agonist to
nonagonist. Overall, strong agonists, such as, pMHC tend to
bind with lifetimes of more than 10 s, while nonagonist bind
with lifetimes less than 3 s at room temperature. The associa-
tion rates (around 104 mol!1 s!1) are essentially independent
of the peptides and do not contribute to ligand discrimination.

The second quantitative observation is the observed
variation in activation threshold. For each clone of T cells,
endowed with different TCR, researchers have screened
libraries of peptides to make a repertoire of ligands, from
strong agonist (that can trigger the T cells under consideration
with 1–10 ligands) to nonagonists or nulls. For different TCR,
the biophysical characteristics of a ligand can vary greatly, and
there is no universal threshold in terms of ligand/receptor
dynamics: Each T-cell clone is found to adjust its threshold of
activation, most likely by fixing different levels of signaling
molecules (receptor, co-receptor, kinases, etc.). This observa-
tion implies that: (1) Fine-tuning the TCR signaling machinery
during interaction with self antigens is possible (e.g., during
T-cell development) and (2) the TCR signaling machinery is
not robust (i.e., activation through the same signaling cascade
can drive varied responses).31

One caveat of these measurements is its reliance on soluble
ligand and receptor purified from bacterial or insect expres-
sion systems. It is possible in particular that post-translational
modifications that could be critically relevant in vivo32,33 (e.g.,
syalation) are missed in these studies. However, these post-
translational modifications might simply shift the overall
spectrum of ligands (adding glycosylation may hinder the
pMHC-TCR interaction, and reduce the binding affinity of
all antigens: The affinity of agonist ligands would be reduced
yet remain stronger than the affinity of nonagonist ligands).

Another caveat of the surface Plasmon technique is that
most reported measurements are performed at room tem-
perature (due to experimental practical reasons rather than
fundamental limitations). Probing TCR/pMHC kinetics of
interactions at 37 1C has repeatedly yielded intriguing (but
often not confirmed) results. For example, Rosette et al.34

reported an extremely long lifetime (t410 min) at 37 1C for
the OT-1 TCR/Kb/OVA complex. This observation has not
been reproduced for other TCR/pMHC complexes and is
incompatible with dissociation rates for pMHC tetramers on
the surface of T cells at 37 1C so its significance is challenging.
Kroogaard et al.35 made a systematic effort to compare mea-
surements at varied temperatures, from 20 to 37 1C for the
5C.C7 TCR. They found that discrepancy in the hierarchy of
antigen potency related to large changes in heat capacity for
the association rate of the ligand with its receptor. A critical
conformational change (quantified by this heat capacity
change, which itself quantifies the solvent reorganization) was
conjectured and analyzed theoretically.

A third intriguing result was reported by Reich et al. using
dynamic light scattering to measure aggregation of TCR and
pMHC in solution at 37 1C: They reported that supramole-
cular aggregation could occur but was specific of agonist
ligands. This result suggested an appealing explanation for
how TCR signaling could be triggered: By analogy with the
epidermal growth factor (EGF) receptor system (whereby
dimerization of receptors enables trans-phosphorylation by
receptor-associated kinases), individual TCR engagement
could be greatly enhanced by aggregation with a self-engaged
receptor. Thus unengaged receptors could be maintained in
a metastable ‘fluid’ state that switches molecular conforma-
tion and crystallizes upon a seed engagement with an agonist
ligand, by analogy with the ice 9 allegory.36 This would explain
how few agonist ligands could trigger such macroscopic
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signaling responses (a typical calcium influx upon TCR trig-
gering rushes in 106 ions within 1 min of engagement with a
single receptor).

Another limitation of the measurements by surface Plas-
mon resonance is its reliance on soluble pMHC/TCR interac-
tions. This soluble setting uncouples ligand-receptor dynamics
from the membrane fluctuations. It is possible, however, that
membrane fluctuations might accelerate binding/unbinding
by colocalizing the molecules or by applying mechanical
constraints on the formed complex. In situ measurements of
pMHC/TCR interactions have relied on single-molecule FRET
reporter to measure the engagement of TCR on the surface of a
T cell.37 These results will need to be integrated in updated
models of the signaling cascade to take into account the faster
dynamics of association/dissociation of the ligand/receptor
pair on the surface of cells; nevertheless the hierarchy of
ligands (from agonist to nonagonist) seem to be conserved
once these acceleration factors are taken into account.

9.16.3.2 From Biophysics to Function: How TCR
Engagement is Transduced Intracellularly

Researchers have used many different readouts to assess the
functional consequence of TCR engagements by pMHC
ligands. For example, Sykulev et al. monitored cytotoxic
activity in a population of CD8þ T cells and extrapolated that
a single pMHC can be enough to trigger T-cell responses.38

Other groups have used different readouts of activity. For
example, Daniels et al. (2006)39 monitored the upregulation
of the glycoprotein CD69, which is rapidly expressed upon
activation to drive T-cell exit from lymph nodes and targeting
to peripheral tissues. Another possible readout of activity is
cytokine secretion, which typically occurs after 3 h of TCR
engagement.40 Other groups have used T-cell proliferation or
T-cell development when studying thymocytes. One such
striking measurement of T-cell specificity was reported by
Daniels et al. (2006)39. They used thymocytes endowed with a
well-characterized TCR and measured how their short-term
response scaled over seven decades of potency when activated
by MHC loaded with different peptides. Yet, long-term
responses of the same thymocytes displayed a very digital
threshold in terms of peptide potency (Figure 1). Hence, these
thymocytes were found to make a very sharp and specific
discrimination of peptides loaded onto MHC.39

The first conceptual idea put forth to explain how minute
differences in the sequence of the loaded peptide onto MHC
could yield such drastic differences in TCR signaling and
T-cell activation was a kinetic proofreading scheme by
McKeithan (1995).41 Within the TCR-associated chains, there
are 10 tyrosines that are phosphorylated upon engagement by
pMHC. McKeithan pointed out that these phosphorylations
are irreversible additions that may occur in a stepwise manner
and introduce time delays. At each step, pMHC can unbind
from the TCR and trigger a rapid dephosphorylation of
the TCR complex. This implies that the lifetime of the
pMHC-TCR interaction is being tested iteratively at each
proofreading steps.

A simple calculation can be carried out to estimate
the specificity of the kinetic proofreading scheme in TCR

signaling. Consider one TCR molecule that is engaged by two
different types of pMHC, which bind with characteristic life-
times ti (i¼ 1 or 2). Here the amount of phosphorylation
onto the TCR engaged by Ni pMHC binding is being com-
pared. The ratio R of the number of TCR that got phos-
phorylated k times upon engagement with two different
pMHC is calculated (that bind with characteristic lifetimes t1

and t2 to a given TCR)

R ¼ A
N1

N2

t1

t2

! "k

The prefactor A depends on the total time of engagement
and the characteristic time of the kinetic proofreading steps.
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Figure 1 Exquisite specificity of T-cell activation. Thymocytes
endowed with a transgenic receptor of known specificity were
activated in vitro with cells presenting different peptides. The
reference peptide (OVA) is 8 amino-acids long and is a well-
characterized strong agonist for these T cells. All the other peptides
(e.g., Xi¼ E1 or Q4, etc.) are mutated with different residues (X) at
different locations (i) along the OVA peptide. (a) Dose-responses for
the upregulation of CD69 (an activation marker) on these thymocytes
after 3 h of exposure to peptide-loaded antigen-presenting cells
demonstrate the exquisite specificity in ligand discrimination: Single-
mutation in the stimulating peptide modulates its potency by up to
107 fold. (b) The same peptides are used to drive differentiation of
these thymocytes over 1 week: Cells respond with a very sharp
threshold to discriminate between strong ligands (driving negative
selection and apoptosis) and weaker ligands (driving positive
selection and survival). Hence T cells can discriminate minute
differences in activating ligands, with a smooth ruler on the short
term, or a sharp filter on the long term. Reprinted from Daniels, M.
A.; Teixeiro, E.; Gill, J.; Hausmann, B.; Roubaty, D.; Holmberg, K.;
Werlen, G.; Holländer, G. A.; Gascoigne, N. R.; Palmer, E. Thymic
selection threshold defined by compartmentalization of Ras/MAPK
signalling. Nature 2006, 444(7120), 724–729, with permission from
Nature Publishing Group.
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Typically, agonist ligands (that bind typically with a lifetime
t1410 s) are being compared with nonagonist ligands (that
bind typically with a lifetime t2o3 s). This formula illustrates
how multiple kinetic proofreading steps amplify the difference
between good and poor ligands. Ultimately, T cells can
respond to as low as 1 pMHC1 while not responding to 105

pMHC2: For a ratio of lifetimes t1/t2¼ 3, that would imply at
least 10 tyrosines. Hence, kinetic proofreading could amplify
the signaling difference of agonist and nonagonist ligands to
the point of achieving the required specificity.

