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Abstract
Understanding how stochastic molecular fluctuations affect cell behavior requires the quan-

tification of both behavior and protein numbers in the same cells. Here, we combine auto-

mated microscopy with in situ hydrogel polymerization to measure single-cell protein

expression after tracking swimming behavior. We characterized the distribution of non-

genetic phenotypic diversity in Escherichia colimotility, which affects single-cell exploration.

By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different lev-

els, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using

thousands of single-cell measurements. Our results disagreed with established models

until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in

receptor methylation. Beyond refining models, our central finding is that changes in num-

bers of CheR and CheB affect the population mean tumble bias and its variance indepen-

dently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population

by adjusting the global level of expression of CheR and CheB while keeping their ratio con-

stant, which, as shown in previous studies, confers functional robustness to the system.

Since genetic control of protein expression is heritable, our results suggest that non-genetic

diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity

confers a selective advantage.

Author Summary

Cell-to-cell variations in protein numbers due to random fluctuations at the molecular
level lead to cell-to-cell variations in behavior. To maintain predictable responses, signal-
ing networks have evolved robustness against noise, but in some situations phenotypic
diversity in a clonal population can be beneficial as a bet hedging or division of labor strat-
egy. Investigating of how randommolecular fluctuations affect cell behavior requires to
measure biological parameters at different scales. Here, we report a new experiment that
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allows the measure of both protein numbers and behavior in cells that are free to move in
their environment. Using Escherichia coli, a model system for the study of cellular behav-
ior, we investigated the effects variations in the numbers of the chemo-receptor modifica-
tion enzymes on single-cell swimming behavior. We found that the mean and variance of
the behavior can be adjusted independently in the population by adjusting protein expres-
sion. This mechanism allows for the genetic selection of phenotypic diversity without dis-
rupting correlations in protein expression that are important for the overall robustness of
the chemotaxis system.

Introduction
Cell behavior is controlled by biochemical signaling networks. Because network dynamics
depend on the number of each protein involved, the dynamical and functional properties of
signaling pathways—and ultimately cell survival—are sensitive to random fluctuations in pro-
tein numbers. Such fluctuations are expected because the molecular components of signaling
pathways are typically present in small numbers [1]. Various mechanisms that cause molecular
fluctuations have been identified, including stochastic protein expression or unequal partition-
ing of components between daughter cells [2,3].

Selective pressure to maintain robust performance against inherent molecular fluctuations
is likely to have played a significant role in the evolution of biological networks [4–7]. In fluctu-
ating environments, however, non-genetic phenotypic variability can be an advantageous strat-
egy for clonal populations raising the possibility that the distribution of different phenotypes
within the population has a functional role beyond the mean phenotype [2,8–13].

Investigating how variability in protein number controls the distribution of cell perfor-
mances requires experiments that can measure both behavior and protein numbers in individ-
ual cells. At the same time, accurate characterization of the distribution of protein numbers,
phenotypes, and performances in a population requires high-throughput experiments to
obtain sufficient statistics. Fluorescent reporters paired with video-microscopy or flow cytome-
try have enabled the detailed characterization of phenotypic variability and cellular response
dynamics in many systems [1,14–19]. Microfluidics have given substantial control over experi-
mental conditions, allowing researchers to probe single-cell responses to perturbations over
extended periods of time [20–26]. However, due to the relatively long exposure times required
to measure fluorescence signal from a small number of molecules, current experimental tech-
niques are fundamentally limited by the requirement that cells to be stationary, making it diffi-
cult to correlate fluorescent reporters directly with cell behaviors in the same cells.

We developed a high-throughput experimental method, FAST (Fluorescence Analysis with
Single-cell Tracking), to correlate directly the individual behaviors of freely swimming cells
and the numbers of proteins in the signaling pathway of each cell. FAST overcomes the con-
flicting requirements of tracking cell motile behavior over a large field of view with fluorescence
imaging of stationary cells at high magnification. FAST uses in situ hydrogel polymerization to
‘freeze’ cells in place after the tracking period to allow automated single-cell fluorescence imag-
ing. Therefore, the navigational performance of individual cells, such as exploration of an envi-
ronment, was directly measured as a function of long-term motile behavior and intracellular
protein numbers.

Here, we demonstrate FAST on the chemotaxis pathway of Escherichia coli, a model system
for the study of cellular behavior. Motile E. coli cells explore their environment by alternating
periods of relatively straight swimming (runs) with brief changes of direction (tumbles).
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Tumbles are caused by a reversal of the flagellar motor rotation from counter-clockwise to
clockwise direction. The activity of the chemotaxis receptor cluster controls the frequency at
which the cell tumbles by controlling the kinase activity of CheA, which phosphorylates the
response regulator CheY. The probability to tumble—the tumble bias—increases when the
phosphorylated form of CheY (CheY-P) binds the motor. The kinase activity decreases when
the receptors bind attractant. As a result, the CheY-P concentration is decreased by the consti-
tutive phosphatase CheZ and the tumble bias is reduced. If attractant concentrations remain
steady, tumble bias returns to pre-stimulus level due to the activity of CheR and CheB. CheR
methylates inactive receptors, which increases the activity of the kinase, whereas CheB demeth-
ylates active receptors, reducing kinase activity [27]. Theoretical studies predict that this resting
tumble bias is an important determinant of the chemotactic performance of E. coli and that the
fitness of a population of cells might depend not only on its mean tumble bias but also on the
population variability in tumble bias [12,13].

Early studies revealed a substantial amount of cell-to-cell variability in the motility behavior
of clonal cells adapted to a uniform environment [28,29]. However, the molecular origin and
functional consequences of this variability remain unclear. Because CheR and CheB are
engaged in a futile cycle of methylation and demethylation of the chemoreceptors, the balance
between the actions of CheR and CheB is an important factor in determining the resting activ-
ity of the receptor cluster [27]. Consequently, variations in the numbers of CheR and CheB are
expected to affect the tumble bias of single cells. How changes in the levels of expression of
CheR and CheB affect the distribution of the tumble bias in a clonal population of cells is
unknown. It also remains unclear if the mean and the variance of the tumble bias distribution
can be controlled independently from each other. Here, we examine these questions experi-
mentally by quantifying in vivo how variations in the numbers of CheR and CheB in single
cells shape the distributions of swimming phenotypes and exploration capabilities E. coli.

Results

Cell-to-cell variability in motile behavior within a clonal population of E.
coli cells
We recorded trajectories of freely swimming cells to determine the distribution of swimming
phenotypes in an isogenic population. Following established protocols, E. coli RP437 cells were
grown to mid-exponential phase in minimal medium then suspended in motility buffer in
which the motile behavior remains constant for more than one hour and identical to the behav-
ior observed in the growth medium (S1 Fig) [30]. Therefore, the characterization of single-cell
motile behavior was done without confounding effects from cell growth or protein turnover
(Methods). Cells were imaged at low-density using phase contrast microscopy at 10X magnifi-
cation in an isotropic liquid environment. Individual trajectories were reconstructed over a
large field of view using a multiple-particle tracking algorithm [31] to enable the quantitative
characterization of individual cell behavior (Fig 1A, S2 Fig). We constructed a probabilistic
model using the instantaneous velocity, acceleration, and angular acceleration to describe the
behavior of each cell along their trajectories and identify tumbling events (Fig 1B, S3A and S3B
Fig). We then calculated the tumble bias (defined as the time spent tumbling over the total tra-
jectory time) of each cell. The average cell behavior obtained from more than 6,000 cell trajec-
tories was consistent with previously published, population-averaged results from E. coli
RP437 cells. Specifically, the average tumble bias was 0.24 (Fig 1C) with an average swimming
speed of 33 μm/s (S3D Fig) [29,32,33].

Single-cell trajectories revealed the variability in behavior within the isogenic population.
The distribution of tumble biases was unimodal with mode at 0.2 and a standard deviation of
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0.093 (Fig 1C). These values are consistent with the previously reported distribution of single
flagellar motor biases from tethered cells [29] and taking into account the effect of multiple fla-
gella that increases the cell tumble bias relative to the clockwise bias of single motors [34,35].
As expected, we observed very few cells with tumble biases outside the 0.1 to 0.4 range because
the robust architecture of the chemotaxis pathway ensures that the population tumble bias is
maintained within a functional range [7,36–40]. However, our experiment shows that there is
still substantial phenotypic diversity among cells consistent with prior observations [28].

