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Extracting spatial information from temporal odor 
patterns: insights from insects 
Paul Szyszka1, Thierry Emonet2 and Timothy L Edwards3   

Extracting spatial information from temporal stimulus patterns 
is essential for sensory perception (e.g. visual motion direction 
detection or concurrent sound segregation), but this process 
remains understudied in olfaction. Animals rely on olfaction to 
locate resources and dangers. In open environments, where 
odors are dispersed by turbulent wind, detection of wind 
direction seems crucial for odor source localization. However, 
recent studies showed that insects can extract spatial 
information from the odor stimulus itself, independently from 
sensing wind direction. This remarkable ability is achieved by 
detecting the fine-scale temporal pattern of odor encounters, 
which contains information about the location and size of an 
odor source, and the distance between different odor sources. 
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Introduction 
In open, aerial environments where odor plumes disperse 
by turbulent diffusion [1], the release of odorants1 into 
the air results in a plume that extends and widens 
downstream of the source (Figure 1a) [2–7]. Large-scale 
air movements cause the plume to meander, and smaller- 
scale turbulent air movements break up the plume into 
discrete filaments. As a result, an animal located down-
stream of the source encounters odor packets of high 
odorant concentration interspersed with periods of zero or 

subthreshold concentration (blanks) (Figure 1b) [2]. 
While the average odorant concentration of odor packets 
decreases with increasing distance from the source, the 
concentrations between individual packets vary greatly  
[2]. Estimating the distance to the source from odor 
concentration, therefore, requires averaging over multiple 
packets. This takes time and is less reliable than in low- 
or no-wind conditions where molecular diffusion creates 
smooth odor concentration gradients that instantaneously 
point toward the source. Far from the source, detecting 
the timing of odor packets predicts distance better than 
detecting odor concentration [8]. 

Research has repeatedly shown that, in turbulent en-
vironments, surging upwind upon detecting an odor and 
casting crosswind otherwise is a fundamental strategy for 
reaching an odor source [9]. In its simplest form, this 
surge-cast strategy only relies on local information: en-
counters with discrete odor packets (Figure 1b) indicate 
when to surge and the wind direction indicates where to 
orient. However, the temporal pattern of odor packets 
also contains information about the location (Figure 1c)  
[2,4–8], size [10], and the number of and distance be-
tween odor sources [11–13]. A long-standing question 
has been whether and how animals exploit the spatio-
temporal structure of odor plumes to make better-in-
formed decisions about approaching resources or 
avoiding danger [8,14,15]. This review focuses on tem-
poral odor patterns in open, aerial environments and 
evaluates evidence of insects’ ability to extract spatial 
information from odor stimuli alone, independent of 
wind direction detection. As the review covers studies 
on different insects, behaviors, and olfactory stimuli, we 
aim to identify possible mechanisms rather than uni-
versal ones. 

Insects can resolve fine-scale temporal odor 
patterns 
When an odor plume hits olfactory receptors in the insect 
antenna, the plume’s spatial pattern of discrete filaments 
transforms into a temporal pattern of odor packets and 
blanks (Figure 1b). These odor concentration fluctuations 
can exceed 100 Hz, as measured by a stationary sensor  
[16], with individual odor encounters lasting only a few 
milliseconds [2]. Insects’ motion and active odor sampling 
behaviors such as antenna flicking further increase the 
rate of odor fluctuation [17]. Therefore, high temporal 
precision of olfactory processing is crucial for insects to 
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1 An ‘odorant’ is a single volatile chemical compound. We use the 
term ‘odor’ for odorants released by one odor source. 
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extract spatial information about odor sources from tem-
poral odor patterns. 

Recent research has shown that insects indeed exhibit 
high temporal precision in olfactory processing, ex-
ceeding previous estimates. Olfactory receptor neurons 

can respond to odorants within less than 3 ms and ex-
hibit less than a millisecond of jitter between the first 
odor-evoked spikes [18], and they can resolve odorant 
concentration fluctuations surpassing 100 Hz [19,20]. 
Additionally, adaptation mechanisms in olfactory re-
ceptor neurons ensure precise detection of the timing of 
odor packets across a broad range of concentrations [21]. 
This concentration invariance of temporal precision is 
likely important in turbulent plumes where the con-
centration of odor packets is distributed as a power law  
[2]. Projection neurons, the postsynaptic partners of ol-
factory receptor neurons, may even display faster re-
sponse dynamics than olfactory receptor neurons [22]. 