However, there are many experimental observations that
suggest that kinetic proofreading is not sufficient.42,43 First,
the kinetics and amplitude of the phosphorylation cascades
are not compatible with the slow and ‘signal-extinguishing’
characteristics of a kinetic proofreading.43 Second, the 10
tyrosines on the TCR could potentially become phosphory-
lated all at once, short-cutting the necessary long time delays.
Note that there have been reports of specific order in phos-
phorylation,44 substantiated by conformational change in the
CD3-associated chains that control tyrosine accessibility.45

Ultimately, kinetic proofreading constitutes one part of the
solution toward enforcing sharp ligand discrimination but
by itself it cannot achieve the single-agonist responsiveness,
that is, the exclusion of 105 nonagonist within 1 min of T-APC
contact. Additional features are necessary to reconcile the
speed, sensitivity, and specificity of TCR signaling.

Modeling efforts then focused on the dynamics of signal-
ing responses to account for the specificity of T-cell activation.
The main insight was that feedback regulation can modulate a
kinetic proofreading process toward enhanced ligand dis-
crimination. In fact, early engagement of the receptors can
trigger the activation of phosphatases (e.g., CD45 or SHP-1)
that slows down the phosphorylation cascades and blocks
signals from weak (i.e., self) ligands from activating T cells. For
stronger ligands (i.e., nonself), the activation of positive
feedback loops is critical to stabilize the signaling events and

commit cells toward activation. Two pathways have been
suggested to achieve such digital filtering of TCR/pMHC
interactions. First the kinase that initiates TCR signaling (Lck)
was shown to be phosphorylated on Serine 59 and protected
from dephosphorylation by phosphatases upon ERK activa-
tion,46 for ligands that are strong enough to bypass any
negative feedback.42,46 Second, the discovery that the factor
SOS can boost its guanine nucleotide exchange onto Ras upon
binding of active Ras in a catalytic pocket was identified as a
key positive feedback to explain digital filtering of signal
transduction in lymphocytes.47

Modeling these competing positive and negative feedback
pathways (Figure 2(a)) accounted for a bifurcation within
phosphorylation patterns: For nonself pMHCs (which bind
strongly to TCR), the enzymatic modification of LCK by
the mitogen-activated protein kinase (MAPK) ERK-1 protects
the molecules involved in the most proximal signaling events
induced by TCR ligation from dephosphorylation; for self
pMHCs (which bind more weakly to TCR), the phosphatase
SHP-1 dephosphorylates these proximal signaling compo-
nents and quenches the cell response before ERK activation
can protect the signaling apparatus. Thus, this bifurcation in
cell signaling defines a strict threshold of TCR ligands capable
of inducing T-cell activation (Figure 2(b)).

Quantitative modeling of the signaling cascade led to a
better understanding of the dynamics of this bifurca-
tion:42,48,49 in T cells, a rapid-onset but slowly rising recruit-
ment of SHP-1 to LCK in the TCR complex competes with a
delayed but digital activation of the MAPK pathway. Computer
simulations using this quantitative model resulted in several
predictions concerning T-cell activation that have been con-
firmed by direct experimentation. A key finding was a non-
linear, rapidly rising increase in the time to activation of
the MAPK cascade with decreasing numbers of ligands.
This divergence plays a central role in the useful operation
of this pathway as a high-gain digital amplifier. These
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Figure 2 (a) Schematic signaling network of the early events in T-cell activation. The association of pMHC and T-cell receptor (TCR) yields to a
complex undergoing phosphorylation, with kinetic proofreading by dissociation. Self pMHC form weak complexes with TCR (short dissociation
time t), while nonself pMHC form strong complexes (long t). The activation of SHP-1 constitutes a negative feedback, which dominates with
poor quality ligands. The activation of mitogen-activated protein kinase (MAPK) constitutes a positive feedback, which dominates with high
quality ligands. (b) Output of computer simulation (level of activated MAPK after 3 min of simulated T-cell activation). A sharp transition for
MAPK activation in terms of ligand quality results from the differential feedback loops: For short t, the cells do not respond; for intermediate t,
the negative feedback dominates; for long t, the positive feedback dominates. Reprinted from Feinerman, O.; Veiga, J.; Dorfman, J. R.; Germain,
R. N.; Altan-Bonnet, G. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 2008, 321(5892),
1081–1084, with permission from The American Association for the Advancement of Science.
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simulations also provided an understanding of the previously
reported puzzling pattern of transient activation of SHP-1 by
agonist ligands. A third novel aspect of the results was the
demonstration of increasing antagonist potency of poorly
binding ligands as they approached the threshold defining
agonists.42,43

Most relevant to the understanding of ligand discrimina-
tion in T-cell activation, the simulations also predicted the
capacity of T cells to reprogram their agonist threshold (‘tune
their responsiveness’) through modest alterations in the
intracellular concentration of CD8 and SHP-1. This prediction
was tested using T cells undergoing TCR-induced proliferation
(blasts). For these primed cells, there was a narrow window
of presentation of ligands that were nonstimulatory for naı̈ve
T cells yet evoked a measurable ERK response in T-cell blasts.1

This arose because of a slowdown in the rate of SHP-1 gen-
eration when the substrate concentration was lowered. Higher
ligand levels overcame this limitation on negative feedback
and inhibited the response to such weakly binding ligands
properly. This feature of T-cell signaling biochemistry may be
functionally relevant in early stages of infection when T cells
could take advantage of self-derived ligands to respond to a
limited amount of pathogen-derived ligands.

Thus, computer simulation and systematic experimental
probing of T-cell activation, has led to a more quantitative
model of the early events in T-cell signaling. In particular, the
transduction of minute biophysical differences in ligand/
receptor interactions into macroscopic functional differences
in signaling was accounted for and explained how these cel-
lular components of the adaptive immune system enforce the
fast and sensitive self/nonself ligand discrimination. Func-
tionally, the most relevant insight from computer modeling
is the basis for actively tuning the threshold for agonist
functionality during T-cell differentiation in the thymus or
periphery, based on regulation of the competition between
positive and negative feedbacks through modest changes in
the intracellular concentrations of key molecules.

These results about ligand discrimination in lymphocytes
provide information on other decision-making pathways in
systems biology. For example, it is interesting to draw parallels
to EGF/nerve growth factor (NGF) signaling in neural cell
lines.50,51 In this system, the activation of one kinase carries
various functional consequences: Activation by EGF (with
activation of Raf kinase inhibitory protein (RKIP), negative
feedback) yields transient phosphorylation of ERK, which
drives proliferation and death. Activation by NGF (with acti-
vation of protein kinase Cd (PKCd) positive feedback) yields
stable ERK activation and drives differentiation. This differ-
ential signaling through one single kinase takes place similarly
in T-cell signaling: During T-cell development, weak and sus-
tained ERK activation drives positive selection and differ-
entiation into naı̈ve peripheral T cell; strong and transient ERK
activation triggers apoptosis and is critical for negative selec-
tion, that is, the elimination of overtly reactive T cells.52 Hence
studying quantitatively lymphocytes’ ligand discrimination
helps understand how other signaling networks may produce
decisions with functional relevance to biology.

To conclude, the study of ligand discrimination by T lym-
phocytes is a core problem in mathematical modeling of
immune responses. Accounting for the specificity/sensitivity

and speed of T-cell activation upon receptor engagement
requires quantitative modeling. Early models suggested that
kinetic proofreading schemes could be at play to amplify
biophysical quantitative differences into qualitatively distinct
signaling responses. But more recent models have emphasized
the differential regulation of signaling responses by feedback
pathways. This is more than a formal exercise. Understanding
how ligand discrimination is achieved by the TCR signaling
machinery will enable identification of critical regulators
whose up-/downregulation could modulate self/nonself dis-
crimination with potential clinical applications.

9.16.3.3 Spatiotemporal Coupling of TCR Signaling and
Membrane Dynamics

For simplicity, early modeling efforts on T-cell activation have
assumed that the reactions take place in a well-mixed reactor.
There are arguments to support this formalism: The size
of T-cell cytoplasm – 15 fl – and the high concentrations of
signaling proteins – typically 104 to 106, which translates into
1 to 100 mM concentrations – imply that diffusion kinetics can
be so rapid so that they may not be rate-limiting. In contrast,
imaging studies of T-cell activation has revealed striking spa-
tiotemporal couplings between TCR signaling and membrane
dynamics. Most impressive was the discovery of the immu-
nological synapse, at the end of the 1990s, as the characteristic
patterning of membrane proteins on the surface of T cells
and APCs. Work from the Kupfer53 and Dustin54 laboratories
demonstrated how, upon T:APC engagements, TCR-pMHC
contacts accumulate at the center of the cell-cell contact
region, the so-called central supramolecular assembly (C-
SMAC). At the same time, contacts between adhesion mole-
cules (lymphocyte function-associated antigen 1 (LFA-1) and
intercellular adhesion molecule (ICAM)) form a surrounding
outer ring, which is called the peripheral supramolecular
assembly (p-SMAC) (see Figure 3). The mechanical con-
straints associated with the varied size of ligand/receptor
complexes and adhesion molecules were quickly identified as
potential driving forces to generate such a self-organized pat-
tern. Indeed, the longitudinal length of a pMHC/TCR complex
is 14 nm, while the length of the LFA/ICAM complex is 41 nm.
Experimental modification of the pMHC height (using chi-
meras with immunoglobulin) demonstrated how these spatial
characteristics are critical for TCR signaling while not affecting
pMHC/TCR engagement in control measurements.55,56