Phenotypic variability in tumble bias and swimming speed can result in large differences in
how efficiently cells explore their environment. We calculated the diffusion coefficient of each
cell by simultaneously fitting the mean square displacement and the velocity autocorrelation
(S3E, S3F and S3G Fig) of the trajectories to the Green-Kubo relations [41,42]. This analysis
revealed that the effective diffusion coefficients of individual cells vary over more than one
order of magnitude within the isogenic population in spite of the pathway robustness (Fig 1D).

Controlling motile behavior using fluorescently labeled CheR and CheB
The tumble bias of individual cells is determined in part by the numbers of the two receptor
modification enzymes: CheR and CheB [12,29,38,43]. It has been previously observed that
ectopic expression of CheR increases the cell tumble bias on average [29,38]. Transcriptional
and translational coupling in the expression of CheR and CheB provides robustness to the sys-
tem against uncorrelated stochastic fluctuations in protein numbers to maintain good chemo-
tactic performance [7,44]. In addition, because of the slow exchange of the modification
proteins between the cytoplasm and the cluster of receptors, the numbers of CheR and CheB
affect signaling noise, which results in slow fluctuations of the cell tumble bias [29,45,46]. To
understand the consequences of variations in the numbers of CheR and CheB on the swim-
ming phenotype of E. coli, we sought to make a detailed quantitative map of motile behavior as
a function of protein numbers.

We genetically constructed the fluorescent protein fusions CheB-mYFP and mCherry-
CheR, which have been previously shown to be functional proteins [47]. To explore a large
dynamic range of absolute protein expression and CheR to CheB ratio, the gene constructs
were placed under the control of two independent inducible promoters on the chromosome in
a strain lacking both the native cheR and cheB genes (Fig 2A). The separate transcriptional

Fig 1. Measuring phenotypic diversity in motile behavior of E. coliRP437. (A) Representative trajectories of cells swimming in a liquid environment
recorded using phase contrast microscopy at 10X magnification in a pseudo-2D environment. (B) Example of a 60 seconds single-cell trajectory where
detected tumbles are marked with red dots. (C) Probability distribution of cell tumble biases in the isogenic population. (D) Probability distribution of
individual cell diffusion coefficients (Deff) in the population. The distributions were calculated from about 6,000 individual trajectories combined from three
independent experiments.

doi:10.1371/journal.pcbi.1005041.g001
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regulation of the two genes allowed for the control of both the absolute numbers and the ratio
of CheB-mYFP and mCherry-CheR (Fig 2B and 2C, S4 Fig). The fluorescence intensities per
molecule of CheB-mYFP and mCherry-CheR was calibrated using quantitative immunoblot-
ting and single-cell fluorescence microscopy [48], following a previously described method
[49]. The fluorescence intensity per fluorescent protein was calculated using a Bayesian regres-
sion analysis (Methods and S5 Fig).

We used the mutant strains to create different populations with widely different distribu-
tions of tumble bias (Fig 2D, S6 Fig and S7 Fig). Consistent with previous work that measured
average population behavior, the tumble bias distribution of cells increased with higher expres-
sion of mCherry-CheR and decreased with higher expression of CheB-mYFP, which has antag-
onistic activity to CheR [29,38,43,50]. The observed variability in protein expression and
motile behavior within the population for each induction level is substantial despite the fact
that each gene is expressed from a single chromosomal locus (Fig 2D, S6 Fig and S7 Fig).
Although CheR and CheB expression in the mutant strains is different from the wild type regu-
lation, the results illustrate in general how phenotypic diversity can be altered through changes
in the activity of single promoters.

Direct mapping of swimming phenotype to proteins numbers
The FAST protocol relies on the immobilization of cells in a hydrogel, which is polymerized in
situ, after tracking motile cells. We first mixed cells washed with motility buffer with a hydrogel
precursor solution that contained polyethylene glycol diacrylate (PEGDA) and a photoinitiator
(LAP) [51]. The presence of PEGDA and LAP did not affect motile behavior beyond a small
reduction in swimming speed (S1 Fig). Swimming was recorded at 10X as described above for
5 minutes (Fig 3A). A flash of violet light was delivered through the microscope objective to
activate the photo-initiator and trigger rapid hydrogel polymerization over the entire field of
view. Cells were immobilized within 1 second and their coordinates were registered by process-
ing the real-time image from the camera. After switching the microscope configuration for
fluorescence imaging at 100X magnification, each cell was automatically located by a motorized
stage and imaged in phase contrast and three fluorescence channels (Fig 3B). An average of

Fig 2. Controlling motile behavior using fluorescently labeled CheR and CheB. (A) Diagram representing a mutant strain derived from E. coli
RP437 ΔcheRcheB expressing fluorescent protein fusions from inducible promoters recombined in the cell genome. (B) Distributions of red
fluorescence intensity from single-cell epi-fluorescence microscopy from the differential inductions of mCherry-CheR with rhamnose (in light) or IPTG
(in dark). (C) Distributions of yellow fluorescence intensity from single-cell epi-fluorescence microscopy from the differential inductions of CheB-mYFP
with rhamnose (in light) or IPTG (in dark). (D) Distributions of single-cell motile behavior resulting from high expression of mCherry-CheR relative to
CheB-mYFP (in dark) or high expression of CheB-mYFP relative to mCherry-CheR (in light).

doi:10.1371/journal.pcbi.1005041.g002
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200 cells was imaged in less than 40 minutes for each experimental trial. The fluorescence sig-
nal from each cell did not change significantly as a function of time during the single-cell imag-
ing phase indicating that the fluorescent protein fusions are stable when the cells are trapped in
the hydrogel (S8 Fig). Therefore, the measured single-cell fluorescence corresponds to the
number of proteins present while the cells were swimming. Finally, cells trajectories were
matched to fluorescence images in order to map motile behavior to proteins numbers in single
cells.

We combined measurements from several experiments in which different combinations of
inducer concentrations were used with the two fluorescent strains to produce a wide range of
phenotypes, with cells expressing the labeled proteins over three orders of magnitude and tum-
ble bias ranging from 0 to 0.6. We mapped tumble bias to the number of mCherry-CheR and
CheB-mYFP for more than 5,000 individual cells (Fig 3C). Tumble bias increases with higher
numbers of mCherry-CheR and decreases with lower numbers of CheB-mYFP, consistent with

Fig 3. Mapping swimming phenotype to mCherry-CheR and CheB-mYFP numbers. (A) Representative
trajectories of cells swimming in the non-polymerized hydrogel recorded using phase contrast microscopy at 10X
magnification. (B) Examples of cells imaged using automated epi-fluorescence microscopy at 100X in three channels
after cells were trapped in the polymerized hydrogel. (C) More than 4,000 cell trajectories were matched to
fluorescence images to map the cell tumble bias of each cell as a function of mCherry-CheR and CheB-mYFP
numbers. (D) The effective diffusion coefficients (Deff) of individual cells as a function of mCherry-CheR and CheB-
mYFP numbers. Multiple experiments using cells treated with different concentrations of inducers were combined.

doi:10.1371/journal.pcbi.1005041.g003
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population measurements. We verified that the phenotypes showed no correlation with the
constitutively expressed mCFP protein that was not fused to any of the native E. coli proteins
(S9 Fig). The uneven sampling of CheR and CheB (Fig 3C) is due to bistability of the activity of
the rhamnose promoter that was used to control protein expression. We also mapped the indi-
vidual diffusion coefficients to mCherry-CheR and CheB-mYFP numbers (Fig 3D). Because of
the large range of protein expression in this experiment, the individual cell diffusion coeffi-
cients span four orders of magnitude. This variability is larger than what was observed in the
wild-type population (Fig 1C), indicating that the natural cell-to-cell variability in CheR and
CheB numbers is constrained to a range smaller than the artificially induced conditions. As
expected, the relationship between the cell diffusion coefficients and protein numbers (Fig 3D)
mirrors the relationship obtained from characterizing the cell tumble biases (Fig 3C). Because
the value of diffusion coefficient calculated from a trajectory does not rely on tumble detection,
this analysis provides additional support for the observed effect of variations in protein num-
bers on behavior.

