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I. Total cell elongation rate is proportional to cell length 

 

Fig. S1. Growth of non-dividing C. crescentus cells. After growth in PYE medium 
containing xylose at 30ºC, CJW1819 cell populations (CB15N ∆creS ftsZ::pBJM1) were 
synchronized and swarmer cells were transferred to pre-warmed PYE medium containing 
glucose instead of xylose to stop the expression of the cell division gene ftsZ (1). Cells 
were then grown in a liquid culture at 30ºC in a rotary shaker. Aliquots were taken every 
hour and placed on agarose pads for immediate phase contrast microscopy imaging.  
A. Sample images of the cells at the beginning and at the end of the experiment. Bar: 10 
μm. B. Plot of the mean cell length in the population as a function of time since 
synchrony. Note that the initial lag corresponds to recovery after the cold shock produced 
by synchrony. Error bars indicate the standard deviation of the cell sizes in the 
population. The length of the cells increases exponentially, indicating proportionality of 
the growth rate to the cell length. One representative experiment out of 3 is shown; 5608 
cells were analyzed in this experiment. 
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II. Mathematical description of the cell geometry and mechanical 
stresses 

 

Fig. S2. Description of the cell geometry and definition of the mathematical symbols. 

For the purpose of this study, we approximate the cell wall geometry of a curved rod-
shaped bacterium as a section of a torus of constant centerline curvature and nearly 
circular cross-section of constant diameter. In each point of the centerline we define a 
local Cartesian coordinate system with the origin at the center of the torus and coordinate 
x pointing perpendicularly to the plane that contains the centerline of the cell. The 
coordinate y points outward along the direction of the radius of curvature of the cell and 
intersects the centerline of the cell at the local surface point being considered. The 
coordinate z is perpendicular to the xy plane such that the z direction is parallel to the 
tangent to the centerline of the cell (Fig. S2). The y axis intersects the cell surface in two 
points. We will refer to the surface intersection point with larger y coordinate as “outer” 
and the other as “inner”. Within this framework, the cell shape is characterized by only 
two parameters: the radius of the cross-section r, which does not change during growth 
and is considered a property of the bacterial strain and of the environmental conditions, 
and the radius of the centerline R, which may change during growth. 

In reality the toroidal shape is only an approximation: a young short (swarmer) C. 
crescentus cell has a variable cross-sectional diameter, being thinner near the poles, and 
its shape can only roughly be described as having a constant diameter. Because of the 
high turgor pressure and the low resistance of the PG to bending and shearing, most of 
the elastic force in the cell wall comes from stretching deformations. Therefore, turgor 
pressure is almost entirely opposed by the tension times the curvature of the wall along 
the two principal axes. Due to its much smaller curvature, the contribution of the stress 
parallel to the main axis of the cell is much smaller than that in the cell cross section. As 
a result, the cell cross-section is nearly circular. More exactly, the deviation from the 
circular shape scales as 2( )O ε , where ε  is the ratio between the radius of curvature r of 
the perpendicular cross section (xy-plane) and the radius of curvature R of the centerline 
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(i.e. /r Rε = ; for the proof, see section III below). Thus, ε can be considered zero for 
cell curvatures that are small compared to the inverse radius of the cell’s cross-section. 
For example, this is the ca wild-ty escentus cells, for which r ≈ 0.25 μm and 
R ≈ 2.5 μm (2), yielding 0.1

se for pe C. cr
ε =  and 2 0.01ε = . In order not to obscure our model with 

non-essential details, in our calculations we neglect the small dependence of the 
straightening mechanism with respect to sm l deviations in the cell radius along the 
leng

al

al
th of the cell.  
 To describe mechanical stresses and growth rates, consider a thin segment of a 

bacterium between two planes perpendicular to the centerline located symmetrically 
around the xy plane (Fig. 2B and Fig. S2). If the cell length is significantly longer than its 
width, we can consider only one such segment from translational symmetry (or rotational 
symmetry around the x axis). We also define the “parallel” stress T  as the component of 

the mechanical surface stress in the direction par lel to the cell axis direction (z-direction 
in the xy plane), and the “perpendicular” stress T⊥  as the mechanical surface stress along 

the 

s s t to simply postulate this behavior without 
going into the underlying details.