Theoretical modeling of the immunological synapses is
critical to understand how membrane receptors can self-
organize by coupling biochemical interaction and mechanical
constrains. Chakraborty’s group has pioneered this line of
research by modeling the spatiotemporal dynamics of mem-
brane receptors with Ginzburg-Landau-type equations.57

All ligands and receptors are diffusing on an elastic mem-
brane parameterized as a two-dimensional (2-D)-surface by
z¼ z(x,y,t). To compute this membrane profile, Qi et al.58

defined the total free energy F as the sum of mechanical terms
(elasticity and bending) and elastic terms associated with
complexes (pMHC-TCR and LFA/ICAM1) acting as springs:

The densities of free species f depend on biochemical
equations (to simulate binding/unbinding), and diffusion.
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For example, for the TCR,

qfTCRðx; y; tÞ
q t

¼ DTCRr2fTCRðx; y; tÞ ! kOnðzÞfpMHCfTCR

þkOfffpMHC!TCR ! kendocytosisfpMHC!TCR þ zTCR

where DTCR is the diffusion constant for free TCR, kOn is the
association rate (with a Gaussian dependence in z to account
for effective geometric alignment), kOff is the dissociation
rate and kendocytosis is the rate of internalization for the
engaged receptor (surprisingly, Qi et al. take an estimate that is
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Figure 3 (a) Sketch of the immunological synapse. Upon contacts between T cells and antigen-presenting cells (APCs), surface proteins
redistribute within the membranes into a characteristic bulls-eye pattern. Small intercellular complexes (e.g., major histocompatibility complexes
(MHC)/T-cell receptor (TCR) or CD28/B7) accumulate in the center of the synapse, while larger complexes (e.g., adhesive LFA-1/ICAM) segregate to
the periphery of the synapse. (b) Dynamic model of the synapse formation for different pMHC ligands predict that there exists a band of biophysical
parameters (0.6oKdo30 mm2 molecule!1 for association equilibrium constant) that elicit synapse formation. Computer predictions match well with
experimental data. From Lee, K. H.; Dinner, A. R.; Tu, C.; Campi, G.; Raychaudhuri, S.; Varma, R.; Sims, T. N.; Burack, W. R.; Wu, H.; Wang, J.;
Kanagawa, O.; Markiewicz, M.; Allen, P. M.; Dustin, M. L.; Chakraborty, A. K.; Shaw, A. S. The immunological synapse balances T cell receptor
signaling and degradation. Science 2003, 302(5648), 1218–1222, with permission from The American Association for the Advancement of Science.
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dependent on koff,
58 while this would be expected to be

independent of the antigen59)

q zðx; y; tÞ
q t

¼ !M
dF

dz
þ z

with

F ¼ lTCR

2

ZZ
dxdyfTCR!pMHCðx; y; tÞ & ðzðx; y; tÞ ! zpMHC!TCRÞ2

þ lLFA

2

ZZ
dxdyfLFA!ICAMðx; y; tÞ & ðzðx; y; tÞ ! zLFA!ICAMÞ2

þ 1

2

ZZ
dxdyðgðrzðx; y; tÞÞ2 þ kðr2zðx; y; tÞÞ2Þ

where li is the elastic spring constant for the bond i (TCR-
pMHC or LFA-ICAM), g is the interfacial tension for the
membrane, k is its bending modulus, f is the density of
the complex i, M is a phenomenological timescales for the
relaxation of free energy, and z is a noise term.

Finally, the dynamic equations for the densities of bound
species comprise a functional derivative of the free energy. For
example, for the TCR-pMHC complex,

qfTCR!pMHCðx; y; tÞ
q t

¼
DTCR!pMHC

kBT
r fTCR!pMHCr

dF

dfTCR!pMHC

 !

þkOnðzÞfTCRfpMHC ! kOff ðzÞfTCR!pMHC

þDTCR!pMHCr2fTCR!pMHCðx; y; tÞ

Many of the model parameters were found in the literature.
Beyond the biophysical parameters for ligand-receptor inter-
actions (already discussed in Section 9.16.2.4.1) and char-
acteristics diffusion constants for membrane proteins, the
authors used parameters on the elasticity of ligand-receptor
bond and the mechanics of membrane deformation (tension
and bending modulus) that had been measured in other sys-
tems (e.g., Dictyostelium discoideum). Hence, Qi et al. compiled
an impressive list of experiments to parameterize their model.
As a result, they could use their model to make explicit non-
trivial predictions that were validated experimentally in a later
publication.60 For example, instead of a simple threshold in
the lifetime of the pMHC-TCR complex, Qi et al. point out
how self-organization of the membrane proteins may occur
for a large repertoire of pMHC whose affinity (rather than a
lifetime) is narrowly constrained around 0.1 mm2 s!1. In other
words, ligands whose complex with TCR is less stable can
remain an agonist if their association rates increase accord-
ingly to maintain a constant equilibrium constant.

Low values of on-rate and off-rate are characteristic of
strong agonists and therefore it is not surprising that the
model predicts synapse formation for these rates. For pMHC
with high values of on-rate and off-rate, however, the model
also predicted formation of the immunological synapse. This
was not expected and led to the prediction of the existence of
co-agonists. This prediction was partially confirmed experi-
mentally,61 with the caveat that a very low density of strong

agonist is still required to get these co-agonist (may be to
trigger some TCR signaling that fluidifies the membrane).

Many insights can be taken from model predictions.60 The
existence of a narrow band of pMHC-TCR affinities that lead
to synapse formation has important functional consequences:
Antigens that bind to TCR with Kd40.03 mm2 molecule!1 are
too weak to compete with the strong LFA-ICAM-1 bond thus
cannot exclude them out of the central contact zone. Antigens
that bind to TCR with Kdo0.003 mm2 molecule!1 are so
strong that they can accommodate elastically the presence of
neighboring LFA-ICAM bond. Note that these may be quali-
tative results (rather than being quantitatively accurate) as in
situ measurements of pMHC-TCR interaction yielded very
different values compared to results obtained in solution with
purified molecules.37 Another important message from these
simulations is the existence of multiple timescales involved in
the process. At short timescale, adhesion molecules form the
c-SMAC while TCR form a ring of p-SMAC. This inverted
pattern is energetically unfavorable because of the negative
curvature of the membrane. Entropic reorganization (whereby
TCR moves to the c-SMAC and adhesion molecules move to
the p-SMAC) is therefore necessary to reduce the free energy
but this takes place over longer timescales (between 5 and
30 min).

The spatiotemporal coupling of TCR-pMHC interactions
with membrane fluctuations and rearrangements become even
more complex when considering the role of cytoskeletal
rearrangements in T-cell activation. Not only does the T-cell
membrane segregates its proteins to build the immunological
synapse,54 its whole cytoplasm does also get polarized by
recruitment of the microtubule organizing center (MTOC)
beneath the immunological synapse.62,63 This directed reor-
ganization of the cytoskeletal machinery toward the synapse
has important consequences for cell-to-cell communication
because it constrains cytotoxic release or cytokine commu-
nication to a limited space between cells that are in close
contact. Chemical disassembly of the cytoskeleton makes
lymphocytes strictly unresponsive to antigen activation,64 yet
this is not because of a block in cell-cell contacts as even
soluble crosslinking antibodies fail to activate T cells whose
cytoskeleton has been depolymerized.65,66 Work is starting to
dissect the subtle dynamics of feedback regulation between
T-cell signaling and cytoskeletal rearrangements. Early signal-
ing events that occur within microclusters of pMHC-TCR
contacts need to grow and fuse before they can generate the
critical mass necessary to trigger full activation.67,68 The role
of actin depolymerization in relaxing cell membrane and
allowing microcluster expansion has been well documented.69

Quantitative modeling will be necessary to integrate these
different aspects of feedback regulation between TCR signaling
and cytoskeletal rearrangement. One such model has been
proposed for B cells to pinpoint how cytoskeletal relaxa-
tion maximizes cell-cell contact by inducing cell spreading
and collecting larger amount of antigens for receptor
engagement.70

Note that synapse formation is only one aspect of T-cell
activation and that it does not necessarily correlate with
other functions (cytokine production, proliferation rates,
etc.). Other possible consequences of T-cell activation include
calcium influx, phosphorylation of key signaling proteins, etc.
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For example, cytotoxic responses (whereby T cells release
perforin and granzyme B to poke holes in targeted APCs) have
been found to be independent of synapse formation so other
modeling readouts are needed to understand T cell function as
pointed out in.60 Yet, the interesting physics involved in this
model of immunological synapse formation and the origin-
ality of the integrative approach followed by the Chakraborty
group are noteworthy.