The mean and the variance of the tumble bias are affected in different
ways by changes in mCherry-CheR and CheB-mYFP numbers
Together, the single-cell data provide a direct mapping of protein numbers to swimming phe-
notype with unprecedented detail over a large range of protein numbers. We first examined
how CheB-mYFP and mCherry-CheR control the mean tumble bias by performing a local lin-
ear regression fit of the single-cell tumble bias (Fig 4A). The relationship between mean tumble
bias and the logarithm of the CheB-mYFP and mCherry-CheR numbers has the characteristic
feature of diagonal contour lines of increasing tumble bias, qualitatively indicating that tumble
bias depends more on the ratio than the absolute number of these proteins. This trend was
expected since CheR and CheB have antagonistic effects on kinase activity by participating in a
futile cycle of methylation and demethylation of the chemoreceptors. However, the tumble bias
appears to be more sensitive to changes in CheB-mYFP numbers than mCherry-CheR num-
bers. For example, changing the tumble bias by 0.1 requires approximately a 10-fold change in
CheB-mYFP (Fig 4B) but a 40-fold change in mCherry-CheR (Fig 4C). We analyze this unex-
pected asymmetry in more detail in the next section.

With a quantitative relationship between tumble bias and the numbers of CheB-mYFP and
mCherry-CheR, we asked how much of the variability in tumble bias measured in the wild-
type population (Fig 1E) could be attributed to the natural cell-to-cell variability in the num-
bers of CheR and CheB. In wild type cells, cheR and cheB are transcriptionally and translation-
ally coupled, hence fluctuations in protein numbers have correlated lognormal distributions
with extrinsic noise (Ƞext) and a smaller intrinsic noise (Ƞint). This genetic organization pre-
vents large variations in tumble bias as a result of fluctuations in protein numbers [7,44]. Using
previously reported estimates of the noise intensity in the expression of the chemotactic pro-
teins, we generated the expected distributions for CheR and CheB numbers across individual
cells in the wild type population (Fig 4A). Then, we used the quantitative relationship between
tumble bias and protein numbers to estimate the contribution of the natural cell-to-cell vari-
ability in CheR and CheB numbers to the observed cell-to-cell variability in tumble bias in the
wild-type population. Using Ƞext = 0.26 and Ƞint = 0.125 [12,44,52], CheR and CheB fluctua-
tions explain 11% of the variance in tumble bias. Therefore, additional factors must contribute
to a large portion of the wild type variability in tumble bias. Likely candidates are variations in
the numbers of CheA, CheY, CheZ, the number of flagellar motors (cell-to-cell variations), or
slow stochastic fluctuations in the methylation levels of the receptors (single-cell variations)
[12,45].
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Further examination of the single-cell data indicates that there is large residual variability
around the mean tumble bias for any given level of mCherry-CheR and CheB-mYFP. Calculat-
ing the standard deviation of the residual tumble bias as a function of mCherry-CheR and
CheB-mYFP (Fig 4D) reveals that the residual variability depends strongly on CheB-mYFP
(Fig 4E) and weakly on mCherry-CheR (Fig 4F). Remarkably, the dependency of the residual
variability on mCherry-CheR and CheB-mYFP numbers is not aligned with the dependency of
the mean tumble bias (the contours in Fig 4A and 4D are not aligned in the same direction).
This observation suggests that the mean and the variance of the tumble bias distribution can be
adjusted independently from each other by controlling chemotaxis protein expressions. Impor-
tantly, focusing on the data along the diagonal in Fig 4A and 4D reveals that the amount of
phenotypic diversity in the population can be adjusted by changing the global level of expres-
sion of CheR and CheB while simultaneously maintaining their ratio nearly constant, therefore
maintaining the robustness of chemotaxis pathway conferred by the co-expression of CheR
and CheB from one operon [44,53]. These findings support the hypothesis that phenotypic
diversity in E. coli chemotaxis is a selectable trait [12,54].

Fig 4. Analysis of phenotypic variability. (A) Contour plot of the local linear regression of the tumble bias as a function of mCherry-CheR and CheB-
mYFP numbers. The color scale is the same as Fig 3C. (BC) Cross-sections of the local linear regression of the tumble bias showing the relative
sensitivity of the mean tumble to changes in protein numbers. (D) Contour plot of the local linear regression of the residual tumble bias variance after
subtracting the change in tumble bias explained by mCherry-CheR and CheB-mYFP numbers. (EF) Cross-sections of the local regression of the
variance showing the relationship between residual phenotypic diversity and CheB-mYFP or mCherry-CheR numbers. The expected cell-to-cell
variation in CheR and CheB numbers in the wild-type population is indicated by the white dotted contour (95% of the probability density function)
[12,44,52]. The local linear regressions were done using a bandwidth of 20% of the data points.

doi:10.1371/journal.pcbi.1005041.g004
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Modeling the mean and the variance of the tumble bias as a function of
CheR and CheB numbers
Current standard models of the bacterial chemotaxis system do not explain two aspects of our
experimental results [12,54]. First, the observed mean tumble bias is not equally sensitive to
changes in CheB-mYFP and mCherry-CheR numbers. A fit of the tumble bias to the logarithm
of the protein numbers gives the relationship: TB ¼ 0:274þ 0:0627 log10ðNR=N

1:60
B Þ, where NR

and NB are the numbers of mCherry-CheR and CheB-mYFP proteins in a single cell (the 95%
confidence intervals for the parameters are, in order, [0.258, 0.291], [0.0586, 0.0668], and [1.49,
1.72]). We investigated whether the secondary feedback loop in chemotaxis system (created by
the phosphorylation of CheB by CheA) could increase the sensitivity of the tumble bias to
CheB numbers. We found that the tumble bias would still be determined by a simple ratio of
CheR to CheB numbers consistent with previous models [12,43,54,55] (S10 Fig).

Second, the variance in tumble bias does not depend on mCherry-CheR and CheB-mYFP
numbers the same way the mean tumble bias does (Fig 4C and 4F). This observation was unex-
pected because it is not explained by models that assume that cell-to-cell variability in tumble
bias results solely from cell-to-cell variability in chemotaxis protein numbers. Published mod-
els predict that the mean and the residual variance of the tumble bias have parallel dependen-
cies on variations in CheR and CheB numbers [12,56] (S10 Fig illustrates the theoretical
predictions from these models, wherein the contours of mean and variance in tumble bias are
aligned in the same direction).

To explain our experimental findings, we propose a model that takes into account the dual
role that CheB plays in both demethylating and deamidating the receptor proteins [57] and the
slow fluctuations of the methylation level of the receptor cluster [45,46]. When the most abun-
dant receptors, Tar and Tsr, are synthesized, they are translated with two glutamines (Q)
instead of glutamates (E) at the methylation sites in a QEQE configuration. Glutamate residues
can be reversibly methylated and demethylated to adjust the basal activity, or free energy, of
the receptors. Non-mature receptors have a semi-active conformation in the absence of stimuli
and cause higher-than-expected tumble bias in a cheRcheBmutant [58] because glutamine acts
similarly to a methylated glutamate but with half the change in receptor free energy [43,59,60].
CheB irreversibly deamidates the glutamines to glutamates so that the residues can then be
used for adaptation [57]. Therefore, cells need to synthesize and deamidate a full set of recep-
tors during each cell division to ensure that all modification sites are available for reversible
methylation.