Temporal precision is also important for the rapid en-
coding of odor identity, which can take place in just tens 
of milliseconds, potentially through reading out spike 
rate changes across the earliest-responding neurons or 
differences in response latencies across neurons [23]. 
Additionally, downstream neurons in the mushroom 
body have short integration time windows and can re-
spond precisely to odorant onsets [24,25]. The high 
temporal precision of neural odor responses enables in-
sects to rapidly identify odors. For example, mosquitoes 
can identify 30-ms CO2 packets [26], and fruit flies can 
identify and behaviorally react to specific odors within 
85 ms of exposure [27]. 

Where is the odor source? 
In turbulent environments, most animals locate odor 
sources by combining odor and wind detection, surging 
upwind when encountering odor, and casting crosswind 
when losing the plume [9]. This strategy can be successful 
even if the odor is only used to detect the edge of the 
plume and surges and casts emerge from sensori-motor 
reflexes, as demonstrated in flying flies navigating narrow 
odor plumes [28]. However, recent studies with fruit flies 
and mosquitoes in wind tunnels discovered a history de-
pendence in flight decisions during odor tracking [29]. 
This suggests that insects not only detect whether they are 
inside the odor plume but also can hold some of that in-
formation in memory and use it to modulate navigation 
over timescales longer than individual odor crossings. 

Relevant to odor source localization is the frequency of 
odor packets, the duration of blanks, and the inter-
mittency (the proportion of time the odor concentration 
exceeds the detection threshold2) (Figure 1b and c). 
Walking and flying moths [30–33], fruit flies, and mos-
quitos [28,29,34,35] bias their motion upwind in re-

Figure 1  
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Turbulent diffusion creates spatiotemporal odor patterns that convey 
source distance information. (a) Photograph of a meandering odor 
plume visualized with TiCl4 smoke. (b) A typical time series (arbitrary 
units, a.u.) of odorant concentration at a specific point in space. Red 
triangles represent encounters with filaments (odor packet) and filament 
clusters (clump), when the local concentration surpasses the detection 
threshold of a sensor (e.g. a physical detector or insect olfactory 
receptor neurons, dashed line). (c) Horizontal section through an odor 
(NH3) plume with color-coded intermittency. The intermittency 
decreases with increasing downwind distance from the odor source and 
plume centerline (dashed line). 
(b) Adapted from Ref. [2]. (c) Adapted from Ref. [6].   

2 In common usage, ‘intermittent’ refers to a signal that is repeatedly 
interrupted by periods of no signal. In physics, this is quantified as 
‘intermittency’, which is the proportion of time the signal is on. This 
definition can be confusing because a large ‘intermittency’ means the 
odorant is present most of the time. For example, a continuous odor 
stimulus would have an intermittency of 1 
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sponse to both frequency and intermittency of odor 
encounters, and when a blank is too long, they cast 
(when flying) or stop or initiate a search (when walking). 
Computational studies showed that there is a trade-off in 
using frequency and intermittency and suggest animals 
should actively modulate how they weight these two 
temporal features of the odor stimulus [36]. Indeed, in 
walking flies, intermittency dominates upwind motion in 
environments with high-duration, low-frequency odor 
packet encounters [34], whereas frequency dominates in 
low-duration, high-frequency environments [35]. More-
over, walking flies exhibit both temporal novelty de-
tection [37] and offset response [34], meaning that when 
a fly encounters a clump of odor packets (Figure 1b), it 
can respond differently to the beginning and end of that 
clump than to fluctuations within [37]. These findings 
suggest that flies modulate their behavioral response 
according to the temporal statistics of odor packets, and 
thereby extract spatial information and use it for source 
localization. 

Insects can also detect odor concentration gradients by 
comparing signal intensity between their two antennae  
[38,39] and use this information for odor source locali-
zation. In turbulent plumes, this is likely useful close to 
the source, where a meandering but continuous plume is 
emanating (Figure 1a). Further downstream from the 
source, turbulent air motion randomizes the concentra-
tion gradient direction, making it less informative for 
navigation [8]. However, bilateral olfactory sensing can 
still be useful because it enables insects to detect the 
direction of motion of odor packets from the temporal 
correlation of the signal between their two antennae in a 
computation analogous to detecting motion direction in 
vision [40]. Owing to turbulent diffusion [1], odor 
packets typically move away from the plume’s centerline 
(Figure 1c) [6,7,41]. Consequently, detecting this odor 
motion reveals the direction toward the centerline of the 
plume, offering a navigational cue independent of wind 
direction, which enhances flies’ navigation capabilities 
(Figure 2) [40]. 