9.16.3.4 Cell-to-cell Variability in T-lymphocyte Activation

Cell-to-cell variability in the expression level of proteins
and other molecular components plays a major role in shap-
ing the variability in the response of isogenic cells to the
same stimulus in many biological systems. For example,
it is well established that, in a clonal population of bacteria,
single cells exhibit a diversity of behaviors.71,72 Nongenetic
diversity plays an important role in the persistence of bacterial
infections.73 Important sources of phenotypic heterogeneity
are molecular noise in gene expression and signal transduc-
tion.74–77 Despite some advances,72,75,76,78–82 in most cases
the relationship between phenotypic heterogeneity and
function remains unclear or limited to the study of binary
systems. In the case of bacterial chemotaxis, one study by
Sourjik and co-workers explored the effect of noise in gene
expression on the exact adaptation property of the chemotaxis
system.83,84

In clonal populations of bacteria, for example, nongenetic
diversity can be advantageous because it allows some subset of
the population to survive temporary perturbations in the
environment without imposing long-lasting genotypic chan-
ges to the species.71,72,79,80 In addition to fluctuations in the
number of molecular components, behavioral variability of an
individual cell can also result from the stochastic fluctuations
that arise within a signaling pathway. This has been shown to
be the case in the classic bacterial chemotaxis system where the
behavioral variability of an individual cell adapted to a
homogeneous environment could be traced back to the slow
fluctuating kinetics of the adaptation reactions.85,86 These
various sources of fluctuations alter quantitative features of the
chemotaxis response such as response time, but interestingly
they do so without affecting the crucial capability of the cell to
adapt to background signal and therefore remain sensitive.29

This robustness of the bacterial chemotaxis system stems
directly from key aspects of the architecture of both the sig-
naling pathway29,87 and the organization of the genes on the
chromosome.88 Theoretical models have explored the rela-
tionship between robustness and fluctuations in bacterial
chemotaxis and have made predictions that were tested
experimentally, highlighting the extent of noisy adaptation,
and its functional relevance toward maintaining high sensi-
tivity in sensing chemical gradients.85,88,89

Because T cells undergo rapid clonal expansion, it is
expected that population of isogenic T cells will also exhibit
cell-to-cell variability in the levels of the many proteins that
mediate their responses to stimuli. The individual T cells
resulting from a clonal expansion therefore are likely to
exhibit some degree of individuality, even though their genetic
background is identical.

However, the concept of robustness in cell signaling has
not been thoroughly tested in T cells, despite its obvious
relevance to the basic function of the immune system: If naı̈ve
T cells, through variations of the number of their cytoplasmic
proteins, were to become hyporesponsive, then their ability to
detect pathogenic invasion would be impaired; if they were
to become hyper-responsive in relationship to the selection
threshold set in the thymus, then they could eventually trigger
autoimmune catastrophes (following activation by self-
derived pMHC). Thus, it would need to be established whe-
ther, indeed, ligand discrimination by T cells is intrinsically
robust (in the sense that it is not substantially affected by
naturally occurring variations in the levels of expression of
signaling proteins) or whether it needs to be constantly fine-
tuned in the periphery by feedback pathways evoked through
engagement of self-ligands.90,91

Using single-peptide counting to measure the dose-
response of T cells with quantal accuracy, Davis’s group has
reported experimental results pointing out how limited
the variability of the T-cell calcium response is (when inte-
grated over the first 20 min of contacts between T cells and
APCs).92–94 From their data, an upper bound for the coeffi-
cient of variation (defined by standard deviation divided by
mean) for the distribution of activation threshold (defined as
the number of ligands that T cells require to get activated) can
be estimated: CVthresholdo75%. In other words, one T cell and
its sister have a 95% chance of having similar activation
threshold within a factor of 10 in ligands. This is in fact a
very narrow distribution when considering how sensitive and
specific the TCR signaling machinery is.

However, T lymphocytes (like any other cells) cannot
control the levels of expression of its signaling components
better than the limits associated with noise in gene tran-
scription, translation, and degradation:95,96 even a clonal
population of T cells has a distribution of signaling compo-
nents with a large coefficient of variation. Typically, in the case
of SHP-1 (a key component of TCR negative feedback), the
coefficient of variation for the expression is 50% for T-cell
blasts:97 5% of cells will express twofold less than the average
and may be hyper-responsive because of this defect in negative
feedback (these cells could be autoimmune-prone), 5% of
cells will express twofold more than the average and may be
hyporesponsive because of this excess of negative feedback.

Hence the paradox that needs to be solved: While T cells
rely on the kinetics of signal transduction triggered by pMHC-
TCR interactions to reliably discriminate ligands based on
minute kinetic differences, it could be anticipated that cellular
variability in the expression levels of signaling proteins would
affect the dynamics of TCR transduction cascade toward
generating phenotypic variability. This variability would be
expected to compromise the reliability (robustness) of T cells’
self/nonself discrimination.

A possible solution would be to conjecture that the
TCR signaling network is essentially a ‘solid-state’ device98

whereby all diffusion steps in the enzymatic phosphorylation
or dephosphorylation reactions are nonlimiting, making the
enzymatic kinetics concentration-independent. This could
be achieved with large enzyme concentrations (kassociation

[enzyme]ckcatalysis) and/or with scaffolding of the enzyme
reactions. These two solutions, however, are not compatible
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with some observations on T-cell activation: TCR ligand dis-
crimination has been shown to be fine-tuned, in the sense
that, owing to downregulation of SHP-1 phosphatase42 or
MAPK phosphatase by mir181a microRNA,99 nonagonist
ligands can be turned into agonist ligands. This flexibility in
discriminating between ligands seems incompatible with the
notion of the TCR-signaling network relying on hard-wired
biochemical reactions to achieve robustness.

In fact, flexibility of T cells to adjusting their ligand
sensitivity and discrimination is a critical hallmark of
T-cell development100,101 or peripheral activation and home-
ostasis.90,102–104 As mentioned above, T lymphocytes must
undergo a developmental program in the thymus before being
released as naı̈ve T cells to the periphery (lymph nodes). Cells
entering the thymus as hematopoietic progenitors must pass
two selecting steps: Their signaling machinery is checked for
responsiveness against self pMHC presented by epithelial cells
in the thymus (absence of responsiveness induces death by
neglect, while proper responsiveness green-lights further dif-
ferentiation – so called positive selection); and over-respon-
siveness toward self pMHC induces apoptosis (during negative
selection). Ultimately, thymic differentiation leads to the
export of mature T cells whose signaling machinery is properly
‘wired’ as indicated by relevant modest level of signaling in
response to self-pMHC that is below some threshold that
would be ‘dangerous’ if permitted in the peripheral T-cell
pool. Practically, only T cells endowed with receptors of
intermediate affinity will pass the filters of positive/negative
selection.105–107 Thymic development is actually quite restric-
tive as only 2% of the progenitors survive positive/negative
selection to be released as naı̈ve lymphocytes in the periphery.

The role of self-derived or altered pMHC ligands in posi-
tive/negative selection has been well documented. In parti-
cular, it was shown that a particular T-cell clone could use
weak ligands to drive its positive selection, while being unre-
sponsive to this particular ligand in the periphery.108,109 For
negative selection, the presence of endogenous superantigens
in the thymus has been shown to drive the deletion of thy-
mocytes endowed with a specific Vb gene segment composing
the superantigen-interacting TCR.2 Selective modulation has
been shown to occur in ligand discrimination by differ-
entiating thymocytes, toward extinguishing responses to weak
ligands while not affecting responses to strong ligands.100,101

More generally, many groups have documented how the
manipulation of the pMHC repertoire presented by stromal
epithelial cells in the thymus alter both the probability of
positive/negative selection of specific T-cell clones in the thy-
mus as well as their responsiveness once released in the per-
iphery.52,110–113 Hence, T cells have been shown to tune their
responsiveness to ligands at different stages of differentiation,
and TCR signaling and ligand discrimination should not be
expected to be robust and inflexible.

Using computer modeling of the differential signa-
ling pathways activated by pMHC engagement (see Sec-
tion 9.16.3.2) was used to probe the effect of phenotypic
variation in the levels of expression of signaling proteins
involved in TCR signaling.97 A classical parameter scan for
varied levels of expression of signaling proteins predicted that
most were working at nondiffusion-limited rates: The enzyme/
substrate association step was so rapid compared to the

catalytic rates that exact levels of expression were not necessary
to maintain consistency in the signal transduction dynamics.

However, few signaling components were associated with
some variability in signal transduction upon in silico up- or
downregulation. In particular, TCR and CD8, as the receptor
and coreceptor initiating the signaling cascade, determined the
minimal number of ligands that are necessary to trigger TCR
signaling. Because of their direct binding to form a trimer, up-/
downregulating these receptors/coreceptors by a factor X
allowed the minimal number of ligands necessary to trigger
signaling to be down-/upregulate proportionally by the same
factor X. Hence TCR and CD8 can be characterized as pro-
portional or analog regulator of T-cell signaling.

On the other hand, the phosphatase SHP-1 (the main
negative feedback component in our model42) is activated
many steps downstream of ligand-receptor engagement. The
levels of expression of SHP-1 were found not to influence the
minimal number of ligands necessary to trigger T-cell activa-
tion, up to a critical level above which T cells cannot
respond.97 Hence, SHP-1 acts a digital regulator whose level of
expression controls whether TCR can trigger or not.