We hypothesized that high tumble bias arising from low levels of CheB-mYFP is caused by
the incomplete deamidation of the receptors. We introduce a deamidation rate equation to
take into account the maturation of receptors by CheB:

d½Q�
dt

¼ �akQ CheBP½ � ½Q�
KB þ ½Q� þ 2r½TTot� � r Q½ �; ð1Þ

where a is the activity of the receptor cluster, [CheBP], [TTot], and [Q] are the concentrations of
phosphorylated CheB, total receptors, and glutamine residues, kQ is the deamidation rate, KB is
the Michaelis-Menten constant characterizing the CheB-receptor binding, and r is the cell
growth rate. The first term in Eq (1) corresponds to the rate of CheB-dependent deamidation,
and the last two terms correspond to generation and dilution of glutamine residues within a
cell as new receptors proteins are synthesized and cell divides. We modified the (de)methyla-
tion rate reaction [12] accordingly to take into account the presence of glutamine residues that
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cannot be (de)methylated and the dilution of methylated receptor by cell growth:

d½M�
dt

¼ 1� að ÞkR CheR½ � 4½TTot� � ½M� � ½Q�
KR þ 4½TTot� � ½M� � ½Q� � akB CheBP½ � ½M�

KB þ ½M� � r M½ �; ð2Þ

where [CheR] and [M] are the concentrations of CheR and methylated glutamate residues, kR
and kB are the methylation and demethylation rates, KR is the Michaelis-Menten constant char-
acterizing the CheR-receptor binding. The first term in Eq (2) corresponds to the rate of CheR-
dependent methylation of the available glutamate residues, the second term corresponds to the
CheB-dependent demethylation of the methylated glutamate residues, and the last term corre-
sponds to the dilution of the methylated residues from cell growth. The remaining equations
describing the dynamics of phospho-relay reactions remain unchanged [12] because the kinet-
ics rates remain much faster than the cell growth rate even when CheR and CheB numbers are
low (see Methods). Finally, the activity of the receptor in the absence of chemical stimuli as a
function of glutamine and methylated glutamate residues is described by:

a ¼ ð1þ Exp ε0 þ
ε12N½M�
½TTot�

þ ε22N½Q�
½TTot�

� �
Þ�1

; ð3Þ

where ε0, ε1, and ε2 are free energy constants, N is the size of the MWC complexes [54]. In the
absence of chemotactic signals, the system can be solved at equilibrium to determine the
steady-state tumble bias. To simulate cell-to-cell variability in protein expression we sampled
protein numbers for each cell from lognormal distributions with intrinsic and extrinsic noise
generators [12].

Introducing the effects from the synthesis of non-mature receptors and their deamidation
by CheB in the model was sufficient to reproduce the higher sensitivity of the cell tumble bias
to CheB than CheR (Fig 5A and S10C Fig, the orientation of the contours produced by our
model matches the data in Fig 4A). The model predicts that when the number of CheB mole-
cules becomes limiting, glutamine residues accumulate in the receptor cluster during cell
growth resulting in an increase of the average tumble bias. We verified this hypothesis by fol-
lowing the population tumble bias immediately after transfer from growth medium to

Fig 5. Modeling the mean and variance of the tumble bias as a function of CheR and CheB numbers.
(A) Contour plot of the local linear regression of the predicted tumble bias as a function of CheR and CheB
numbers. (B) Contour plot of the residual tumble bias standard deviation after subtracting the change in the
predicted tumble bias explained by CheR and CheB numbers. The tumble bias and adaptation time were
calculated according to the modified chemotaxis model for 8405 cells covering the full range of CheR and
CheB numbers. The local linear regressions were done using a bandwidth of 20% of the data points.

doi:10.1371/journal.pcbi.1005041.g005
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chemotaxis buffer. When the number of CheB is lower than the wild-type population mean of
240 molecules per cell [52], the population average tumble bias starts high and slowly decreases
over the course of an hour (S11 Fig). From this experiment, we estimated that the CheB-depen-
dent deamidation rate is half of the demethylation rate.

To explain the relationship of the residual variance of the tumble bias as a function of CheR
and CheB, we took into account the slow fluctuations of the methylation level of the receptor
cluster within the timescale of our experiments. When the numbers of CheR and CheB are
small compared to the number of receptors, the average methylation level becomes hyper-sen-
sitive to the ratio of the two modification proteins [45,46,61]. As a result, the tumble bias of
one cell can fluctuate significantly over time scales similar to the duration of the tracks that we
used to quantify tumble bias in our experiment [29,46]. When the spontaneous fluctuations of
the receptor activity are taken into account, the residual variance in tumble bias becomes more
dependent on CheB rather than the mean tumble bias (Fig 5B, the orientation of the contours
produced by our model align with changes in CheB numbers similar to what is observed in the
data in Fig 4D). Overall, the dependency of the observed residual variance supports the hypoth-
esis that behavioral variability in a clonal population is a result of both signaling noise caused
by the receptor adaptation dynamics and cell-to-cell variability in protein numbers.

Discussion
Understanding the functional role of variability in clonal populations of cells will require
understanding how molecular variations map onto phenotypic variations, which in turn trans-
late into performance differentials between individual cells. While molecules, phenotype, and
performance of individual cells can all be measured separately [17,28,29,33,46,62,63], making
all these measurements in the same cells has not been possible due to the large differences in
length scales and time scales involved. By combining fast in situ hydrogel polymerization with
automated fluorescence microscopy, we were able to bridge scales and directly correlate for the
first time individual motile behaviors of freely swimming cells to intracellular protein numbers.

We mapped single-cell tumble bias and exploratory capability as a function of the numbers
of the two adaptation proteins of the chemotaxis pathway, CheR and CheB, with unprece-
dented details. We found that CheR and CheB numbers affect both the mean and the variance
of the tumble bias but in different ways. Therefore, the shape of the phenotypic distribution in
an isogenic population could be adjusted through genetically encoded factors such as the levels
of protein expression. This suggests that the variability in tumble bias can evolve in an isoge-
neic population while the mean tumble bias remains constant and vice versa solely through
mutations that change the relative expression levels of CheR and CheB (and possibly other che-
motaxis proteins such as CheY and CheZ). These experimental observations support previous
theoretical predictions that the degree of phenotypic diversity in swimming behavior could be
a selectable trait in E. coli [12,13]. Previous studies demonstrated that translational and tran-
scriptional coupling of CheR and CheB confer robustness to the chemotactic system [44,53]
and that even when phenotypic diversity is advantageous it is important to maintain specific
ratios in the numbers of proteins [12]. Our results show that a clonal E. coli population can
adjust phenotypic diversity by adjusting the total expression CheR and CheB without disrupt-
ing their coupling. We also found that single-cell behavioral variability caused by the dynamics
of receptor methylation, as previously described [45,46], contributes significantly to the
observed population phenotypic diversity in addition to cell-to-cell variability in protein
expression. The contributions of additional molecular and morphological factors, such as the
number of flagella, cell shape, or the location of the receptor clusters, to individual cell motile
behavior remain to be characterized. By enabling the quantitative measurement of multivariate
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distributions, FAST will facilitate the characterization of phenotypic variability as a function of
protein numbers, signaling pathway architecture, or other cell components.

Taking advantage of the large field of view and high-resolution offered by modern scientific
cameras, we were able to track and quantify the tumble of thousands of wild type E. coli cells.
We found that tumble bias and diffusion coefficient were widely distributed. This variability is
expected to have a significant impact on the spatial organization and fitness of cells when com-
peting for resources [12,64–66]. Few cells had tumble biases above 0.4, consistent with predic-
tions that high tumble biases perform poorly [13].

To explain the unpredicted finding that tumble bias is more sensitive to CheB than CheR,
we propose that the deamidation of the newly synthesized receptor proteins becomes incom-
plete when the number of CheB falls below approximately one hundred molecules, which is
within reason since the mean expression level is ~240 [52]. With incomplete deamidation, the
basal activity of the receptor is increased, causing elevated tumble bias not explained by previ-
ous models. From the analysis of our model, we found that the activation of CheB through
phosphorylation by CheA was not sufficient to explain our experimental observations because
this feedback does not introduce an asymmetry in the relationship between the mean and the
variance of the tumble bias as a function of CheR and CheB numbers.

The biological significance of the CheB-dependent maturation of the dominant receptor
proteins via the deamidation of specific Q residues is still not understood. However, our results
suggest that wild-type cells express on average just enough CheB to keep up with the synthesis
and maturation of new receptors during growth. One possibility is that the QEQE configura-
tion may place the (de)methylation dynamics of the receptor cluster closer to equilibrium, sav-
ing a significant amount of time and energy to methylate new receptor proteins since they
outnumber CheR and CheB by about two orders of magnitude.

