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Supplementary Information

1. The chemotaxis system

Supplementary Fig. 1: (a) Chemotactic swimming cell exposed to a linear gradient of chemo-attractant (shaded 
background). When the motors rotate CCW (see main text) the flagella form a corkscrew bundle and the cell runs. 
When the motors rotate CW, the flagella bundle flies apart and the cell tumbles erratically. (b) Schematic diagram of 
the chemotactic pathway. Receptor complexes consist of three Tar receptor dimers (T), two CheW (W), and two CheA 
(A). The activity of aspartate (a) receptor complexes is modulated by methylation (m) and demethylation respectively 
catalyzed by CheR (R) and CheB (B).  The autophosphorylation of CheA (A), a histidine kinase, is controlled by the 
activity of the receptors. CheA catalyzes the phosphorylation of the response regulator CheY (Y). When CheY is 
phosphorylated (Yp), it binds to the cytoplasmic domain of the bacterial motor and induces tumbles. 
Dephosphorylation of CheY-P (Yp) is catalyzed by the phosphatase CheZ (Z).

2. Time stepping algorithm
In this version of AgentCell, agents are individual bacteria. A bacterium (ChemotacticCell) is equipped 
with a step method. The step algorithm is the following: 

(1) Ask the scheduler for the current time and calculate ∆t, the time elapsed since the last call.

(2) Using ∆t as argument, call the step method of each object controlled by the cell. These methods 
advance the internal state of their object by the required amount ∆t:

chemotaxisNetwork.step(∆t) 
MotionStepper.step(∆t) 
motor.step(∆t) 
flagella.step(∆t) 

(3) Using the new cellular state, calculate the next ∆t (i.e. when to schedule the next step)

(4) Schedule the next call to itself at time tcurrent + ∆t. 
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3. Time integration of the cell position and orientation
Let x be a vector representing the position of the cell in the world (laboratory) coordinates and O a 3x3 
unitary matrix representing the orientation of the cell. Any point fixed in the cell body can be converted to 
the world (laboratory) coordinates using y = O ycell + x, where ycell is the position of the point in body 
coordinates. The direction of motion n is aligned with the z-axis of the cell coordinate system, i.e. it 
corresponds to the third column of the matrix O. Neglecting inertia and translational Brownian motion, we 
can write the equations of motion as follows:

dtndx ν= ,

( )dWOdO rD2skew=  ,

where v is the constant speed during a run, Dr is the rotational diffusion coefficient, W is a 3-dimensional 
Wiener process, and the skewed matrix is defined by:
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For the numerical integration of the position we use the simple first order approximation:

( ) ( ) tt∆tt ∆+≅+ nxx ν .

The numerical integration for the time evolution of the orientation matrix O is described in the 
supplementary information. To preserve the orthogonality of the orientation matrix O we do not directly 
apply a numerical integration method to dO. Instead we multiply O by orthogonal matrices of infinitesimal 
rotations.  Following Zou and Skeel (2003), we define the angular vector increment

( ) N∆φ r
T Dt∆=∆∆∆= 2,, 321 ϕϕϕ

where

( ) )()(,, 321 tttNNNtt T WWN −∆+=∆=∆

is the increment of the 3D Wiener process and N1, N2 and N3 are independent normal random variables. To 
integrate dO we use:
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with ϕ∆R a rotation of angular vector∆φ and ( )ii ϕ∆R a rotation of angle iϕ∆ around the local i-axis. 

At each time step, the order in which the rotations R1, R2, and R3 are applied is randomized.
To test the time integration of the orientation, we simulated the evolution of 500 running cells over a 

period of 1 second. We used a constant time step of 0.01 second. The results are summarized in the 
Supplementary Figure 2, where we plot the squared angular deviation as function of time. The angular 
deviation is the angle between the initial and current directions of the cell: θ = acos[n(t) · n(t0)]. As 
expected, the time evolution of the ensemble average is <θ2> = 4 Dr t (see e.g. Berg 1993).   
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Supplementary Fig. 2. Rotational diffusion: squared angular deviation as function of time for three independent cells 
(black). The grey line is the ensemble average over a population of 500 cells. As expected, the slope is 4 Dr with Dr, 
the rotational diffusion coefficient. We used Dr = 0.062 radians2/sec, the rotational diffusion coefficient for a sphere of 
radius 1µm in a medium with viscosity η=0.027 g(cm sec)-1 and temperature T=305 °K (see Table 1 in the main text 
and Berg 1993).

4. Power spectrum of the flagella states of a single cell
Supplementary Figure 3 shows that our model reproduces the main spectral features of the laboratory data.

