Developmental Cell, Volume 42

## **Supplemental Information**

## **Patterned Disordered Cell Motion**

## **Ensures Vertebral Column Symmetry**

Dipjyoti Das, Veena Chatti, Thierry Emonet, and Scott A. Holley

## **Supplemental Figures**



**Figure S1. Supplemental analysis of in vivo cell motion; related to Figure 3. (A-C)** Analysis of embryos treated with the Fgfr inhibitor SU5402. **(A)** The Z-component of the angular momentum inside the PZ versus time. **(B)** The probability distribution of the angular momentum. **(C)** Experimental image of cell motion with nuclear trails drawn from the last few timepoints. Scale bar: 30 microns. **(D)** Probability distribution functions of the alignment angles of the PZ cells. **(E)** Cumulative distribution functions (CDF) of the alignment angles of the PZ cells, showing distinct states of cellular order for different phenotypes. **(F)** Average of net anterior-to-posterior velocity components per cell inside the ADM for different phenotypes. The p-values are calculated using a two-sample T-test with unequal variance, and "\*" denotes p<0.05. **(G)** Comparison of CDFs of alignment angles inside the ADM and PZ illustrates the difference in order of the epithelium (ADM) and mesenchyme (PZ). (H) Anterior-to-posterior cell flux through a transverse section of the ADM, measured at 50 microns from the anterior end of the ADM. There is no significant difference in the fluxes among different phenotypes.



**Figure S2. Supplemental statistics of alignment angles of in vivo cell motion; related to Figure 3.** (A) Probability distribution functions (PDFs) of alignment angles. Each PDF derives from data from a single embryo. (B) Cumulative distribution functions (CDFs) of alignment angles for each individual embryo. (C) Modes (most-probable values) obtained from the PDFs of alignment angles, showing lower values for *notum1a* overexpression embryos than other phenotypes. (D) Area under the CDF curves for different phenotypes. The p-values are calculated using a two-sample T-test with unequal variance, and "\*" denotes p<0.05. (E) CDFs of alignment angles for individual embryos with interaction radius R=10 microns. (F) CDFs of alignment angles for four distinct phenotypes with interaction radius R=10 microns. (G) CDFs of alignment angles for individual embryos with interaction radius R=30 microns. (H) CDFs of alignment angles for four distinct phenotypes with interaction radius R=30 microns.



Figure S3. Supplemental analysis of mean-square-displacement (MSD) in the ADM; related to Figure 4. (A) MSD versus lag time from the simulation data is shown in log-log plot for different values of the noise parameter. The black straight line indicates a power-law fitting of the form  $4Dt^{\alpha}$ , where *D* is the diffusion constant and  $\alpha$  is the MSD exponent. The value of the exponent (1.88) indicates super-diffusive motion. (B) The diffusion constant (extracted from the power-law fitting as shown in A) versus noise from in silico simulations. (C) For each wild-type, *notum1a* and *cdn2<sup>-/-</sup>* embryo, the MSD inside the ADM versus lag time is shown in a log-log plot. The value of the exponent (1.82) indicates super-diffusive motion similar to our simulations. (D) In vivo diffusion constants (as extracted from the power-law fitting of the curves in (C) for different phenotypes. The p-values are calculated using a two-sample T-test, and "\*" denotes p<0.05. (E) In vivo MSD exponents for different phenotypes.