Another possibility is that synthesizing receptor proteins with a QEQE configuration is a
bet-hedging strategy. Because of cell-to-cell variability in the expression levels of CheR and
CheB some cells will express few (de)methylation enzymes. Previous work has shown that
when CheR and CheB are limiting the tumble bias become hyper-sensitive to the ratio of the
numbers of CheR and CheB [45,46,61]. Upon expression of the chemotaxis pathway cells
should initially have higher tumble bias and therefore stay close to their sisters due to the
higher activity of the QEQE configuration. However, as the chemotaxis receptors become fully
deamidated, individual cells will start leaving the colony and explore their surroundings. Cell-
to-cell variability in the expression of CheR and CheB may result in a slow trickling of explor-
ers from the colony. This slow transition from tumbler to explorer may be a bet-hedging strat-
egy when turning the chemotaxis pathway on.

An important aspect of signal transduction is that changes in behavior affect how cells inter-
act with environmental signals. This is especially true for navigation where behavior feeds back
onto the statistics of input signals and vice versa [13]. This important feedback loop is lost
when cell are attached on surfaces or immobilized with optical tweezers [35,40,59]. FAST alle-
viates these constraints, by allowing behavioral tracking and fluorescence imaging of freely
swimming cells. The combination of FAST with the use of nano-fabricated landscapes to create
chemical gradients should facilitate the investigation of the molecular, cellular, and population
level mechanisms that underlie the emergent behaviors of cells in complex environments.

Methods

Strains and growth conditions
E. coli RP437 was used as the wild-type strain for chemotaxis and as the parental strain for all
the mutants generated in this study. Cells were cultured in M9 minimal medium supplemented
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with 10 g/L glycerol, 1g/L tryptone, 2 mMmagnesium sulfate, 0.1 mM calcium chloride, 10
mg/L thiamine hydrochloride, and 50 mg/L streptomycin. Isopropyl β-D-1-thiogalactopyrano-
side (IPTG) and rhamnose were added to the growth medium when indicated to induce pro-
tein expression. Cells were grown in aerobic conditions at 30°C in an Erlenmeyer flask on an
orbital shaker at 200 rpm for aeration. Starting from single colonies isolated on agar plates,
cells were grown to saturation overnight in broth cultures and sub-cultured using 1:100 dilu-
tion ratio in fresh medium and grown to an optical density at 600 nm (OD600) of 0.25. Under
these growth conditions, virtually all cells were highly motile.

Time-lapse microscopy and cell tracking
Before performing the behavioral experiments, cells were washed twice at room temperature
with motility buffer (M9 salts supplemented with 0.1 mM ethylenediaminetetraacetic acid
(EDTA), 0.01 mM L-methionine, 10 mM sodium lactate, and 0.05% weight/volume polyvinyl-
pyrrolidone (M.W. ~40,000 Da)) by centrifuging cells at 2,000 g for 5 minutes and diluted to a
low cell density (OD600 ~ 0.01). The buffer exchange and centrifugation did not appear to affect
the cell behavior when compared to cells sampled from the growth medium (S1 Fig). To record
motile behavior, 5 μL of cells in motility buffer was sealed between a glass microscope slide and a
22 mm2 #1.5 coverslip using VALAP (equal amount of petrolatum, lanolin, and paraffin wax).
Cells were free to swim in a pseudo two-dimensional environment ~10 μm deep. Cell motion
was recorded at 10 frames per second with a digital scientific CMOS camera (Hamamatsu
ORCA-Flash4.0 V2, 2x2 pixel binning, 50 ms exposure, rolling shutter, full frame) mounted on
an inverted microscope (Nikon Eclipse TI-U) with a 10X phase contrast objective (Nikon CFI
Plan Fluor, N.A. 0.30, W.D 16.0mm) and LED white light diascopic illumination (Thorburn Illu-
mination Systems). The field of view was ~1.3 mm square containing on average 200 cells.

To reconstruct the cell trajectories each image sequence was processed using customMATLAB
(Mathworks) code. First, the mean pixel intensities of the frames over the entire image sequence
was calculated to obtain an image of the background and subtracted from each image. The subpixel
resolution coordinates of each cell in each frame were detected using a previously described method
using radial symmetry [67] with an intensity detection threshold set to 6 standard deviations over
the background. Coordinates were linked to obtain cell trajectories using a previously described
self-adaptive particle tracking method, u-track 2.1 [31], with the linear motion model linkage cost
matrices, an expected particle velocity of 30 μm/s, and otherwise default parameters.

Cell trajectory analysis

The cell velocity at each time point was calculated according to vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2

q
=

ðtiþ1 � tiÞ. The acceleration was calculated according to ai = (vi+1−vi)/(ti+1−ti). The angular
acceleration was calculated according to αi = ((θi+1−θi)− (θi−θi−1))/(ti+1−ti)2. θi is the angle
between consecutive velocity vectors. The velocity auto-correlation and mean square displace-
ment of each trajectory were analyzed to extract the average mean run time and diffusion coef-
ficient of each cell. The velocity autocorrelation, Cv, and the mean square displacement, MSD,

were calculated according to: Cv Dtð Þ ¼ 1
N

PN
i¼1 ð v!ðtiÞ: v!ðti þ DtÞÞ andMSD Dtð Þ ¼

1
N

PN
i¼1 ðxðti þ DtÞ �xðtiÞÞ2 þ ðyðti þ DtÞ � yðtiÞÞ2, where ti represents the relative time for

each frame of the image sequence, and Δt the time interval between time points. The data was

fitted using a non-linear least-square method with the functions: Cv tð Þ ¼ v20e
�t
tcos o tð Þ, and

MSDðtÞ ¼ 2t
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0
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), where t is time,

Phenotypic Diversity in Bacterial Chemotaxis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005041 September 6, 2016 13 / 25



v0 is the average cell speed, τ is the time scale of the cell directional persistence (a function of
the cell tumble bias, mean tumble angle, and rotational diffusion), and ω is the angular fre-
quency of the circular trajectory resulting from the interaction when cells swim near the glass
surface (S12 Fig). The mean square displacement function was calculated by taking the integral
of the velocity autocorrelation function in two dimensions according to the Green-Kubo rela-

tions [41,42]. The effective diffusion coefficient, D, was calculated according to Deff ¼ v0
2t
d
to

remove the effect of the glass–surface interaction, where d is the number of dimensions (two in
our experiment). The effective diffusion coefficient is in good agreement with a previously
derived approximation of the diffusion coefficient derived for swimming E. coli cells as a func-

tion of the mean run time between tumbles [68] defined as: Dapx ¼ v2T
dð1�yÞ, where T is the average

run time between tumbles calculated for each cell using our tumble detection analysis, and θ is
the mean cosine of the tumble angles (θ = 0.18 in our dataset, S3H Fig).

The posterior probabilities for a cell to be swimming (S), tumbling (T), and an intermediate
state recovering from tumbling (I) given the instantaneous velocity (v), acceleration (a), and
angular acceleration (α) (P(S|v,a,α), P(T|v,a,α), and P(I|v,a,α)) were constructed from a refer-
ence dataset containing more than 6,000 trajectories from wild-type cells. The parameters of
each distribution were estimated by fitting a mixture of three tri-variate Gaussian distributions
to the pooled distributions of instantaneous velocity (v), accelerations (a), and angular acceler-
ation (α) (S3A and S3B Fig). Therefore, each behavioral state is represented by a tri-variate
Gaussian distribution. The mixture model was fitted to the reference dataset using an iterative
approach. First, the swimming speed of each cell was normalized by their average speed when
in the swimming state (the first iteration was initialized using the 95th percentile of their instan-
taneous speeds). The relative acceleration and the angular acceleration between consecutive
velocity vectors were computed. Then, all the relative speed, acceleration, and angular accelera-
tion, were fitted with the mixture model. Each time point of the cell trajectories was assigned to
the state with the largest posterior probability. The normalization, fitting, and state assignment
were done iteratively until changes in state assignment between consecutive iterations con-
verged below a tolerance of 1% (10 iterations on average). The resulting posterior probabilities
were used to analyze the trajectories of all the cells in this work. Based on our validation of the
tumble detection on simulated trajectories (see next section), we discarded all trajectories that
were shorter than 10 seconds because short trajectories resulted in inaccurate tumble bias cal-
culations (the code is available at https://github.com/dufourya/SwimTracker).