uati ain

cell wall in the plane perpendicular to the centerline (xy-plane at z=0).  
In this study we consider the growth anisotropic, i.e. a rod-shaped cell grows along its 

body while keeping the diameter constant. Data suggest that this behavior involves the 
use of MreB protein (3) and may be achieved by prestretching glycan strands being 
incorporated (4), though here it i ufficien

on [2] in

 

III. Obtaining the straightening coefficient from experimental data 

Here we derive the approximate law of curvature decay that we use to fit our 
crescentin disruption experiments. In the following we assume first that all crescentin 
filaments get disrupted instantaneously. In a second part of this derivation we make a 
correction to take into account the initial period during which crescentin structures are 
still intact in some of the cells. E  the m  text implies that the curvature of 
a cell declines exponentially as /( ) t

iC t C e
q

τ−= , with iC  being the initial curvature of this 

cell and τ  the decay time. For simplicity, we assume that the initial distribution of the 
curvature of the fre  cells e  cultu ) is Gaussian with mean  and re 0C(i.e. cells in liquid

standard deviation , i.e.  0σ

( )2
0

2
00

1( )ini Cρ ex
2π σ

)p
2

C C
σ
−

= −
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, C ( , .  [S1] ∈ −∞ ∞
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We also assume that the decay rate of the curvature is the same for all cells. As a 
consequence of these two assumptions the time-dependent distribution ( , )s C tρ  of 

curvature remains Gaussian for all time with mean and standard deviation that varies 

according to 0( )
t

mC t C e τ
−

= ,  and  [0, )t∈ ∞ 0( ) /s mt C Cσ σ= , respectively. When the free 

cells are placed on agarose-padded slides, an additional curvature is added to each cell, 
which is also assumed to be Gaussian-distributed with zero mean and standard 
deviation rσ , and independent of the original curvature of the cell. 

2

2

1( ) exp
22r

rr

CCρ
σπ σ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, ( , )C∈ −∞ ∞ . [S2] 

 Thus, the distribution of curvature of the cells on a pad is a convolution of the two 
mentioned distributions, which is easy to compute for the case of two independent 
Gaussian distributions: 

( )2

2

1( , ) ( , ) ( ) exp
22

m
c s r

C C
C t C t Cρ ρ ρ

σπ σ

⎛ ⎞−
= ⊗ = −⎜ ⎟

⎜ ⎟
⎝ ⎠

, ( , )C∈ −∞ ∞ . [S3] 

where  0( )
t

mC t C e τ
−

=  as previously and 2 2 2 2
0( ) ( ) ( / )r s r mt t Cσ σ σ σ σ= + = + 2

0C . Note 

that only the absolute values of the curvature can be measured, so the values of negative 
curvature (i.e. a cell curved in the opposite direction) will be detected as their absolute 
values. Thus, the distribution becomes: 

( , ) ( , ) ( , )c cC t C t C tρ ρ ρ



In order to incorporate the effect of non-simultaneous crescentin structure disruption 
in different cells we consider the probability density as a sum of probability densities of 
multiple subpopulations, in each of which the disruption happened at the same moment, 
different for different subpopulations. Thus, the size of the subpopulation disrupted at the 

moment t is ( )dn t
dt

− , where n(t) – experimentally measured fraction of the cells with 

intact crescentin structure. The probability density to have particular curvature C at a 
given time t becomes 

( )
0

( , ) ( , ) dnC t C t t t dt
dt

ρ ρ
∞

Σ ′ ′= − −∫ ′ .  [S5] 