To test these computer predictions, a new methodology,
based on flow cytometry analysis, has been developed. With
this method, T-cell responsiveness (e.g., phosphorylation of
ERK MAP kinase) can be correlated with the endogenous
levels of protein expression (e.g., CD8 or SHP-1). All predic-
tions from the computer model were confirmed with CD8
acting as an analog regulator while SHP-1 acted as a digital
regulator. This study also emphasized the extent of variability
in the input/output function within a clonal population of
primary T lymphocytes.

Some aspects of the study of T-cell activation that benefited
from biophysical and computational approaches and insights
will now be reviewed. On a short timescale (o10 min), T cells
must recognize minute molecular differences in the antigens
that are presented to them, and decide between activation and
tolerance. This section emphasizes how quantifying the bio-
physics of ligand-receptor interactions and the dynamics of
the signaling response can account for ligand discrimination.
However, immune responses are of course organized on a
much longer timescales. In particular, one critical mechanism
to counteract the explosiveness of viral or bacterial infection is
to trigger a massive expansion of specific T cells (to eradicate
infected cells, annihilate extracellular pathogens, and orches-
trate the immune response). Section 9.16.4. focuses on this
aspect of the immune response.

9.16.4 T-Cell Proliferation and Differentiation

One of the hallmarks of immune responses is the explosive
proliferation of T cells to fight pathogenic infections. Indeed,
doctors routinely perform a tactile exam to check whether
neck lymph nodes are swollen in sick patients. Upon clearance
of the infection, the immune system must restore homeostasis;
hence the population of pathogen-specific clones undergoes a
massive contraction. In Figure 4, the measurements from Rafi
Ahmed’s group are reproduced. Here the number of specific
T-cell clones (responding to epitopes of the lymphocytic
choriomeningitis virus (LCMV)) is monitored during an
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infection with LCMV in mice.114 The number of T cells
expands by a factor of 105 within 3–7 days, and contracts back
by a factor of 100 over 1 month.

An important contribution of biophysicists and mathe-
maticians to immunology has been to devise strategies to
quantify this expansion/contraction dynamics. This issue is
particularly challenging due to the nonlinearity of the pro-
cesses at stake. But the functional significance of controlled
explosive proliferation cannot be underestimated since it is
critical to match the explosive expansion of simpler organisms
(e.g., viruses and bacteria).

The general approach to quantifying proliferation, survival,
and differentiation of T cells has been to fit mathematical
models of population growth and death directly to measure-
ments of division statistics of T cells. Typical model parameters
that can be extracted in this way are cell replication rates,
death rates, or moments of the distribution of cell cycle
duration within the population of cells. Once a model fits
the data reasonably well, it can be used as a quantitative
tool to study how these parameters vary as a function of
changes in experimental conditions (e.g., various stimuli,
dose-response, knock-outs, etc.). By treating T cells as logical
signal-processing machines26 and solving an inverse pro-
blem115,116 to extract information about proliferation and
differentiation, the hope is that the computation performed
by T cells in response to multiple signals can be deci-
phered.24,26 Note that this approach does not directly provide
information about the molecular mechanisms that are at play
during an immune response, but it can be used as a tool to
quantify the effects of molecular and genetic manipulations
on the system.

The experimental techniques and data that are used to
characterize the statistics of cell proliferation and differentia-
tion in populations of T cells will now be described. The
mathematical models used to fit the data and the main
insights for immunology derived from these fits will also be
described.

9.16.4.1 Experimental Characterization of T-Cell
Proliferation and Death

Characterizing proliferation, death, and differentiation in a
population of cells requires measuring the rates of cell divi-
sion and death. A widely used method is to pulse-label cells
with markers such as tritiated thymidine (thymidine labeled
with the radioisotope tritium117) and BrdU. These markers are
integrated into the DNA during DNA replication as substitutes
for thymidine.118 Specific labeling of BrdU using antibodies
conjugated to fluorescent markers then reveals the cells that
where actively replicating their DNA.119,120 Another DNA
label that is often used because it is safe for humans is
D-glucose labeling.121–125 Data from such experiments can be
conveniently analyzed using flow cytometry and have yielded
information about proliferation and death in T-cell popula-
tions both in vitro and in vivo (see review by Hellerstein
(1999)124). However, one drawback is that cells that have
undergone one division cannot be distinguished from those
that went through many rounds of replication. Thus this
technique provides little information about the number of
divisions performed by the cells in the populations. Also,
because labeling only happens when cells replicate their DNA,
the average death rate within a population cannot be extracted
from this type of data alone.126

This problem was solved by Lyons and Parish, who devised
a method to quantify cell growth and division that used flow
cytometric measurements of the fluorescent dye, CFSE.127,128

CFSE had been previously used to monitor cell migration
because it can be retained by cells for very long periods of time
without being transferred to neighboring cells.129,130 In an
experiment, cells are treated with the highly cell permeable
nonfluorescent carboxyfluorescein diacetate succinimidyl ester
(CFDA-SE). Once in the cells, the acetate groups are removed
by intracellular esterases yielding the fluorescent CFSE, which
crosslinks covalently with proteins and makes the cell labeling
very stable. The important difference with techniques that
label DNA is that CFSE will mark all cells based on their
protein content, regardless of if they are replicating their
DNA. In general CFSE ends up uniformly distributed in the
cells and upon division its intracellular concentration dilutes
twofold. It becomes, therefore, possible to measure death rates
and to classify cells by the number of divisions that they
have undergone since the beginning of the experiment. CFSE
labeling has been used both for in vitro and in vivo studies.
For the latter, however, cells are often labeled in vitro before they
are introduced to a host for in vivo monitoring. The reason
for this is that it is difficult to obtain a homogeneous labeling
of the cells in vivo and if the labeling is not homogeneous
at time zero then clear peaks cannot be distinguished in
the flow cytometric measurements, making the analysis more
problematic.126
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Typically, as many as seven or eight divisions can be
resolved before the level of fluorescence in individual cells
becomes indistinguishable from the background. Histograms
of CFSE levels obtained from flow cytometric measurements
in a growing population of cells usually exhibit multiple
intensity peaks, one for each division class (or cohort) i where
i is the number of divisions undergone by the cells within a
division class. The relative heights of the individual peaks
provides information about the probability for a cell to be in a
given division class at a given time point. These probabilities
depend both on the heterogeneity in cell cycle duration and
on the exponential doubling in the number of cells after each
divisions, which can be confusing. In order to separate these
two pieces of information, Gett and Hodgkin devised an ele-
gant graphical analysis that consists of dividing the integrated
CFSE intensity under the peak by 2i for each division class

i.25,26 Doing so removed the effect of the serial doubling and
provided information about how the original cells were dis-
tributed in the different division classes. Gett and Hodgkin
called this distribution the precursor cohort distribution (see
Figure 5).25,26

Many antigen-specific cytometric tools have been devel-
oped to track lymphocytes that are specifically involved in the
immune reaction to specific antigens (reviewed in Thiel et al.
(2004)131) opening new possibilities for the study of immune
responses using quantitative data analysis and mathematical
modeling.

Finally, cell division and death events can be recorded
directly by monitoring a population of cells using film and
microscopy as was done, for example, in studies of tumors and
fibroblasts,132–134 and for B cells.135 The advantage of this
approach is that it can provide information about single-cell

50

R
el

at
iv

e 
ce

ll 
nu

m
be

r

CFSE(a)

50

2.5 1.25

0.5
0.4
0.3
0.2
0.1
0.5
0.4
0.3
0.2
0.1
0.0

5
50
5
2.5
1.25

4

D
iv

is
io

n
(c

on
tin

uo
us

)

3
2
1
0

0 24 48 72 96 120
Time (h)

−1

0 1 2 3 4 5 6 7
Division number

8 0 1 2 3 4 5 6 7 8 9

P
ro

po
rt

io
n 

st
ar

tin
g 

ce
ll 

no

Time (h)
60
72
79
99

5

5 2.5 1.25

60

72

T
im

e 
(h

)

79

99

IL-2 (U ml–1)

(b) (c)

Figure 5 Quantitative analysis of the time for first division for T cells activated in vitro with crosslinking antibodies to their receptors, in the
presence of varied concentrations of IL-2. Reprinted from Figure 1 in Deenick, E. K.; Gett, A. V.; Hodgkin, P. D. Stochastic model of T cell
proliferation: A calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 2003, 170(10), 4963–4972,
with permisssion from The American Association of Immunologists.

404 Systems Immunology: A Primer for Biophysicists

Author's personal copy



dynamics and the degree of inheritance of death and division
behavior from mother to daughter cells.136

9.16.4.2 Mathematical Models of T-Cell Proliferation and
Differentiation

The basic procedure to extract information about cell pro-
liferation statistics from the data just described is to build a
mathematical model with biologically relevant parameters and
fit it to the data to extract parameter values. Because some a
priori information is required to build a mathematical model,
caution must be exercised in the interpretation of the results. As
with all inversion problems, extracting a ‘best’ model from the
data may not be possible. Often many models can fit the same
data in an acceptable manner and it is the collection of these
models that is the real solution to the inverse problem115,116

(and section 2 in Pilyugin et al. (2003)137). Inversion proce-
dures are nevertheless widely used in science and engineering:
For example, in seismology to extract information about sub-
surface structures from surface recordings; in astrophysics to
study physical processes taking places in stars from spectral
lines measurements; in biology to visualize protein structures
from spectroscopy. In all these cases prior information about
the physical properties of the material under study (rock,
plasma, amino acids chains) is used, together with the laws of
physics, to construct a mathematical model that describes the
dynamical response of the system when it is excited by a source
of energy (sound wave, light, radiations). In the case of T cells,
there is no set of universal laws that can be used to build a
model like in a physical system. Instead, proliferation and dif-
ferentiation behaviors are the result of a computation per-
formed by individual cells using their intracellular transduction
and gene regulation machinery.