Simulated cell trajectories
To validate the tumble detection model we simulated the swimming trajectories of cells with
defined phenotypes in the absence of signal gradients. Simulations were run following a previ-
ously described method [34], with a constant swimming speed of 20 μm/s and rotational diffu-
sion of 0.062 rad2/s [33]. Cells are stationary during tumbles and their orientations are uniformly
randomized. The simulated cell tumble bias was changed by varying the internal CheY-P, Yp,
concentration, which controls the transitions rates k+ and k_ to clockwise and counter clockwise

of the flagellar motor according to: k� ¼ ε exp � g
2

1
2
� Yp

YpþKD

� �� ih on
, with ε = 1.3 s-1, g = 40,

andKD = 3.06 μM, according to previously published experimental data [40]. The simulated envi-
ronment was bounded in the z-dimension by reflecting boundaries 10 μm apart. Cell positions
were sampled every 100 ms and projected in two dimensions to reproduce the experimental con-
ditions. The accuracy and precision of the trajectory analysis was determined using 1,000 simu-
lated trajectories for each tumble bias (S13 Fig). The simulations showed that the tumble
detection and tumble bias calculations were accurate for trajectories as short as 10 seconds.
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Construction of plasmids and mutant strains
Plasmids and mutant strains were constructed following standard cloning protocols (see S1
Table, S2 Table and S3 Table for the lists of plasmids, strains, and oligonucleotides). The dele-
tion of cheR and cheB in E. coli RP437 was done using the λ Red disruption system [69].
Approximately 300 base pairs at the end of cheB were kept in the genome to maintain the
proper regulation of the downstream expression of cheY and cheZ (Victor Sourjik, personal
communication). The sequences homologous to the targets (cheR and cheB) in the genome
were added to the oligonucleotide primers. PCR reactions were performed with these primers
to amplify the sequences containing a tetracycline resistant cassette flanked by flippase recogni-
tion target (FRT) sites from pCP16 [70]. Cells were first transformed with the plasmid pKD46,
and then transformed with the purified PCR product after induction of the recombinase pro-
tein from pKD46. After successful recombination, the portion of the genome containing the
deletion and the tetracycline cassette was transduced to a new E. coli RP437 background using
the phage P1vir. Finally, the tetracycline resistant cassette was excised from the genome with
flippase (Flp) by transforming the mutant strain with pCP20 leaving a single FRT sequence
scar to obtain the strain NWF121 (ΔcheRcheB).

Gene fusions of cheR and cheB with the genes encoding for the fluorescent reporters sfYFP,
[71], or mCherry [72], which have been codon-optimized for E. coli expression, and a cassette
containing a kanamycin marker flanked by FRT sites (from pCP15 [70]) were constructed
using the Gibson assembly method [73] from PCR fragments and a pUC19 vector backbone.
The constructs were PCR amplified with sequences homologous to the targets added to the
oligo primers and recombined separately into the wild-type MG1655 strain following the same
protocol described above. Constructs were recombined into either the native lactose (lac) or
rhamnose (rha) operon loci in the chromosome to take advantage of the host inducible tran-
scription regulation. Each construct was transduced sequentially into the mutant RP437 strain
lacking cheR and cheB (NWF121) using the phage P1vir and excision of the kanamycin resis-
tant cassette with the flippase after each successful transduction. A gene coding for the fluores-
cent protein sfCFP under the control of the constitutive promoter pBla was also recombined
into the genome of the mutant strains to provide an independent fluorescence control. Two
strains, which are almost identical except that the inducible promoters are swapped, were
obtained: YSD2072 (ΔcheRcheB-FRT, pRha-mCherry-cheR-FRT, pLac-cheB-mYFP-FRT, pBla-
CFP-FRT) and YSD2073 (ΔcheRcheB-FRT, pLac-mCherry-cheR-FRT, pRha-cheB-mYFP-FRT,
pBla-CFP-FRT). An identical approach was used to clone pLac-cheB-mYFP and pBla-CFP into
RP4972 (ΔcheB) to create YSD2044 (ΔcheB, pLac-cheB-mYFP-FRT, pBla-CFP-FRT). Deletions
and insertions in the final mutant strains were verified by PCR and DNA sequencing.

Single-cell fluorescence microscopy
Fluorescence microscopy images were acquired using an inverted microscope fitted with a
100x oil immersion objective (Nikon CFI Plan Fluor, N.A. 1.30, W.D 0.2 mm), a solid state
white light source (SOLA II SE, Lumencor), a digital scientific CMOS camera (Hamamatsu
ORCA-Flash4.0 V2, 1x1 pixel binning, rolling shutter, full frame, 16 bits). Cells were spotted
on agarose pads (1% wt/vol agarose with M9 salts) after being washed twice in M9 salts and
mounted between a glass slide and a #1.5 glass coverslips. Five different frames containing on
average 200 cells were acquired in phase contrast and three fluorescence channels for each sam-
ple (CFP filters ex436/20, 455LP, em480/40, YFP filters ex500/20, 515LP, em535/30, mCherry
filters ex560/40, 585LP, em630/75). The camera dark current was subtracted from each images
and the uneven illumination was corrected using a flat-field image acquired using uniform
fluorescent slides.
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Cell outlines were determined using MicrobeTracker [48] on the phase contrast images.
Cells with sizes deviating from the population by more than three standard deviations were dis-
carded from the analysis. Single-cell fluorescence intensities were calculated by summing the
fluorescence signal over each cell area and subtracting the background fluorescence intensity.
The autofluorescence of wild-type cells (RP437) in each channel was determined and sub-
tracted from the fluorescence intensities of cell expressing the fluorescent reporters. The small
amount of cross talk between the fluorescent proteins was determined using cells expressing
single fluorescent labels and corrected in cells expressing multiple labels using linear unmixing
[74].

Quantitative immunoblotting and fluorescence calibration
The calibration of cell culture optical density (OD600) to colony forming units (CFU) was done
using serial dilution and plating. Cells expressing different concentrations of the fluorescently
labeled proteins were suspended in Laemmli buffer, then boiled for 5 minutes and homoge-
nized in an ultrasonic water bath for 1 minute. Known concentrations of purified fluorescent
protein standards (GFP: Rockland 000-001-215 lot 23193, and RFP: abCam ab51993 lot
GR25411-12) were added to wild-type cell lysate and treated with the same conditions as the
samples to generate standard curves. The lysate of 108 cells in 20 μL were loaded in each lane of
pre-casted polyacrylamide gels (BioRad cat. #456–9035) and run in Tris/glycine/SDS buffer at
100 Volts for 90 minutes at 4°C. The proteins were transferred to a low fluorescence 0.45 μm
PVDF membrane (BioRad, cat. #162–0261) using wet transfer in Tris/glycine/20% Methanol
buffer at 100V for 60 minutes at 4°C. The membranes were blocked to prevent non-specific
antibody binding using blocking buffer (EMDMillipore, cat. # WBAVDFL01) for 60 minutes
at room temperature. To detect CheB-mYFP, mCFP, and standard GFP, the membranes were
hybridized with 1:5,000 dilutions of anti-GFP antibodies conjugated to DyLight488 (Rockland
cat. #600-141-215 lot 23518) in Tris buffer saline with 0.05% Tween 20 pH 7.5 for 12 hours
with gentle agitation at 4°C. To detect mCherry-CheR and standard RFP, the membranes were
hybridized first with 1:2,500 dilutions of anti-RFP antibodies (abCam cat. # ab183628 lot
GR170176-1) in Tris buffer saline with 0.05% Tween 20 pH 7.5 for 12 hours with gentle agita-
tion at 4°C, then with 1:10,000 dilutions of anti-Rabbit antibodies conjugated with Dylight488
(Rockland #611-141-002 lot 23521) for 1 hour at room temperature. The membranes were
washed three times for 15 minutes with Tris buffer saline with 0.05% Tween 20 pH 7.5 after
each incubation. The membranes were dried and scanned with a laser scanner (GE Typhoon
9400) at 488 nm. The images were processed with ImageJ [75] to quantify the signal intensities.