In practice, only a few points of n(t) are known, thus for fitting purposes this integral 
can be approximated by a simple sum of several terms:  

( ) ( )( ) (
2

1
0 0 1

1
, , 1 ,

2
i i

i
t

t tC t C t t n C t n nρ ρ ρ −
Σ −

=

+⎛ ⎞= − − + − −⎜ ⎟
⎝ ⎠

∑ )i

0 )m

, [S6] 

where ti = i h after the beginning of experiment. 
In order to fit the data we used the Maximum Likelihood Estimation method (5). To 

do so, for each value of data (Ci, ti) the probability was calculated that the curvature 
between Ci and Ci + dC (dC is an infinitely small constant) can be obtained at the given 
time point ti given the parameters Cm, C0, σ, τ. The likelihood, or the probability that each 
point was calculated given the parameters, is the product of these probabilities: 

( )0 , , , ( , | , , ,m i i
i

C C C t C Cσ τ ρ σΣ=∏L τ

m

 [S7] 

The maximum likelihood is determined as the value of the parameters, at which the 
likelihood reaches maximum. For practical reasons, however, we maximized the 
logarithmic likelihood function: 

( ) ( )0 0 0, , , ln , , , ln ( , | , , , )m m i i
i

C C C C C t C Cσ τ σ τ ρΣΛ = = σ τ∑L . [S8] 
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IV. Mechanical stress in a curved rod-shaped cell and corresponding 
deviation from the circular cross-section 

1. Perpendicular stress 

Consider the equilibrium of a small curved segment of the cell surface with two 
boundaries parallel to the centerline (x=const planes) and the other two boundaries in two 
perpendicular cross-sections located symmetrically around the xy-plane (Fig. S2, Right). 
We will use the perturbation method considering a straight cell as the zero order 
approximation and using the ratio of the cross-section and the centerline radii /r Rε =

( )wT s⊥

 as 
the small parameter. Denote with w and w+dw the lengths of the segment borders along 
the surface in the planes x=const, and with s the surface arc length in the planes 
perpendicular to the centerline. The projections of the forces acting on the segment onto 
its tangential plane consist of the force on its lower (on the figure) boundary , the 

force on its upper boundary ( ) ( )w dw T s ds⊥+ + , and the projection 

( ) ( )sin w dsT s
y

φ εψ+  of the forces acting on the sides ( )dsT s

)

. For the later the 

projection onto the y axis gives the factor w/y and the subsequent projection onto the 
plane tangential to the surface gives the factor sin(φ εψ+ . The stresses in the 

perpendicular and parallel directions, ( )sT  and ⊥ ( )T s , as well as w, dw, s, ds, and the 

angles φ , and ψ  are shown on Fig. S2. Because the segment is not moving, these forces 
are in equilibrium: 

( ) ( ) ( ) ( ) ( )sin dsw dw T s ds wT s wT s
y

φ εψ⊥ ⊥+ + = + + . [S9] 

Now we divide both sides of the equation by to obtain an expression for the 
derivative of perpendicular stress. On the next step we rewrite the resulting right-hand 
side only keeping the terms linear in ε (if written in terms of r and T , T ), remembering 

that , 

wdy

⊥

/ /dw dy w y= ( )/ sindy ds φ εψ= +  and ( )1 ( )y R O ε= + : 

( ) ( ) ( )1 1 sin
T TT s ds T sdT dw dsT T

dy dy w dy y dy R
φ εψ ⊥⊥ ⊥⊥

⊥

−+ −
= = − + + = . [S10] 
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Note that in for a straight cell 2T⊥ T=  because the equilibrium of forces in the xz 

plane requires that the pressure P be compensated by the parallel stress force as 
2 2r P rTπ π=