Keeping these caveats in mind the models that have been
used in the literature to examine T cells population dynamics
will now be reviewed. Rather than taking a historical per-
spective simple ordinary differential equation (ODE) systems
describing homogeneous populations will be considered and
finishing with more complex models that attempt to extract
information about the heterogeneous behavior of individual
cells within a population.

9.16.4.2.1 Homogeneous birth-and-death models with
constant rates of birth and death

In the case of homogeneous populations, the simplest models
are random birth-and-death models in which the increase
(division) and decrease (death) in the number of cells per unit
time is proportional to the number of cells in the population
with rates of proliferation p and death d that are constant in
time and homogeneous across the population. In this case the
number of cells that have divided i times at time t is137–139

NiðtÞ ¼
ð2ptÞi

i!
e!2ptN0eðp!dÞt ½1(

Thus, the total number of cells varies exponentially with
the rate p–d

NðtÞ ¼
XN

i¼0

NiðtÞ ¼ N0eðp!dÞt ½2(

and the frequency distribution Fi(t), which describes the
probability that a cell pertains to the division class i at time t,
is Poisson distributed with mean and variance 2pt

FiðtÞ ¼ NiðtÞ=NðtÞ ¼
ð2ptÞi

i!
e!2pt ½3(

Such models and their variants have been widely used
to extract average proliferation and death rates from cell
populations labeled with BrdU, D-glucose, and CFSE in vitro
and in vivo (e.g., see Mohri et al. (2001),125 Asquith et al.
(2006),126 Revy et al. (2001),138 Veiga-Fernandes et al.
(2000),140 Bonhoeffer et al. (2000),141 Ribeiro et al. (2002),142

and Ganusov et al. (2005)143). When using birth-and-death
processes to extract information from data obtained with DNA-
labeling techniques, the rate of cell labeling must be taken into
account. By using data measured during and after the admin-
istration of, for example, BrdU, independent values for p and d
can sometimes be obtained.141

In the simple birth-and-death model above (eqn [3]) the
frequency distribution Fi(t) of cells in the division class i at
time t is independent of the death rate. Thus, the proliferation
rate p can be extracted directly from CFSE data, while the death
rate can be obtained by monitoring the fraction of live cells in
the culture.138 As mentioned earlier, rather than using the
frequency distribution Fi(t) to analyze CFSE directly Deenick,
Gett, and Hodgkin had proposed in a series of pioneer studies
to first divide the number of cells in each division cohort i by
the serial doubling factor 2i.25,26 The validity of the Gett and
Hodgkin method was later analyzed in detail using various
mathematical models in a series of theoretical papers.139,144

Following De Boer et al. (2006)139 the Gett and Hodgkin’s
approach using the simple birth-and-death model describe
above is illustrated. Dividing the number of cells in each
division cohort Ni(t) by the serial doubling factor 2i yields the
normalized number of cells ni(t)¼Ni(t)/2i in the i-th division
cohort:

niðtÞ ¼
ðptÞi

i!
e!ptN0e!dt ½4(

In this case, the total normalized cell number varies
exponentially with the death rate d

nðtÞ ¼
XN

i¼0

niðtÞ ¼ N0e!dt ½5(

and the frequency distribution of cells in the different division
class fi(t) now becomes the precursor cohort distribution; that
is the distribution of the original N0 cells over the division
classes, which is a Poisson distribution with mean and var-
iance pt.

fiðtÞ ¼ niðtÞ=nðtÞ ¼
ðptÞi

i!
e!pt ½6(

As can be seen from eqns [5] and [6], the advantage of this
approach is that, in principle, it allows estimates of the pro-
liferation rate p and for the death rate d by fitting them to CFSE
data to be extracted.
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9.16.4.2.2 Nonhomogeneous birth-and-death models with
distributed rates of birth and death

Although homogeneous birth-and-death models can be useful
to explore basic relationships between proliferation and cell
division and illustrate graphical methods of data analysis, they
are too simple to fit actual data. In fact, in order to fit their
data (CFSE-labeled naı̈ve CD4þ cells stimulated with anti-
CD3 and various combinations of IL-2, anti-CD28, IL-4, and
IL-12 costimuli) Gett and Hodgkin did not use a simple birth-
and-death process.25,26 The reason for that is that the pre-
cursor cohort distribution they observed was not Poisson but
rather log-normal (normal in their original study26). More-
over, most of the variability in division numbers appeared
to arise from the variability in the time to the first division
following stimulus. Accordingly in their original studies the
period before the first division was treated as special and
characterized with four parameters: The proportion of original
cells to ever enter the first division, a constant death rate, and
the mean and standard deviation of the log-normal (or nor-
mal) distribution of time to first division. In contrast the
subsequent divisions were assumed to take place in a deter-
ministic fashion. Two extra parameters were used to describe
these divisions: A constant cell cycle time and a constant rate
of death per division.25 In doing so Hodgkin and co-workers
contoured some of the main limitations of homogeneous
birth-and-death processes: The Poisson statistics and expo-
nentially distributed times with constant parameters, and the
assumption of homogeneity in the population.

9.16.4.2.3 Models of cell divisions with mitosis phases
(Smith-Martin model)

The exponential distribution of the time to divide from simple
birth-and-death models (Section 9.16.4.2.1) allows for the
possibility that a cell might divide unrealistically soon after its
birth. Instead experiments have shown that the duration of the
S, G2, and M phases of the cell cycle remain relatively constant
in comparison to the prereplicative phase G1.145,146 These,
and similar observations, prompted Smith and Martin to
propose that the life of a cell can be divided into two phases.
The first one, called the prereplication phase A, corresponds to
the G1 (or G0) phase of the cell cycle. Cells exit this A phase
stochastically to enter the deterministic replication phase or B
phase. The B phase corresponds to the S, G2, and M phases of
the cell cycle. In the original Smith-Martin model, cells in the
A phase have a constant probability to transit into the B phase.
Thus, the duration of the A phase is exponentially distributed.
The B phase, however, has a fixed duration D and therefore
enforces a minimal duration for the cell cycle.147

Several groups have used extensions of the classic Smith-
Martin model as a basis to improve on Deenick, Gett, and
Hodgkin’s approach and develop models with explicit time
delays to fit CFSE data.137,139,143,148–151 For example, De Boer
et al. (2006),139 De Boer and Perelson (2005),150 and Ganu-
sov et al. (2007)151 reanalyzed in detail Gett and Hodgkin’s
model and data. But rather than using a simple Poisson pro-
cess for the exit from the A phase, they extended the Smith-
Martin model by using log-normal and other asymmetric
distributions for the duration of the A phase. Doing so
improved the fit to the data (e.g., see Ganusov et al. (2005)143

and De Boer et al. (2006)139) and relaxed the simplifying

assumption of deterministic later divisions used in the study
of Deenick et al. (2003).25 A review of these different
approaches is available in Callard and Hodgkin (2007).152 The
main result from these studies was to provide a thorough
mathematical analysis of the benefits and limitation of Gett
and Hodgkin’s normalization method, which is important for
any immunologist who needs to analyze such data. These
efforts also led to the realization that multiple models might
fit the same data equally well, and that information extracted
in this way about death rate, for example, might not be reliable
without combining CFSE data with other measurements.
Finally it became clear that the cell-to-cell variability plays a
major role in these processes, and that the distributions of
time to divide and time to die are not fixed but depend on
time.

9.16.4.2.4 Heterogeneity within the clonal population
Numerous experiments have shown that the duration of the
cell cycle of the individual cells within populations of various
cell types exhibits a large variability.153 Originally, two alter-
native explanations were formulated to explain these differ-
ences in division time. On the one hand, Koch and Schaechter
proposed that there are intrinsic cell-to-cell differences in the
initial population that causes the asynchrony in division
times.154 On the other hand, Burns and Tannock155 and later
Smith and Martin147 thought that cells are homogeneous in
the resting phase and that asynchrony arises because the
transition to the proliferating phase is governed by a random
event that depends on external conditions and is independent
of other processes.

Several studies have incorporated cell-to-cell heterogeneity
within Smith-Martin models to fit CFSE data. For example,
following Cantrell and Smith156 and Gett and Hodgkin,26

many groups (e.g., De Boer and Perelson (2005)150 and De
Boer et al. (2006)139) treat the first division as special where
differences in time to divide between individual T cells is
assumed to be due to differences in the number of receptors
expressed by these cells.156 This is further complicated by the
fact that the number of receptors for the growth factor varies
greatly based on the strength of the activation (Feinerman,
2010, personal communication). Several studies also incor-
porated the possibility to have division and death rate being a
function of time137,139,149,151,157 (see also Callard and Hodg-
kin (2007)152).