The calibration of fluorescence intensities to protein numbers was calculated using Bayesian
linear regression of the quantitative immunoblotting data with the average cell fluorescence
signals to obtain the posterior probability distributions of the fluorescence signal per protein.
The regression model was setup in the R statistical computing environment [76] with the
RStan package [77]. The number of each fluorescent protein per cell was determined as the
maximum a posteriori estimate.

In situ hydrogel polymerization and automated cell imaging
Trapping cells with fast in situ hydrogel polymerization was done by supplementing the motil-
ity buffer with 5% wt/vol polyethylene glycol diacrylate (PEGDA) (M.W ~2,000, JenKem Tech-
nology cat. #A4047-5) and 0.05% wt/vol of the photoiniator lithium phenyl-2,4,6-
trimethylbenzoylphosphinate [51]. To remove traces of reactive contaminants in the PEGDA,
a 20% wt/vol solution was incubated for 10 minutes with a high concentration of washed E. coli
cells. Cells were removed by centrifugation and filtration through a 0.22 μm filter. The hydrogel
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polymerization was triggered by exposing the sample for 5 seconds with violet light using a solid
state light source (SOLA II SE, Lumencor) at full intensity through a band pass excitation filter
(395/25) and the microscope 10X objective (Nikon CFI Plan Fluor, N.A. 0.30, W.D 16.0mm).

The automated imaging of immobilized cells was done using customMatlab scripts control-
ling the microscope and a motorized stage (Prior Scientific, cat. # H117) through the Micro-
Manager core library [78] (the code is available at https://github.com/dufourya/FAST). After
immobilization, the cell coordinates were registered using image analysis in Matlab and the
microscope was configured for epifluorescence imaging at 100X. The computer-controlled
stage moved sequentially to each cell location. The z-focus was automatically adjusted for each
cell before imaging in phase contrast and the three fluorescence channels (CFP filters ex436/
20, 455LP, em480/40, YFP filters ex500/20, 515LP, em535/30, mCherry filters ex560/40,
585LP, em630/75). Cells that were not properly aligned with the focal plane, which were deter-
mined by detecting non-closed edges of the outlines of cells in the analysis of phase contrast
images, were skipped. Cells with sizes deviating from the population by more than three stan-
dard deviations were discarded from the analysis. About 200 cells were imaged in less than 40
minutes for each experiment trial. The fluorescence signal from each cell did not change signif-
icantly as a function of time during the single-cell imaging phase indicating that the fluorescent
protein fusions are stable when the cells are trapped in the hydrogel (S8 Fig).

Modeling individual cell tumble bias as a function of chemotaxis protein
numbers
The model used to calculate tumble bias as a function of protein numbers is based on a previ-
ously published model [12]. The concentration of phosphorylated CheA [CheAP] changes
according to

d½CheAP�
dt

¼ a aP CheATot½ � � CheAP½ �ð Þ � aB CheAP½ � ½CheBTot � � ½CheBP�ð Þ � aY CheAP½ � CheYTot½ � � CheYP½ �ð Þ; ð4Þ

in which a is the receptor cluster activity, [CheATot], [CheBTot], [CheYTot], and [CheYP] are the
concentrations of all CheA, all CheB, all CheY, phosphorylated CheY, aP, aB, and aY are the
phosphorylation rate constants.

The concentrations of phosphorylated CheB and CheY changes according to

d½CheBP�
dt

¼ aB CheAP½ � ½CheBTot� � ½CheBP�ð Þ � dB CheBP½ �; ð5Þ

and

d½CheYP�
dt

¼ aY CheAP½ � ½CheYTot� � ½CheYP�ð Þ � dZ CheZ½ � CheYP½ �; ð6Þ

in which dB and dZ are the dephosphorylation rates and [CheZ] is the concentration of CheZ.
The biochemical rate and binding parameters are kept the same for all cells (the values used are
summarized in S4 Table). To simulate cell-to-cell variability in protein expression, the protein
numbers were sampled for each cell from log-normal distributions according to a noisy gene
expression model as previously described [12] using experimentally determined average con-
centrations [52]. To match as well as possible our experimental results, the intrinsic and extrin-
sic noise levels in the expression of all the chemotaxis proteins (except CheR and CheB which
were measured directly) were reduced to be a tenth of what was previously proposed [12]. The
concentration of CheZ was reduced slightly to match the observed range of tumble bias in our
experiments. In the absence of stimuli, Eqs 1–6 can be solved at equilibrium to calculate the
steady-state concentration of each protein.
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The variance of [CheYP] resulting from the spontaneous fluctuations of the cluster activity
for each single cell was calculated using the linear noise approximation of the Master equation
as previously described for the chemotaxis system [45]. Briefly, taking the stoichiometry matrix
of the system, S, and the propensity vector, v, the diffusion matrix of the system, B, was calcu-
lated using the linear noise approximation by solving BTB = S diag(v)ST [79,80]. The correla-
tion matrix, C, which contains the variance and covariance for the fluctuations of all the
components in the model, was calculated from the linearized rate equations near the equilib-
rium solution given by the Jacobian matrix of the system, A, by solving numerically the Lyapu-
nov equation AC + CAT + BTB = 0 [81,82].

To simulate the effect of the slow fluctuations in cluster activity on the concentration of
phosphorylated CheY, [CheYP] was sampled randomly from a Gaussian distribution centered
at the steady-state [CheYP] with variance var([CheYP]) form the correlation matrix, C. Because
the cluster activity fluctuates according to the adaptation time scale, the effective [CheYP] was
calculated from the average of neff samples according to neff ¼ k T

t k, in which T is the average

length of the recorded trajectory in seconds (100 seconds) and τ is the slowest relaxation time-
scale of the Jacobian matrix A evaluated at the equilibrium solution given by the largest of the
eigenvalues λ of A, τ = −1/max(λ). The tumble bias was calculated as a function of the effective
[CheYP] using the steady-state function of the adaptive flagellar motor as previously described
[13] and the coordination of multiple flagella as previously described [34].
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S1 Fig. Effect of the chemotaxis buffer, PEGDA, and LAP on the distributions of swimming
phenotypes in a clonal E. coli RP437 population. (A-D) Probability distribution of cell tum-
ble biases, mean run times, mean swimming speeds, and cell diffusion coefficients from cells
swimming in chemotaxis buffer after the indicated incubation times. (E-H) Same distributions
from cells swimming in chemotaxis buffer supplemented with 5% PEGDA and 0.05%LAP after
the indicated incubation times.
(EPS)

S2 Fig. Distribution of trajectory length obtained from tracking 6,332 individual swim-
ming RP437 cells for 60 seconds.
(EPS)

S3 Fig. Tumble detection and diffusion coefficient calculations. (A) Density plot of normal-
ized cell swimming speed as a function of angular acceleration. (B) Density plot of normalized
cell swimming speed as a function of normalized cell acceleration. The three-dimensional den-
sity distribution comprising ~6 million data points was fitted with a mixture of three tri-variate
Gaussian distributions to represent three possible cell swimming states: running (solid lines),
tumbling (dashed lines), and intermediate (dotted lines). (C) Distribution of angles measured
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from the change in direction in the swimming trajectories after each detected tumble for
RP437 cells. (D) Probability distribution the mean swimming speeds of individual cells. (E)
Example of a 60 seconds single-cell trajectory where detected tumbles are marked with red
dots. (F) Mean square displacement and (G) velocity auto-correlation as a function of time
intervals calculated from a representative cell trajectory (black) with the corresponding fit (red)
to extract the cell diffusion coefficient. (H) Scatter plot of the approximated diffusion coeffi-
cients (Dapx) calculated from the mean run time between tumbles against the effective diffusion
coefficient (Deff) calculated for the cell directional persistence for each cell. The distributions
were calculated from about 6,000 individual trajectories combined from three independent
experiments.
(EPS)

