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An equilibrium configuration of a horizontal twisted magnetic flux tube embedded in a stratified
external medium is calculated. The equilibrium is obtained through a perturbation method which
assumes a weak external stratification but which is much less restrictive than the customary thin
flux tube approximation. The general equations and method of solution have been presented in
an earlier paper (Emonet & Moreno-Insertis 1996). In the equilibrium obtained here, the physical
variables have Gaussian-like profiles. This particular feature makes the new solution suitable as
initial condition for 2D and 3D simulations of the rise of thick magnetic flux ropes through the
convection zone of the Sun currently being carried out.

1. INTRODUCTION

The calculation of magnetohydrostatic (MHS) equilibrium configurations for
non-force-free, twisted horizontal flux tubes is a necessary step in the study of the
structure and evolution of magnetic flux tubes in the solar convection zone. The
obvious application of such a calculation is to magnetic flux tubes stored in the
stably stratified regions of the solar interior. Perhaps more importantly, such study
can be applied also to magnetic rings rising in a quasi-static manner through the
convection zone, (e.g., with the drag force continuously compensating the total
buoyancy force of the tube). The latter application is of particular interest as
a prerequisite for numerical calculations of the rise of magnetic flux tubes in the
uppermost scale-heights of the convection zone, where departures from the thin flux
tube approximation become important.

In a recent paper, Emonet & Moreno-Insertis (1996, hereafter paper I) have
presented solutions for the MHS structure of non-force-free twisted horizontal mag-
netic flux tubes including gravity and an arbitrary pressure perturbation on the
tube boundary. To simplify the problem, it was assumed that the physical quanti-
ties along the tube axis were invariant. The resulting 2D free-boundary problem was
then solved by using general non-orthogonal flux coordinates and by considering the
case of weak stratification (pressure scale-height larger than the tube radius). This
permits introduction of a perturbation scheme which is much less restrictive than
the customary slender flux tube approximation: for instance, it does not impose any
limitation on the strength of the azimuthal field as compared to the longitudinal
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field. Using the equations and techniques of paper I, one can study, in particular, the
mutual dependence of: (1) the (differential) buoyancy in the tube, (2) the azimuthal
field (intensity and field line geometry), (3) the gas pressure and longitudinal field
distributions. In that paper it is shown how the differences in buoyancy in the tube
cross section force the closed azimuthal field lines in the interior of the tube to shift
vertically while the gas pressure stays hydrostatically stratified along the azimuthal
field lines. The effect of a flow around the tube is found to be twofold: external
pressure fluctuations with circular wavenumber greater than 1 force the field lines to
bend to achieve the equilibrium, whereas the cosine and sine components produce
non-vanishing resulting forces on the tube (‘drag’ and ‘lift’, respectively).

In paper I, application of the equations to the calculation of power-law profiles
of the physical quantities in the tube interior was made. Power laws are of inter-
est, among other things, because they provide a natural generalization of the radial
expansion of the physical quantities. They also permit the study of shell-like struc-
tures that may develop along the tube evolution. For the study of the rise of thick
flux tubes, however, in particular for the corresponding numerical calculations, it is
equally important to have in hand equilibrium configurations in which the physical
quantities have Gaussian shapes. A flux tube with this kind of pressure profiles is
of particular interest as an initial condition in numerical simulations, especially if
the numerical scheme used to integrate the MHD equations is of Lax-Wendroff type
(see, e.g., Morton & Mayers, 1994, Section 4.5).

In the present paper we use the equations of paper I to obtain an equilibrium
with Gaussian shapes for the gas- and longitudinal magnetic field pressure profiles.
The contents is as follows: in Sect. 2 we briefly lay out the equations and method
of solution. In Sect. 3 the Gaussian solution is obtained. The conclusions are
summarized in Sect. 4.

2. MHS EQUATIONS

We want to calculate the static equilibrium of a horizontal magnetic flux tube
embedded in a stratified external medium. Instead of using an orthogonal system
of coordinates, we introduce the non-orthogonal set (u,¢,y) (see Fig. 1) in which
u is constant along the lines of force of the transverse field B, (= B — B¥e,). The
value of u is fixed by requiring that u = r = z along the vertical semiaxis ¢ = 0.

FIGURE 1. The coordinates and some of the symbols used in the paper
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The set (u, ¢, y) has the advantage of strongly simplifying the boundary condition:
the. surface of the tube corresponds to one of the u = const surfaces, u = U say.
The transformation of the solenoidality equation and of the equilibrium equation
from the Cartesian coordinates to (u, ¢, y) is detailed in paper I. Here we just write
the results.