2r dy P dy=

. Similarly, the equilibrium in the yz plane requires that the pressure force 

on a segment of length  is compensated by perpendicular stress force 
. Thus, we have 

dy
2 T⊥ 2T rP⊥ T= =  (see also (6)). The same would be true for 

a curved cell to zero order in ε . Now we go back to the equation [S10], integrate it and 
rewrite in terms of . We get:  (ξ = −y R) / r

( 20
0 2

TT T O )εξ ε⊥
⊥ ⊥= − + .  [S11] 

Here  and later  are the values of perpendicular T0T⊥ 0T ⊥  and parallel T  stresses, 

respectively, at the centerline . y R=

2. Deviation from the circular cross-section 

We describe the shape of the cross-section with the angle φ  and the distance from the 

center ( )(1r f )ε φ⋅ +  (see Fig. S2, Left) and write the equation of force balance, this time 

along the normal to the surface. 

(cosP C T C T )φ εψ⊥ ⊥= − + .  [S12] 

Now we rewrite the curvatures C  in terms of inverses of length variables: 
1/ ( ( ))C r r fε φ⊥ ′′= +  and  where 1/C = y ( )f φ′′  represents the second derivative of f. 

Substituting into the expression for P together with the expansions of  (see above) and 

 to first order in 

T⊥

T ε  ( 0T T εαξ= +  with α a constant) we obtain: 

( ) (0
0 0

1 1 cos
2

TP T T
r r f y

)εξ εαξ φ
ε

⊥
⊥

⎛ ⎞= − − +⎜ ⎟′′+ ⎝ ⎠
εψ+ . [S13] 

Keeping only the contributions from the zero and first order in ε  and remembering 

that 1/ R r/ε= , we get: 
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( ) ( )( )(0 01 1 1 cos s
2

P f T T
r R

)1 1 inεξε εξ αεξ φ εψ φ⊥′′= − − − − + −⎜ ⎟
⎝ ⎠
⎛ ⎞ , [S14] 

and finally: 

00 0 0 cos
2

TT T TP f
r r r r

ε εξ ε φ⊥ ⊥ ⊥′′= − − − .  [S15] 

Considering the equation [S15] to zero order in ε  we have 0 /P T r⊥= . Considering 

the equation [S15] to first order in ε  and using the relations  and 

 we obtain that 
0 0 / 2T T⊥=

(cos 1ξ φ ε= − + rf ) f ′′  must be zero to zero order in ε :  

0f ′′= .  [S16] 

Integrating twice in φ  we get 1( ) 2f c cφ φ= +  where c1 and c2 are two integration 

constants. Because f is a symmetric function that is zero at 0φ = , we obtain that  

( ) 0f φ =   [S17] 

to zero order inε .  

3. Parallel stress 

Consider the stress at the intersection of the cell surface and the xy plane. From the 
symmetry of the problem with respect to the yz plane, the stress on the surface can be 
expressed as a function of y only. Note, that the extension of the cell wall material due to 
turgor pressure is relatively small, reaching about 17 % for E. coli (7), as compared to the 
maximum strain that the PG can withstand, which is about 300 % (8). As for the majority 
of systems under relatively small strain, we therefore consider that local deformations are 
linear with respect to stresses and follows Hook’s law, thus providing the linearity of the 
strain vs. stress dependence to the whole system. Mathematically this linearity can be 
expressed as T  being a linear function of y: ( )0 1 ( )T T g y R= + ⋅ − . Here g is a constant 

coefficient. From the equilibrium of the moments due to the parallel stress and the 
pressure around the x axis we can write 
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( ) ( )y R T ds y R PdA− = −∫ ∫ ,  [S18] 

where  is an area element of the cross-section. Now we substitute the value for T  and 

the approximations to first order in 

dA

ε  for the area element ( )2 1/ 2dA r f dε φ= +  and the 

arc length element ds r dφ= . The equation [S18] becomes:  

( ) ( )( ) ( ) ( )
2 2

2
0

0 0

1 1/ 2y R T g y R rd y R Pr f d
π π

φ ε− + ⋅ − = − +∫ ∫ φ . [S19] 