S4 Fig. Induction of fluorescently labeled chemotaxis proteins. (A) Probability distributions
of fluorescence intensities from the inductions of CheB-mYFP in the YSD2073 mutant strain
(pRha cheB-mYFP, pLac mCherry-cheR) with four rhamnose concentrations: 0 mM (cyan),
0.3 mM (green), 1 mM (yellow), and 3 mM (red). (B) Probability distributions of fluorescence
intensities from the inductions of mCherry-CheR in the same strain with four IPTG concentra-
tions: 0 μM (cyan), 10 μM (green), 30 μM (yellow), and 100 μM (red). The fluorescence intensi-
ties were obtained from the analysis of thousands of cells using MicrobeTracker on epi-
fluorescence microscopy images. The bimodal distribution of fluorescence intensities from the
expression of CheB-mYFP is a result of the bi-stability of the pRha promoter.
(EPS)

S5 Fig. Calibration of fluorescence units per fluorescent molecules using Bayesian regres-
sion analysis with the YSD2073 mutant strain (pRha cheB-mYFP, pLac mCherry-cheR,
pBla mCFP). (A) Estimated numbers of CheB-mYFP molecules per cell as a result of induction
with different rhamnose concentrations (1: 0 mM, 2: 0.3 mM, 3: 1 mM; 4: 3 mM, 5: 10 mM)
shown for three independent experiments. The black lines represent the 80% confidence inter-
val. The colored dots indicate the median for each of the 8 chains of the MCMC sampling. (B)
Estimated numbers of mCherry-CheR molecules per cell as a result of induction with different
IPTG concentrations (1: 0 μM, 2: 10 μM, 3: 30 μM; 4: 100 μM, 5: 1 mM) shown for three inde-
pendent experiments. (C) Estimated numbers of mCFP molecules per cell as a result of induc-
tion with different IPTG concentrations (1: 0 μM, 2: 10 μM, 3: 30 μM; 4: 100 μM, 5: 1 mM)
shown for three independent experiments. As expected mCFP expression does not respond to
the presence of IPTG or rhamnose. (D) Posterior probability distribution of the expected num-
ber of fluorescence units per CheB-mYFP molecule. (E) Posterior probability distribution of
the expected number of fluorescence units per mCherry-CheR molecule. (F) Posterior proba-
bility distribution of the expected number of fluorescence units per mCFP molecule.
(EPS)

S6 Fig. Manipulating and sampling tumble bias distributions in a mutant E. coli strain
expressing mCherry-CheR and CheB-mYFP. The YSD2072 mutant strain (pLac cheB-mYFP,
pRha mCherry-cheR, pBla mCFP) was grown in M9 glycerol medium supplemented with the
indicated concentrations of the inducers rhamnose and IPTG to obtain different distributions
of tumble biases. The distributions of phenotypes from the population of cells trapped and
imaged in the hydrogel (red) is comparable to the distribution of phenotypes from the entire
cell population (blue) indicating that the trapped cells represent an unbiased sample of the
population. The number of cells represented in each distribution is indicated for each plot.
(EPS)
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S7 Fig. Manipulating and sampling tumble bias distributions in a mutant E. coli strain
expressing mCherry-CheR and CheB-mYFP. The YSD2073 mutant strain (pRha cheB-
mYFP, pLac mCherry-cheR, pBla mCFP) was grown in M9 glycerol medium supplemented
with the indicated concentrations of the inducers rhamnose and IPTG to obtain different dis-
tributions of tumble biases. The distributions of phenotypes from the population of cells
trapped and imaged in the hydrogel (red) is comparable to the distribution of phenotypes from
the entire cell population (blue) indicating that the trapped cells represent an unbiased sample
of the population. The number of cells represented in each distribution is indicated for each
plot.
(EPS)

S8 Fig. Protein stability during single-cell fluorescence imaging of cells immobilized in the
hydrogel. (A) Scatter plot of the estimated number of CheB-YFP proteins in each cell as a func-
tion of time after cell immobilization. A linear fit (red line) indicates that there is no significant
change in protein numbers as a function of time (slope -0.0022 min-1, 95% confidence interval
[-0.0094; 0.0050]). (B) Scatter plot of the estimated number of mCherry-CheR proteins in each
cell as a function of time after cell immobilization. A linear fit (red line) indicates that there is
no significant change in protein numbers as a function of time (slope 0.0049 min-1, 95% confi-
dence interval [-0.0025; 0.0123]).
(EPS)

S9 Fig. Correlations of single-cell swimming phenotypes with mCFP numbers. (A) Scatter
plot of single-cell tumble biases against mCFP numbers. (B) Scatter plot of single-cell diffusion
coefficients against mCFP numbers.
(EPS)

S10 Fig. Tumble bias and residual standard deviation as a function of CheR and CheB
numbers predicted from a model missing CheB-dependent receptor deamidation and/or
receptor adaptation noise. (A) Contour plot of the local linear regression of the predicted
tumble bias as a function of CheR and CheB numbers for a model missing both CheB-depen-
dent receptor deamidation and receptor adaptation noise. (B) Contour plot of the predicted
residual tumble bias standard deviation resulting from stochastic expression of the chemotaxis
proteins with no signaling noise from the receptor cluster. (C) Contour plot of the local linear
regression of the predicted tumble bias as a function of CheR and CheB numbers for a model
including the deamidation reaction but missing receptor adaptation noise. (D) Contour plot of
the predicted residual tumble bias standard deviation resulting from stochastic expression of
the chemotaxis proteins with no signaling noise from the receptor cluster. From the stochastic
gene expression model, we sampled 8405 cells covering the full range of CheR and CheB
expression levels. We then calculated the corresponding tumble bias for each individual cell
using a model of bacterial chemotaxis that does not take into account CheB-dependent recep-
tor deamidation or receptor adaptation noise. The local linear regressions were done using a
bandwidth of 20% of the data points.
(EPS)

S11 Fig. Effect of CheB-YFP expression on the tumble bias in populations of motile cells.
Box plots representing the evolution of the distributions of the tumble bias as a function of
time of YSD2044 mutant cells grown (A) in the absence of inducer, (B) in the presence of 5 μM
IPTG, or (C) in the presence of 50 μM IPTG, after the growth medium was exchanged with
chemotaxis buffer. Two independent experimental trials are represented in red and blue. The
white dots represent the medians. The boxes span the first and third quantiles. The whiskers
indicate 1.5 times the interquartile range. The dotted lines represent the model predictions
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used to estimate the CheB-dependent deamidation rate (kQ = 0.64s-1) and the number of
expressed CheB proteins (0, 100, 250 molecules, respectively). The tumble bias trajectories
were calculated over time by first solving the model at steady state with a cell doubling rate set
to 1h-1 and then numerically solving the evolution of the differential equations after the dou-
bling rate was set to 0 to simulate the transfer of cells from the growth medium to the chemo-
taxis buffer.
(EPS)

S12 Fig. Distribution of angular velocities extracted from the analysis of the mean square
displacement and the velocity autocorrelation of each cell trajectory. The angular velocity is
non-zero when cells swim close enough to the glass surface to be affected by hydrodynamic
interactions between the glass and the cell body rotation.
(EPS)

S13 Fig. Precision and accuracy of tumble detection on simulated swimming cell trajecto-
ries. (A) Mean cell tumble bias as a function of phosphorylated CheY (CheY-P) concentration
for 10-second-long trajectories. The dashed line represents the expected theoretical relation-
ship. The tumble detection algorithm was run on 1,000 simulated trajectories for each CheY-P
concentrations. The solid line represents the mean of the calculated tumble biases. The grey
lines delimit 90% of the probability density. (B) Same as A but for 300 seconds long trajectories.
(C) Mean of the calculated tumble bias as a function of total simulation time. The trajectories
of cells with 3 μMCheY-P were simulated for different amounts of time between 1 and 300 sec-
onds. The dashed line represents the expected theoretical tumble bias. The tumble detection
algorithm was run on 1,000 simulated trajectories for each simulation time. The solid line rep-
resents the mean of the calculated tumble biases. The grey line represents the standard devia-
tion of the calculated tumble bias distribution. (D) Mean cell run time as a function of
phosphorylated CheY concentration for 10-second-long trajectories. (E) Same as D but for 300
seconds long trajectories. (F) Mean of the calculated mean run time as a function of total simu-
lation time.
(EPS)
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