In the new unit basis (ey,ey,e,), B; has a single component, B, = B?e,.
This permits immediate integration of the solenoidality equation. In fact, the latter
becomes identical to the requirement that there exists a function b(u) such that

o= VT ), (1)

Ty

where b has the dimension of a magnetic field. The subscripts ,u and ,¢ indicate
the partial derivatives with respect to u and ¢. Next, the scalar product of the
momentum equation with e, implies that BY be a function of u only, BY = BY(u),
whereas the scalar product with e, and ey give after some simplifications:

0 BYv?  p2 0z
0_--82<A A F) Ap Gg—+——Q, 2)
3Ap 0z
0= 3¢ - Ap G6¢ (3)
respectively. The functionals F' and @ are:
re2 + 12 dF vF (rg? + 17"
F= " + T Q= Tule R. = Te r (4)
rir? 96 2(rg?+r%) R’ (g —rres+r?)

G is the modulus of the gravitational acceleration G, R, is the radius of curvature
of the By line of force, and the coordinate z is an unknown function of u and ¢, viz.
z = r(u, ¢) cos ¢. In these equations we have used the definitions

AP(“’ ¢) = p(u, ¢) — Pe [Z (u’ ¢)] ) Ap(u, ¢) = p(u, ¢) = Pe [2 (u7¢)] ’ (5)

instead of p and p and subtracted the external stratification from the internal equi-
librium equations. Eq. (3) is equivalent to the condition of hydrostatic stratification
of the gas along the transverse magnetic field lines. Equations (1) through (4) are
complemented with the two boundary conditions:

By2 2
0=Ap+—87r—+8—7rF’ atu=U (6)
u=r, for¢=0, Q)

and the equation of state. Finally, for equilibrium in the absence of external flows,
the total buoyancy of the tube has to be zero:

2w pU
0=G / Aprrydudé . (8)
o Jo
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To solve the nonlinear system of equations (1)—(8) we assume that our tube has
a small radius, U, as measured by the local pressure scaleheight H, i.e. U/H. < 1.
In this limit, the gravitational terms in the equations are only a perturbation to the
equilibrium. Thus, we can consider, first, an axisymmetric magnetic flux tube in
equilibrium with a background plasma of constant pressure (G = 0), and second,
the same equilibrium plus a linear correction due to gravity. To that end, we define
for each physical quantity a zero- and a first-order symbol:

Ap = APO(u) [1 + Apl(ua¢)] y Pe = Pe0 [1 +pel (ua ¢)] , T=1u [1 + 1’1('“, ¢)] P

(9)
and introduce them in the equations (1) through (8). To zero order (G = 0) we
obtain the customary equations describing the equilibrium of an axisymmetric flux
tube embedded in an external medium of constant pressure peo (see paper I and
Parker 1979). To first order, Eq. (1) transforms into:

bs) .
Bf =b, - 30 (ur1) (10)

whereas the momentum equations (2)~(3) together with their boundary conditions
(6)—(7) lead to:

2 2
0=-282 G sing +;9%(6LM) " b_o_l(M Triet rl’”‘”) ()

du 4t Ou AT u Ou
6Ap1 .
0= —Apo—a¢—+Apo Gusing (12)
_ 6Ap1 boz 6(ur1,¢) _
0= Apo—a‘;s— - . o s atu=U (13)
O0=r;, for¢=0. (14)

(11) and (13) do not result from the direct linearization of the ‘radial’ momentum
equation (2) and of its corresponding boundary condition (6). In fact, they are
the first order of the ¢-derivative of (2) and (6), respectively. Thus, they must be
completed with the restriction of (2) and (6) to the vertical semi-axis ¢ = 0. Finally,
the integral condition (8) yields:

U
0= G/ Apoudu . (15)
0

3. THE GAUSSIAN MODEL

To zero order we have the customary radial momentum equation together with
its boundary condition for the three unknowns Apo(u), bo(u) = Bg (u) and B§(u)
(Apo(u) is obtained later from thermodynamics considerations). We have therefore
two functional degrees of freedom; we set by and Bj, and calculate Apy:

$2 2 2

BO — bo =m 1 E_— e_u2lw2 (16)
87l'pe0 87fpe0 1—-c w? ’
Bg2 1 _u2/w2

= - 17
87T Peo "1 ¢ (e XC) ’ (17)
Ap() 1 'LL2 _ 2/w2

— —_ = — u - - . 1

- - ((m n mwz)e (m-nx)c (18)
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¢ = exp(—~U?/w?), and w, m, n and x are adjustable parameters. It can easily
be verified that the resulting total pressure excess (the sum of (16) through (18))
has a Gaussian shape (see Fig. 2). Next, Apy is related to Apg by assuming that
the entropy is constant in the tube (so = const and s; = 0). One could solve the
problem for a more general thermodynamic state of the tube. However, this one
has the advantage of being simple and reasonable for tubes which rise through the
convection zone of the Sun (Moreno—Insertis 1983, paper I). Thus,

é@ — g~ As0/cp (1 + APO) 1 __Aﬂ + lAPO ’ (19)
Pe0 Pe0 Cp Y Pe0

with Asg fixed by the no-buoyancy condition (15). The approximate expression
on the right is only valid for large enough plasma beta and small enough entropy
difference between inside and outside the tube (which are good approximations for
tubes in the convection zone except its uppermost levels; Moreno-Insertis 1983,
paper I).

Once the zero-order equxhbnum is known, the first-order system of equations
(11)-(14) provides two equations with two boundary conditions for the five un-
knowns Apy(u, 4), Ap1(u, 8), bi(u), BY(u) and r1(u, ¢). Thus, with the assumption
of constant entropy which gives Ap; as function of Ap; there remain two functional
degrees of freedom. For simplicity we choose BY = b; = 0. As shown in paper I,
without restriction of the generality we can look for a solution r; to Eq. (11) of the
form

ri(u, @) = a(u) (cosp —1) . (20)

The introduction of (20) in (11) and two subsequent integrations with respect to u

yield:
=7£;%%[(%—%)5+A<g>], o
where A(t) = L+ _::/2 = El )= = i (zti‘ 1!’

C. = 0.5772is Euler’s constant, and Ei(t) = [* oo €' /v dv (see Abramowitz & Stegun

1964). Once ri(u, ¢) is known, Bf is given by (10). The integration with respect
to ¢ of the ‘azimuthal’ momentum equation (12) is immediate:

ApoAp1 = ApoAp] + ApoGu (1 —cos §) . (22)

Ap;i(u) et Api(u, ¢ = 0) is obtained from the restriction of the ‘radial’ momentum
equation and its boundary condition to the vertical semi-axis ¢ = 0:

ApoAp‘i=i/U [A G+ (u)] = 1 ‘w{
u u

Peo Peo v(1-¢) Heo
Asg u—-U 9n-—6m u U
(’y (1-¢) e +c(m—xn)) —+ ﬁ[erf (;) —erf(w>]
Ufw
(R [2emee LU -u=/w=] _n / ~¢ g1 23
(8+ 4) [we 5¢ 2 Juse tA(t)e . (23)
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FIGURE 2. Horizontal magnetic flux tube in static equilibrium with a stratified
polytropic atmosphere. The first plot represents the isolines of the transverse
magnetic flux normalized to its boundary value. The other plots are the profiles
of (b) BY2/87peo, (c) B%* /87peo, (d) arctan(B?®/BY), (e) Ap/peo and (£)
Ap/peo + BY? /87peo + B ¢? /87 Ppeo along the vertical z-axis (full lines). The
zero-order profiles are over-plotted (dashed lines). The core of the tube is lighter
than the outer layers. The resulting differential buoyancy is counteracted by the
reorganization of the ‘azimuthal’ field.
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The density excess can then be calculated using the condition of constant entropy:

ApoAp; 1 ApoAp, (APo 1 Apo ) 5e0
== + (e ~ =Py

+ —s 24
Peo Y Peo e0 T Y e ¥ cp (24)

with pe1(u, @), pe1(u, ) and se1(u, $) given by the external stratification.

4. CONCLUSION

We have calculated the MHS equilibrium of a twisted horizontal magnetic flux
rope in which the physical variables present Gaussian-like profiles. For brevity we
have not included the effects of an external flow, but these can easily be calculated
following the general equations of paper I.

The present solution has been used as initial condition in the 2D numerical
simulation of the rise of thick magnetic tubes across the uppermost 20,000 km of the
convection zone. In this region the departure of the inner structure of the tube from
the thin flux tube approximation must become apparent. This will be increasingly
the case as the tube approaches the photosphere. Gaussian initial conditions have
favorable properties as regards the development of numerical instabilities in the
subsequent evolution of the magnetic tube: this is known from general theoretical
considerations and has been shown also in the actual numerical calculations. The
results of these calculations will be published in a paper in preparation.
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