In a straight cell, the symmetry of the geometry implies that T  does not depend on φ  and 

we have  

( ) ( )
2 2

2
0

0 0

1
2

y R T rd y R r Pd
π π

φ φ− = −∫ ∫ .  [S20] 

Subtracting the equation [S20] from [S19] we obtain: 

( ) ( )
2 2

2
0

0 0

T g y R d P r y R f d
π π

φ ε− = −∫ ∫ φ . [S21] 

In the previous section we derived that ( )ε=f O
2

 (equation [S17]), which makes the 

right hand side no more than of the order of ε . Thus this is also true for the left hand 

side, i.e. ( ) ( )2 2g y R d Oφ ε⋅ − =∫ , which is achievable only if ( )2ε=g O . 

HenceT T ( )2
0 O ε= + , the parallel stress has no correction in the first order inε . 
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V. Mathematical relationship between the straightening coefficient 
S and the processivity of the glycan strand synthesis. 

 

Fig. S3. Relationship between the straightening coefficient and the processivity of PG 
synthesis. The model assumes a constant probability to initiate synthesis  per unit area 
and a constant termination rate  per unit length of the synthesized glycan chain. A. The 
geometry of the model. B-E. Individual steps in the calculation of the straightening 
coefficient. B. Normalized probability of synthesis initiation as a function of the position 
on the circumference, 

initk

tP

)init (p φ . C. Probability density function of the length of the 

synthesized chains, ( )clp s

( )e

. D. The increment to the length in the z direction per 

initiation event, singlL φ+Δ . E. The increment to the length in the z direction per unit 

time, ( )L φΔ . See the text for the definitions of the mentioned variables. The numerical 
values of the parameters used to produce the figures are as fitted for the experimental 
data. 

We computed the straightening coefficient as a function of the processivity of the PG 
synthesis machinery under the following assumptions, justified in the main text: (a) 
Glycan strands are oriented perpendicularly to the main axis of the cell. In real cells we 
expect deviations from the perpendicular orientation, but these should only slightly 
increase the computed value of the processivity. (b) The rate of synthesis initiation per 
unit area  is uniform over the cell surface. (c) After initiation, synthesis proceeds in 

either direction perpendicular to the cell axis. (d) The probability per unit length of the 
synthesized glycan strand to terminate the synthesis, , is constant.  

initk

tP
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In a curved cell, the pole-to-pole material lines on the outer side of the cell are longer 
than on the inner side. Therefore the probability to initiate synthesis will be larger on the 
outer side of a curved cell because of the difference in the existing length of the segment. 
More precisely, the infinitesimal surface area on a small toroidal segment (Fig. 2B and 

Fig. S3A) centered on the xy plane is 1 cosr dL r d
R

φ φ⎛ ⎞−⎜ ⎟
⎝ ⎠

 where dL  is the 

infinitesimal width of the segment averaged over the cross section, which is the same as 
the infinitesimal length along the centerline. Here / 2s rφ π=  is the angular coordinate 
along the circumference (Fig. S3B). Thus, the probability per unit time and unit length 
along the center line of the cell to initiate synthesis between φ  and dφ φ+  is:  

init init( ) 1 cosrp d k r d
R

φ φ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

φ φ .  [S22] 

From the assumption (d), constant probability of synthesis termination, we obtain an 
exponential distribution for the length of the synthesized chains with the probability 
density function ( ) ( )cl 0 0exp / /p s s s= −

0 t

s  (Fig. S3C). Here  and the mean chain 

length is .  