While these studies show that the local spatiotemporal 
structure of an odor plume can modulate insects’ beha-
vior, whether the larger-scale spatiotemporal structure of 
odor plumes can do so is less clear. The overall shape of 
an odor plume and the spatiotemporal statistics of odor 
packets within it vary as a function of downwind and 
crosswind distance from the source, as well as distance 
from the boundary or floor. For an animal moving to-
ward the source, the odor plume narrows, and the fre-
quency of odor encounters and the intermittency 
increase (Figure 1c) [3,4,6]. And when moving crosswind 
toward the centerline of the plume, the fluctuation in-
tensity decreases, and the intermittency increases 
(Figure 1c) [6,7,41]. Consequently, by integrating sta-
tistics from odor encounters over time, animals may be 

able to ‘climb’ these gradients of signals statistics to-
ward the source [42]. However, this navigation strategy 
requires retaining information in memory to enable 
comparison of odor encounters over time. Moreover, 
sufficiently far from the source, odor packets are in-
frequent, making such a gradient-ascent strategy more 
difficult. In this case, an ‘infotaxis’ strategy could be 
more effective, where the animal balances random ex-
ploration for accumulating information about the po-
tential source location and exploiting that knowledge to 
direct their search toward the odor source [43,44]. 

How large is the odor source? 
Close to the source, most concentration fluctuations re-
sult from the meandering of the plume (Figure 1a) [4]. A 
larger odor source produces a more homogeneous plume 
(Figure 3a) with larger intermittency and smaller fluc-
tuations of the concentration, while a smaller source 
produces a more filamentous plume (Figure 3a) with 
smaller intermittency and larger fluctuations of the 
concentration [10]. 

There is limited evidence regarding insects’ ability to 
detect an odor source’s size through olfaction. A. aegypti 
mosquitoes engage in strong upwind flight upon brief 
and fluctuating encounters with CO2 in filamentous 
plumes (Figure 3b). Conversely, skin odors in fila-
mentous plumes do not induce upwind flight, but they 
do so when presented in a homogeneous plume, re-
sulting in longer and more continuous odor encounters 
(Figure 3b) [26,45]. The origin of these differences in 
behavior is unknown. One interesting possibility is that 
mosquitoes search for CO2 and skin odor sources that 
match the size of their hosts [45]. Brief and sparse CO2 
encounters would suggest that the CO2 is emitted from a 
small source, such as the mouth and nostrils, while 
longer and more continuous skin odor encounters would 
indicate release from a larger body. Note that variations 
in temporal odor patterns associated with size and dis-
tance can be similar. For example, continuous odor en-
counters can arise because the source is large [10] or 
because it is close [4] or both. Therefore, size detection 
could depend on the context, for example, a mosquito 
could extract size information by comparing the tem-
poral patterns of concurrent CO2 and skin odors. 

Do mixed odorants come from the same or 
different sources? 
Olfaction allows animals to identify odor sources without 
actually visiting them. But does it also tell them where 
these sources are relative to each other? A natural odor 
source typically emits a mixture of odorants whose ratios 
determine the perceived odor identity. Molecular dif-
fusion may change odorant ratios over time because 
diffusivity depends on molecular weight. But this effect 
is thought to be negligible because odor dispersal via 
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molecular diffusion is much slower than via turbulent 
diffusion [2] (but see Ref. [46] for conflicting evidence). 
Therefore, odorants from a single source reach insect 
antennae simultaneously. However, when odors from 
multiple sources mix, they form plumes with varying 
spatiotemporal structures (Figure 4a) [2,12,47,48]. This 
results in differences in arrival times and concentration 
fluctuations of odorants from different sources (Figure 4a 
and b), reducing the temporal correlation between odor 
encounters (Figure 4c) [13]. 

Animals could exploit these temporal cues to percep-
tually segregate mixed odors from different sources [11], 
a process analogous to concurrent sound segregation 
based on stimulus-onset asynchrony [49]. Indeed, stu-
dies on mate choice [50–52], host plant selection [53], 
and foraging [54–56] suggest that insects perceive two 
odorants as separate sources when their onsets are 
asynchronous and as one source when their onsets are 

synchronous. For example, a male corn earworm moth 
takes off for a search flight when it encounters packets of 
a female corn earworm moth’s sex pheromone compo-
nent (A), even when it is mixed with sex pheromone 
packets (B) of another moth species. However, when 
packets of A and B are released from the same source, 
the moth does not take off. This behavior has been 
explained by the synchrony between A and B, indicating 
that they originate from the same source — a moth of a 
different species [50]. Similarly, honey bees and fruit 
flies prefer a mixture of an aversive and attractive 
odorant when the odorants arrive with a few-milli-
second difference (Figure 4d–e), indicating that the 
sources are spatially separated [54,55]. 