9.16.4.2.5 Using general probability distributions of
proliferation and death rates

A recurrent problem with the fits of Smith-Martin models to
CFSE data has been that the quantities that are used to char-
acterize cell turnover are very much dependent on the
underlying model used for the cell dynamics. The resulting
difficulty in deciding which model fits better was clearly
pointed out by Pilyugin et al. (2003)137 and Leon et al.
(2004).158 Pilyugin and co-workers137 illustrate the problem
with two limit cases of the Smith-Martin model in which the B
phase is assumed to be infinitesimally short. For the first limit
case they used the birth-and-death model described above in
eqn [3]. For the other case they assumed that death only
occurred during the replication phase of the cell cycle (B
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phase) with probability f. In this case, the total number of cells
N(t) in the population still grows according to eqn [1] but
with the modified rate p(1–f) and the modified mean and
variance 2p(1–f) t of the Poisson distribution Fn(t). Thus both
models lead to the same distribution and therefore will fit
the data equally well. The problem is that the parameters
have different meanings in each model. So what is needed to
determine which one of these two is more relevant for the
biology?

The search for mathematical quantities that describe cell
turnover independently from an underlying model and the
apparent age-dependency of the death rate prompted several
research groups to formulate structured population models159

to describe CFSE data in which the division and death rates are
functions of the age of the cell.137,149 These models are
described in terms of a probability density ni(t, s) of cells of
age s that have completed i divisions at time t. The dynamics
of the system is governed by a partial differential equation137

(see also De Boer et al. (2006)139).

q
q t
þ q
q s
! piðsÞ þ diðsÞ½ (

! "
niðt; sÞ ¼ 0

With boundary conditions

n1ðt;0Þ ¼ RðtÞ

niðt; 0Þ ¼ 2

Z N

0
pi!1ðsÞni!1ðt; sÞds; i ¼ 2;3y

that stipulate the density of cells entering each division
class. For the first division it is simply given by the measured
density of cells completing their first division R(t). For the
other divisions i41, the number of cells entering a division
class is twice the total number of cells from the previous
division class that divided before the time t. In this formalism,
the total number of cells in division class i at time t is
NiðtÞ ¼

RN
0 niðt; sÞds. The key assumption here is that cell

division and death are random events that are independent of
each other and depend only on the age of the cell (and divi-
sion number i). Accordingly, the proliferation rate pi(s) and
death rate di(s) are determined by these probabilities. In
Pilyugin et al. (2003)137 the original work the proliferation
and death rates do not depend on the generation i (see also
Ganusov et al. (2005)143 for more details).

The dependency of p(s) and d(s) on i is an extension from
De Boer et al. (2006),139 which illustrates a general approach
in which the entire problem is formulated as a function of
arbitrary probability distributions of cell division times158 and
cell death times that are assumed to be independent of each
other.153,160–162 Support for the assumption of independence
between these two distributions is provided by Gett and
Hodgkin’s original CFSE experimental data.26 Hodgkin and
co-workers call the combination of independent cellular
machines that govern the time to divide and the time to die a
cyton.160,161 For each division class i they define a cyton that
consists of the distributions of time to divide fi(s) and to die
ci(s) and a parameter pFi that corresponds to the fraction of
cells from class i that will eventually divide in response to
the stimulation. The parameter pFi enables a distinction to be

made between the fate of lymphocytes before and after the
first division following stimulation. An important assumption
here is that, upon division, cells do not retain a memory of the
parent’s time to divide or die. Hodgkin and co-workers
developed a numerical procedure, the general cyton solver
(GCytS) that, given fi(s), ci(s), and pFi, calculates for each
division class i the number of cells dividing or dying per unit
time at time t. This approach allows them to explore the effect
of choosing different type of distributions for the times
to divide and die rapidly160 (see also Callard and Hodgkin
(2007)152).

An alternative is to follow the approach in Leon et al.
(2004)158 to generalize the Smith-Martin cell-cycle model by
considering log-normal and gamma distributions for the
duration of the A phase.162 Analytical solution for the number
of cells in each division class as a function of time can be
obtained. Perelson and co-workers further show that an ana-
lytical solution can also be obtained using the cyton approach
and that the latter is consistent with the numerical solution of
the generalized Smith-Martin model. They apply these models
by fitting simultaneously CFSE data and data obtained from
pulse labeling cells with radioactive thymidine, which pro-
vides information about the distribution of times to the first
division.153

9.16.4.2.6 Branching processes
CFSE data have also been analyzed using branching processes
and a likelihood-based approach to fit the parameters to the
data.157 In this approach, cells are assumed to be independent
and to divide, survive without division, or die according to the
probabilities Gi(t), di(t), and 1–Gi(t)–di(t), respectively. These
transition probabilities can be different for each division class
and can depend on time. The state of the system is recorded as
a vector of random variables Zt¼ (Z0

t ; Z1
t ; Z2

t ;yZn
t ) where Zi

t

are random variables corresponding to the number of live cells
that have divided i times at time t. Cells are advanced in time
in discrete steps by simply applying a transition matrix Mt (a
tridiagonal nþ 1 by nþ 1 matrix function of Ui(t) and di(t))
onto the initial state Z0. The discreteness of the steps provides
a lower bound for the time to divide or die, unlike the con-
tinuous time analog that exhibits exponentially distributed
times. This framework allows the easy calculation of two
useful quantities: The expected cell count at time t is then
ðZt9Z0Þ ¼ Z0

Qt!1
j¼0 Mj, which in the case of constant transition

probabilities simply reduces to EðZt9Z0Þ ¼ Z0Mt ; and the
covariant matrix Vt of cell counts in each generation at time t.
Using the expectation E(Zt9Z0) and the covariant matrix Vt a
quasi-likelihood estimation method can be used to extract the
model parameters from CFSE data. What is useful is that the
method used by Yates et al. immediately provides confidence
intervals for the parameter values extracted from the data,
which is important for discriminating between models. The
branching process formalism also makes it easier to calculate
higher moments of the distributions using generating func-
tions (see Yates et al. (2007)157 for more details). These
properties have been used by Subramanian et al. (2008) to
recast the cyton model into a branching process and extract
information about the variability of the immune response to
mitogenic signals.161
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9.16.4.2.7 Mechanistic models and agent-based
simulations

The focus of most of the models described in this chapter so
far was to reproduce the correct statistics of death time, divi-
sion time, and differentiation time as a function of time and
division during lymphocyte proliferation and contraction
dynamics. Fitting these models to data can then provide
information on the dynamics of the regulation of these pro-
cesses by the cells during the immune response. A major
problem, however, is that multiple models can in general fit
the same data. Moreover, cell division and death are modu-
lated by intracellular mechanisms in response to external
signals from self and other cells. Thus, to go further,
mechanistic models must be formulated that connect the
observed statistics of proliferation to molecular events and
signaling. ODE models have been used, for example, to
compare antigen-independent mechanisms of T-cell regula-
tions such as autoregulation, pararegulation in which cell-to-
cell communication occurs via cytokine signaling or via cell
contact, and APC regulation via cell contact.163

Another possibility is to use an agent-based simulation
approach. Advances in agent-based simulation86,164 and rule-
based modeling of biochemical reactions165,166 is opening the
possibility to connect the inside of a computer intracellular
molecular mechanism to individual cells and population
behavior. Agent-based modeling offers a natural approach for
studying how molecular mechanisms shape a heterogeneous
distribution of cell phenotypes. Agents are distinct computa-
tional objects representing individual cells or molecules whose
behaviors depend on their internal states and interaction rules
between them. The state of cells is determined by simple
logical rules that can represent decision to divide, die, etc.
based on external and internal states. Such approaches have
been used to model complex social problems and in immu-
nology, for example, to model cytotoxic T-cell responses.167

It is also possible to represent the internal biochemistry
using standard ODE and stochastic solvers. This approach
rapidly becomes impractical as the complexity of the intra-
cellular systems increases due to the large combination of
possible molecular interactions that need to be tracked using
standard solvers (the combinatorial explosion problem168).
To solve this problem a rule and agent-based simulator,
NFsim, has been developed.166 For many complex systems,
the stochastic algorithm of NFsim offers significant compu-
tational speedups of several orders of magnitude over standard
approaches. Moreover, NFsim facilitates the coarse-graining of
biological models by expressing reaction rates as arbitrary
mathematical functions of the local environment or state of
individual molecules. These developments in agent-based
modeling should allow future progress in elucidating the
molecular mechanisms leading to T-cell proliferation and
differentiation.