0s >

1/s P=

The next step is to calculate the average amount of material single ( )L sΔ  that is added in 

the z direction (main axis direction) per initiation event as a function of s, assuming that 
synthesis starts at some given point along the periphery. Without loss of generality we 
can choose that point to be s = 0. We calculate the cumulative distribution of (cl )p s  

take into account that strands that are longer than the circumference of the cell contribute 
more than once to the elongation of the cell at a given s. First, we consider only the 
synthesis that proceeds in the positive s direction:  

 and

( ) ( )

0

0

0
single cl

0

0

0 0

/
0

2 /

2
2

2exp
2

e
2 1 e

k s

k

s s

r s

LL s p s rk d

L s rk
s

L
π

π

π

∞∞
+

=

∞

=

−

−

Δ ′ ′Δ = +

⎛ ⎞Δ +
= −⎜ ⎟

⎝ ⎠
Δ

=
−

∑∫

∑

s

,  [S23] 

where [0,2 ]s rπ∈  and  is the width of one PG insert (equal to the width of 2 strands 

for the three-for-one model, where 3 strands get inserted and one gets removed; the value 
0LΔ
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however can be different if the three-for-one model is not correct). The factor ½ comes 
from the fact that the two orientations of the synthesis direction are equally probable with 
the probability 1/2 each. Rewriting in terms of /s rφ ≡  and now taking into account 
synthesis in the other direction we finally obtain: 

( ) ( ) ( )
0 0

2

0
single single single 2

2
LL L L

0

2
e e

1 e

φ φ π

πφ φ π φ+ + Δ
Δ = Δ + Δ − =

φ φ

φ

−
−

−

+

−

, with [0,2 ]φ π∈ . [S24] 

 
Taking into account both the initiation and termination of the synthesis, we can 

finally calculate the rate of growth of the cell in the direction of the centerline as a 
function of φ  by convolving the initiation probability per unit time and length ( )ip φ  with 

the average amount of material single ( )L φΔ  contributed by a single initiation event 

( ) ( ) ( ) ( )

0 0

0

init single init single
2

( ) 2

0 init
2

2

init 0 0 2
0

1

e e1 cos
2

1 e
11 cos

1

L p L p L
L t

L r k r d
R

rk L r
R

φ

φ π

φ φ φ φ π
φ φ φ

π
φ π φ

dφ φ φ φ φ

φ φ

φ φ
φ

−

′ ′− − −
−

−
−

Δ φ′ ′ ′= ⊗Δ = Δ −
Δ

Δ +⎛ ⎞′ ′= −⎜ ⎟
⎝ ⎠

−
⎛ ⎞

= Δ −⎜ ⎟+⎝ ⎠

∫

∫ .  [S25] 

On the other hand, from equation [1] in the main text and the facts that 1 (1 / )L L r R= +  

and ( )1 cosL L L L φ− = − −  we have  

( )( )1
1

1 1 1cos 1 1 cosdLdL dL dL A L S LS L
L dt Ldt L dt dt L

φ φ⎛ ⎞ ⎛ ⎞= − − = − − + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=   

( ) 11 1 cos 1 (1 ) cosA S A S
L R

L L rφ φ= − − = − −⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠

⎛ ⎞− ⎛ ⎞
⎟ , [S26] 

Comparing equations [S25] and [S26] we obtain equation [4] in the main text 
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init 0 0 init 0 0
2 2
0 0

2 2 2
0 01

A k L r k L s

sS
r s

φ

φ
φ

= Δ = Δ⎧
⎪
⎨ = =⎪ + +⎩

.  [S27] 

This result establishes a direct connection between the processivity of the PG 
synthesis s0 and the straightening coefficient S. The functional form is a sigmoidal 
function with Hill coefficient 2 and half max processivity reached at the radius of the 
cross-section r (Fig. 3E). For processivities much smaller than the radius r, the 
straightening coefficient increases quadratically with the processivity, i.e. . 

On the other hand, for processivities much larger than the radius r, the straightening 
coefficient asymptotically tends to 1. In intermediate cases when s0 is of the order of r, 
the straightening coefficient will be of order . 