Supplementary Fig. 3. Power spectrum of the output of the chemotaxis system measured from one non-stimulated 
wild-type cell in a medium without attractant (Korobkova et al. 2004) (black). The output of the chemotaxis system is
the binary time series of switching events recorded from one flagellar motor. The grey line represents the average of 
1166 power spectra from the time series of the motor state of each individual cell from simulation 1.
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5. Population behavior
The square radial distance to the origin is plotted in Supplementary Figure 4 (panel a) for 3 individual cells 
(black curves) together with the population average (grey curve). The slope of the grey curve gives D = 
4.21 × 10-6 cm2/s. In this numerical setup (infinite domain, all cells started at the same point) the solution of 
the diffusion equation is simply
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Where C is the cell concentration, r is the radial distance from the origin, t is the time and N0 is the total 
number of cells. The number of cells in a spherical shell comprised between the radii r and r+∆r is therefore
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( )trN ,∆ is plotted as function of r for t=1000 sec. together with the results from the simulation in

Supplementary Figure 4 (panel b).
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Supplementary Fig. 4. Population behavior: 3D diffusion of a population of 1166 cells in a medium without attractant. 
(a) Square distance from the origin as function of time for 3 independent cells. The grey line is the ensemble average 
over the population. The slope corresponds to a random motility coefficient D = 4.21 × 10-6 cm2/s. (b) Number of cells 
in a spherical shell comprised between the radii r and r+∆r as function of radius r at time t=1000 s. The bin size is ∆r = 
0.112 mm. The grey curve corresponds to the analytical solution for ∆N(r,t) (see text above).

As complementary illustration to the chemotaxis response of a digital population, we plot the population 
average of the square vertical distance, 〈(z-z0)

2〉 in Supplementary Figure 5 (black full). After about 7 
minutes, the receptors saturate and the slope changes to 2 D t (grey lines), corresponding to the diffusion 
rate in the absence of aspartate. For comparison, the result obtained for a medium without aspartate is also 
plotted (Fig. 5, dashed line).
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Supplementary Fig. 5. Response of a population of 540 cells to aspartate. Plot of the square vertical distance as 
function of time: (black full) in the presence of a constant linear gradient of aspartate 10-8 z∇ M/µm; (black dashed) 
in a medium free of aspartate. The slope of the grey lines is 2 D. D is the random motility coefficient measured in 
Supplementary Fig. 4. The cells are swimming within a half infinite domain bounded by a reflecting boundary at z=0. 
The initial position of the cells is x0=y0=0µm and z0=20µm.

6. Scalability of AgentCell on the Jazz cluster at Argonne 
National Laboratory 
Because the current version of AgentCell does not include cell-to-cell communications, each single cell run 
is executed as an independent process: cells run on separate processors and dump data in separate files. 
Thus, the model has theoretically linear speedup for execution of cells in parallel.  In practice, there are two 
potential causes of resource contention during large-scale cluster execution. One is the file system and the
other is the associated network usage. We used the Argonne Jazz cluster's Ethernet network (Metcalf and 
Boggs 1976, IEEE 2002) to initialize the runs and to retrieve the data files for each individual cell at the 
end of execution. The retrieval was done using the Parallel Virtual File System (PVFS 2005, Haddad 
2000). Both Ethernet and PVFS are highly scalable in practice (Francis et al. 1989, Garg and Mache 2001).

7. How to use AgentCell
The following is the content of the README.txt file included with the AgentCell distribution. It explains 
how to unpack, install AgentCell and how to run an example simulation.

USAGE ON A LINUX BOX:

A Unpack:
========
1) unpack everything in a directory of your choice.
2) cd agentcell
3) chmod +x run* javacompile cleanoutput
4) if the directories run and OutputCluster don't exist, create them:
   mkdir run
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   mkdir OutputCluster 

B Compile the stochsim library. 
==============================
This will create the file libstochsim.so
1) cd lib/stochsim
2) make clean
3) make 
4) make clean
5) cd ../..              

C Compile the java sources.
===========================
1) ./javacompile

D Run one cell within a linear gradient of attractant for 5 seconds
===================================================================
1) ./runbatch 1
2) if you have 2 CPUs you can start a 2nd independent cell: 

./runbatch 2
3) if you have 3 CPUs you can start a 3rd independent cell: 

./runbatch 3
...

To submit several cells simultaneously on a cluster (distributed 
environment that runs the bps queue system), use the runpbs script.

To submit several cells on a multi-CPU machine with shared memory, use 
the runnopbs script.

E To create your own run
========================
1) cd edu/uchicago/agentcell/runs
2) cp LinearGradientAveragedMotorBergTumbleSwimmingFlagella.java 
myrun.java
3) edit myrun.java (modify boundaries, cell components, ...)
   replace LinearGradientAveragedMotorBergTumbleSwimmingFlagella
   with Myrun
4) go back to the root directory (cd ../../../..)
5) ./javacompile
6) edit the file runbatch and in it replace
        LinearGradientAveragedMotorBergTumbleSwimmingFlagella
   with 
        Myrun 
7) remove previous run outputs:
   rm -f run/*
   rm -f OutputCluster/*
8) ./runbatch 1
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