9.16.4.3 What Has Been Learnt About T-Cell Proliferation
Using Mathematical and Computational Models

Early experiments on cell proliferation147,169 combined with
mathematical models147,154,155 established that cell-cycle
times within a population exhibit a large variability that arises

mostly during the G1 phase of the cell cycle. The origin of this
variability, however, remained the subject of debate.158,170 In
the case of T-cell proliferation, the development of a method
to synchronize IL-2R-positive T cells by Cantrell and Smith
allowed the examination of the role of IL-2 in determining
T-cell proliferation.156,171 The conclusion of these pioneer
studies was that three factors are critical for T-cell cycle pro-
gression: IL-2 concentration, IL-2R receptor numbers, and the
duration of IL-2 receptor interaction. Based on these findings
Cantrell and Smith proposed that the heterogeneity in cell-
cycle times of T cells is the direct consequence of a log-normal
variability in the expression of IL-2 receptors on the surface of
these cells.156,171 Direct confirmation at the molecular level of
this conjecture came with the quantitative measurement of the
heterogeneity of STAT5 phosphorylation (as the signaling
response triggered by IL-2 receptor engagement) based on the
levels of IL-2R subunits. Researchers need to come to terms
quantitatively with the phenotypic variability of lymphocytes
(from cell signaling to cell-cycle progression): This hetero-
geneity can be limiting when accurate self/nonself dis-
crimination is to be enforced, but it can also be critical as a
source of adaptability or diversification to match any patho-
genic escape route (via mutation, relocation, or others routes).

CFSE has enabled quantitative studies of the cell-cycle pro-
gression in a population of lymphocytes (Section 9.16.4.1).
Gett and Hodgkin took advantage of this technique to
analyze proliferation of naı̈ve CD4þ cells stimulated with
anti-CD3 at saturating amounts of IL-2.26 Confirming the
earlier Cantrell and Smith study, they found that most of
the variability in division numbers arises from the variability
in the first division time. Next they asked how a T cell
might integrate information from various stimuli. They
stimulated T cells with various combinations of anti-CD28,
IL-4, and IL-12 and fitted the data into their model (see
Section 9.16.4.2.2) looking for changes in the parameter
values of the model. They found that stimulation with anti-
CD28 or IL-4 reduced the time to first division, but that anti-
CD28 left the rate of subsequent division unchanged, whereas
IL-4 accelerated the subsequent cell cycles. IL-12 had no effect.
Interestingly, when IL-4 and anti-CD28 were added together
their effects on division time were additive. Thus, several co-
stimuli could have additive effects on T-cell-cycle duration
ultimately leading to large differences in population sizes
without invoking obligatory stimuli. These results suggested
that T cells perform some sort of cellular calculus and that no
stimulus is obligatory in contrast with the two-signal theory of
T-cell activation172–174 (reviewed in Baxter and Hodgkin
(2002)24).

In a subsequent study, Hodgkin and co-workers examined
what happened in the presence of smaller nonsaturating
concentrations of IL-2 (0.6–50 U ml!1).25 Fitting the new data
required augmenting the original four-parameter model with
two new parameters and replacing the Gaussian distribution
of time to first division with a log-normal distribution, con-
sistent with Cantrell and Smith’s original experiments.156,171

The main finding was that the proportion of cells that entered
the first division (first new parameter), but not their time of
entry, strongly increased for increasing IL-2 concentrations.
The survival rate (second new parameter) and the division rate
after the first division decreased with increasing IL-2.25
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In these studies, mathematical models played two impor-
tant roles. On the one hand, they were essential to fit the data
and extract biologically relevant information. On the other
hand, they enabled Get and Hodgkin to illustrate quantitatively
how a cellular calculus might be taking place inside individual
T cells that integrate information from multiple stimuli
into minute variations in their proliferation, differentiation,
and death rates. The cumulative effect of these small varia-
tions eventually yields important changes in the population
dynamics.175 Gett and Hodgkin summarized this hypothesis in
what they called the law of independence: The likelihoods to
divide, survive, die, or differentiate operate independently
within an individual cell and can be described by probabilistic
functions. The law of independence strongly contrasted with
the two-signal theory172,173 that had been dominating the field
since the 1970s (for a review see Baxter and Hodgkin (2002)24).

Hodgkin and co-worker’s pioneering studies prompted
several theoretical studies of the same data with increasingly
refined models, as well as new studies that used a similar
combination of experiments, data analysis, and modeling
(e.g., Pilyugin et al. (2003),137 Bernard et al. (2003),149 De
Boer and Perelson (2005),150 Ganusov et al. (2005;143

2007151), De Boer et al. (2006),139 Yates et al. (2008),176

Schlub et al. (2009);177 see also review by Callard and
Hodgkin (2007)152). An important result that emerged from
these studies was the realization that IL-2 might regulate the
expansion of CD4þ T cells by modulating the death rate
within the population.151 To arrive at this conclusion, models
that account for the dependency of the proliferation and death
rates on the age of the cell were used.22,137,150,139,158

Although the models for T-cell proliferation and death are
reviewed here, this framework could be applied to B-cell
proliferation or even proliferation of other cell types.

The following picture of T-cell proliferation emerges from
these in vitro studies:

1. Only a subset of the original cell population enters the first
division. The likelihood that a cell will enter the first
division depends on various factors, such as activation
strength and duration, source, and type of cells. Because
this time before the first division appears to be different
from subsequent divisions, separate models, or at least
model parameters, must be used to describe it.

2. The main source of asynchrony in the population stems
from the variability in the time to the first division, which
exhibits an approximate log-normal distribution. The ori-
gin of this distribution remains unclear. One possibility is
that it results from the log-normal distribution of IL-2
receptors expressed in populations of T cells.156,171 Inter-
estingly, a larger IL-2 stimulus yields a larger proportion of
original cells that undergo division, but does not affect the
mean time to enter the first division (although it reduces
the standard deviation of the distribution).

3. Following the first division, T cells undergo a finite number
of divisions (B6–10). In each round of the cell cycle, cells
go through a relatively deterministic B phase (in the Smith-
Martin sense) of replication (S, G2, M) that requires a
minimum of time to complete before entering the pre-
replicative A phase. Exit from the A phase into the B phase
is stochastic with a fixed timescale.

4. In in vitro studies, the distributions of time to divide and
time to die in each division class are approximately log-
normal or gamma and seem to be relatively independent
of each other. For these subsequent divisions, the death
rate increases with the number of divisions undergone by
individual cells. IL-2 has minimal effect on the mean
division time but it does increase the rate of cell death with
the number of division rounds.

Studies have highlighted how heterogeneous cellular
responses can be. For example, in the case of the response
to TRAIL signals (a tumor necrosis factor (TNF)-related
apoptosis-inducing ligand), hepatocarcinoma cells undergo
apoptosis with varied time and frequency.136 In the case of
lymphocytes, short-term (o10 min) signaling responsiveness
to antigenic ligands can vary by more than 105 within a clonal
population of T cells.97 In this example, the origin of the
variability was partly traced back to the variable levels of
expression of two key signaling regulators (the co-receptor
CD8 and the phosphatase SHP-1). In the context of modeling
cell proliferation, this signaling heterogeneity will result in
variability in the time of first division and may shape the
further proliferation and differentiation. In particular, work by
the Reiner and co-workers (Chang et al. (2007)) has demon-
strated how T lymphocytes may undergo asymmetric cell
division at the onset of an immune response: Naı̈ve cells
generate two very different daughter cells, one stays engaged
with the APCs and keeps a large quantity of receptors engaged
in the immunological synapse (e.g., TCR, CD8, LFA-1) while
the second one buds off and is not endowed with large levels
of activating receptors.31 These two daughter cells undergo
very different fates: The first (receptor-rich) cell proliferates
rapidly, gains effector function, and ultimately disappears by
apoptosis. The later (receptor-poor) cell is essentially quies-
cent, does not undergo further cell division, and becomes a
long-lasting memory cell. Hence, a clonal population of T cells
can have very different fates and proliferation capabilities.

Most strikingly, this functional diversification may con-
tinue for many generations, indicating how signaling varia-
bility on short timescales may imprint T cells with inherited
heterogeneity and long-term variation in fate. This will need to
be documented at the molecular level, but, already, Hodgkin
and colleagues have probed this functional inheritance in the
case of dividing B lymphocytes: They monitored individual
B-cell proliferation responses and demonstrated how sister B
cells (i.e., cells originating from the same progenitor) were
strongly correlated in their division and death rates. Hence,
there exist inheritable signals that shape the proliferation of
lymphocytes. These new observations will need to be inte-
grated in future models of lymphocyte proliferation.

9.16.5 Conclusion

This chapter presented different challenges for biophysicists
studying the immune system. A few classical problems in
immunology have been presented that would benefit from
fresh approaches beyond genetics and cellular immunology.
In particular, how immunology is, at its core, a ‘number’
game: T lymphocytes can respond to antigens with exquisite
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specificity despite quantitatively minute differences, and trig-
ger qualitatively varied responses that are matched to the
pathogenic challenges. The amplitude of lymphocyte pro-
liferation is critical to mount an effective defense against
pathogenic onslaught. As quantitative techniques are becom-
ing more widespread, new challenges are emerging to under-
stand the immune system.

Modeling immune responses thus becomes a critical tool
to account for the emergence of self-organized responses in
the immune system. As pointed out by May,30 modeling
biology benefits from the molecular understanding of the
underlying nonlinearity of the system. In addition, the gen-
eralization of quantitative measurements in immunology will
bring the experimental parametrization that is so critical in
the generation of falsifiable models. In turns, biophysicists
will find the immune system to be very amenable to study
(experimentally and theoretically), as one system of scalable
complexity.
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