2
0( / )S s r∝

~ 0.5S

VI. Estimating the processivity of the synthesis machinery from 
the published experimental data 

 

Fig. S4. Measuring processivity from pulse experiments in (9). A. Schematics of the 
process with the different muropeptide species considered in the text. The process is 
shown per single synthesis point (always on the right) with time increasing in steps 
required to synthesize a single subunit. B. The percentage of glycan chain termini as 
determined using a pulse experiment (replotted from (9)). Crosses: phosphorylated 
muropeptides, open circles: 1,6-anhydro ends. A hyperbolic fit is shown for the 
phosphorylated muropeptides / / ( )P L P Sn n n s t t= − with offset  ≈ 11.4 s, providing 
an estimate for the diaminopimelic acid intake time. A spline fit is shown for the anhydro 
ends, providing the estimates for the value at the offset time (t = 11.9 s, dashed line) of 
0.30 %. 

St

PG is made of glycan strands crosslinked by short peptides. Its subunit consists of a 
disaccharide of N-acetylglucosamine and N-acetylmuramic acid bound to a peptide chain, 
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containing among other amino acids an unusual one, diaminopimelic acid (A2pm), in the 
amount of one molecule per subunit (reviewed in (10)). For our purpose PG synthesis can 
be summarized into five processes: (a) initiation of glycan strand synthesis; (b) 
elongation by addition of new subunits to the growing strands by transglycosylation 
reactions (11, 12) (reviewed in (3)); (c) incorporation of new strands (possibly 3 at a time 
according to the 3-to-1 model (13)) into the PG by crosslinking to existing strands via 
peptide bonding; (d) termination of strand synthesis; and (e) cleavage of incorporated 
glycan strands. Importantly, some of the mentioned processes may occur concurrently on 
the same strand.  

The transglycosylation reaction is mediated by penicillin-binding proteins (PBPs), 
which processively add new monomers to existing strands (14). Based on the high 
processivity of the reaction observed in vitro (14), we expect that a glycan strand 
continues growing until the catalytic enzyme dissociates. Therefore, there will be an 
average length of newly synthesized glycan strands that is set by the PBP binding 
affinity. (Formally, there is also the possibility that a glycan strand could be cleaved 
between the bound PBP and the first crosslink, effectively causing PBP dissociation from 
the PG.) In this work we define processivity as the mean number of subunits incorporated 
into a glycan chain from the initiation to the termination of elongation process, when the 
chain (or 3 chains, in the three-for-one model) cannot be extended further. Thus, within 
this framework processivity is equal to the inverse of the probability of termination per 
subunit synthesized (or relative termination rate). In what follows, we use data from pulse 
experiments done on E. coli (9) to estimate the value of the processivity.  

Note that our definition of processivity is equivalent to the traditional one, defined as 
the number of subunits added by a single PBP performing the synthesis from the 
initiation to the termination. The processivity is longer than the mean mature length of 
glycan chains because the latter are cleaved by lytic transglycosylases after, and possibly 
even during, synthesis (15).  

The subunit at the growing end of a glycan strand is phosphorylated (9). In addition, 
the prevalent view is that in Gram-negative species, glycan chain ends in mature PG are 
modified to form 1,6-anhydromuramic acid (16, 17), which can be formed when a glycan 
chain is cleaved by a lytic transglycosylase (18). It is less clear, however, whether the end 
subunit remains phosphorylated after termination of glycan strand synthesis or if 
termination effectively results in the terminal subunit modified with an anhydro group 
(10, 16). For completeness, we will assume that termination can leave either a phosphate 
or an anhydro group, though one of these two may never happen – in which case its rate 
is zero (Fig. S4A). Therefore, measuring the fraction of phosphorylated subunits in the 
PG gives the number of polymerizing ends plus some fraction of the number of 
terminated ends. Likewise, measuring the fraction of anhydro groups as a function of 
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time gives information on the cleavage and termination rates. The time courses for both 
of these fractions have been measured using pulse and pulse-chase experiments with 
[3H]A2pm labeling the subunits (9). 

To estimate the rate at which termination leaves a phosphorylated subunit, we 
consider that there are two possible sources of phosphorylated ends—actively growing 
strands and terminated ends. During the pulse with label, the number of actively growing 
ends is constant per cell surface unit, and all are labeled. Note that deviations from this 
rule because of cell curvature can be considered small and are neglected here. The 
number of terminated, phosphorylated ends is also constant per cell surface unit, but the 
fraction that is labeled is proportional to the fraction of the PG that is labeled. At early 
time points following the start of the pulse, only a very small fraction of the PG is 
labeled. Therefore, the labeled phosphorylated fraction is dominated by actively growing 
ends. As time passes and the fraction of the PG that is labeled increases, terminated ends 
begin to dominate the labeled and phosphorylated fraction. Here we assume that the 
phosphate does not get removed enzymatically after synthesis because no suitable 
enzyme for this purpose is known (19). At long time points, the labeled phosplorylated 
fraction is completely dominated by terminated ends, as the fraction of labeled growing 
ends becomes negligible. Therefore, the fraction of labeled phosphorylated ends at these 
points yields the probability of termination per subunit incorporation event. From the 
long time behavior in the data (Fig. 2C in (9) replotted in Fig. S4B) we determine that 
less than 0.15% of the labeled subunits are phosphorylated, and this fraction may be as 
small as zero. 

Next we determined the probability of termination per subunit synthesized yielding 
an anhydro-modified end. These ends can be produced by either termination or cleavage. 
Just as with phosphorylated ends, the fraction of labeled anhydro ends produced by 
termination is proportional to the fraction of PG that is labeled. However, because 
cleavage continues after glycan strand incorporation, the chance that any subunit will be 
cleaved and anhydro-modified increases with time. Thus, at early time points after the 
beginning of the label pulse, it is more likely that a labeled anhydro end is a product of 
termination than cleavage. We use a spline fit to extrapolate to a short time the fraction of 
labeled anhydro groups that was measured as a function of time by Glauner and Höltje 
(Fig. 2C in (9) replotted in Fig. S4B). We extrapolate to a time of about 11 s in order to 
allow for uptake of the labeled subunits as estimated from fitting the fraction of 
phosphorylated subunits. This time is also adequate for a newly synthesized glycan strand 
to be incorporated (estimated to be <1 s with a glycan synthesis rate of 9 subunits/s and 6 
subunits/crosslink (9)). From this analysis, we find that the anhydro end-producing 
termination rate per subunit synthesized to be between zero and an upper bound of 0.55% 
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(grey zone on the vertical dashed line in Fig. S3B), with the estimated value from the 
extrapolation at 0.30%.  

The total termination probability per subunit synthesized is then estimated as 0.30 % 
with lower and upper bounds 0 and 0.15 + 0.55 = 0.7 %, respectively. Note that the 
precision of the extrapolation is not sufficient to exclude the possibility that either the 
anhydro end-producing termination rate or the phosphate end-producing rate might be 
zero. In Fig. S4B these two cases would correspond to the fit to the circles (crosses) 
tending to zero at the origin (infinity), respectively. For this reason this analysis cannot 
provide a lower bound higher than zero for the total termination probability per subunit 
synthesized. The upper bound however is unaffected by these considerations. 

The inverse of this value yields an estimate for the processivity of PG synthesis in E. 
coli of about 337 subunits, with a lower bound at 142 subunits. This number significantly 
exceeds the mean length of glycan chain in mature PG, which was found to be 31 
subunits in the same work (9). Cleavage of the glycan strands after incorporation most 
likely accounts for this discrepancy. A value of 337 subunits for the processivity in E. 
coli is consistent with the value of the processivity (279 subunits) that we found for C. 
crescentus in order to explain the rate of straightening observed in our experiments.  
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