However, animals could use other cues to segregate 
odorants from different sources. For example, they could 
recognize the target odorant during periods of its pure, 
unmixed presence or use spatial sampling to detect 

Figure 2  
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Detecting the direction of odor motion improves source localization. (a) To disentangle the effect of odor motion and wind stimuli, and to have high 
precise temporal control over the olfactory stimulus, the flies’ olfactory receptor neurons expressing channel rhodopsin were optogenetically activated 
by projecting a video of a real odor plume onto them (left). The plume video was played either normally or in reverse. Reversing the playback reverses 
the sign of the spatiotemporal correlations and therefore of the perceived odor motion direction but maintains the statistics of odor intensity and 
gradients. Trajectories of flies during normal playback (middle) and during reverse playback (right). Black/gray denote successful/unsuccessful 
trajectories. (b) Flies are more likely to reach the source in normal playback (magenta bar), demonstrating that odor motion sensing enhances odor 
source localization. The probability density functions (pdf) of flies’ lateral (y) position, in the downwind (left) or upwind (right) end of the arena. (c) Flies 
turn against the sum of the directions of the wind and of the odor motion. The back square and gray and black circles indicate the fly body and left and 
right antennae, respectively. The curved arrows indicate rotations of the fly’s heading direction. 
(a) Adapted from Ref. [40].   
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spatial differences of odor concentrations across both 
antennae [38,39] or even across a single antenna (see 
review about spatial receptive fields in insect antennae 
in this issue [57]). A study in fruit flies suggests they use 
temporal odor patterns to segregate odor sources [55]: 
when an attractive odorant A and an aversive odorant B 
are presented asynchronously, flies prefer this asyn-
chronous mixture over a synchronous mixture of A and B 
(Figure 4d and e). And this preference persists even 
when A is never present in its unmixed form (asyn-
chronous mixture B33A versus synchronous mixture 
AB). It remains unclear how mixtures from one source 
and multiple sources differ perceptually. Stimulus-onset 
asynchrony may support odor source segregation by 
making the odor mixture perception less synthetic 
(where the mixture is perceived as a unit) [58] and more 
analytic (where the mixture is perceived as a collection 

of individual odorants) [59]. Alternatively, stimulus- 
onset asynchrony may just make any mixture more at-
tractive without adding spatial information. Another 
open question is whether animals can use temporal cues 
to segregate unknown odors without innate or learned 
meaning, similar to the process of blind source separa-
tion [60]. A study in honey bees suggests that segre-
gating unknown odors is more difficult than segregating 
known odors, because it requires stimulus-onset asyn-
chrony in the range of seconds [61] compared with 
milliseconds for odors with innate or learned meaning  
[50,51,54,55]. 

Future directions 
Odor-guided behavior arises from the changes in odor sti-
muli that are produced by behavior. For example, turning 
leads to a different odor stimulus than not turning. 
Therefore, to understand how animals extract spatial in-
formation from odor stimuli, simultaneous measurement of 
both unrestrained animal behavior and the odor stimulus is 
necessary. However, capturing encounters between ani-
mals and odor stimuli in turbulent plumes is challenging. 
Olfactory measurement devices lack spatial resolution, and 
they lack either temporal resolution or odorant specificity  
[7,62] needed to resolve the fast stimulus dynamics of 
natural odor plumes [2]. Approximations are currently 
employed, such as adding visible tracers to the odor plume  
[35] or using a video projector for optogenetic stimuli, but 
this method is limited to two-dimensional odor plumes 
(Figure 2a) [40]. Another approach involves measuring the 
behavior of fixed animals in virtual reality while delivering 
naturalistic odor stimuli [63], but existing odor delivery 
devices fail to replicate the fast stimulus dynamics found in 
natural environments due to odorant-specific adsorption 
and desorption rates inside the delivery device [13,64,65]. 
To overcome these limitations, it is crucial to develop new 
odor-measuring and delivery devices capable of capturing 
millisecond-scale rise times and durations of odorant sti-
muli, regardless of the specific odorant used. 

While there is growing evidence that insects use temporal 
odor patterns to extract spatial information about odor 
sources, the underlying neural mechanisms remain elu-
sive. Recent research on the central complex and its role 
in maintaining and updating goal direction during navi-
gation [66] makes this an exciting time to ask how insects 
combine temporal cues (frequency, intermittency, and 
temporal relation between different odor stimuli) and 
spatial cues (odor motion and gradient directions), along 
with wind direction, to update an estimate of their di-
rection relative to the source and modulate navigation. It 
is also critical to clarify the role of active sampling beha-
viors, such as antennal flicking, in extracting spatial in-
formation, and whether insects can detect other spatial 
features of odor sources such as their height, shape, or 
motion. 

Figure 3  
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Mosquitoes favor small-source CO2 plumes and large-source skin odor 
plumes. (a) Homogeneous, turbulent, and filamentous plumes were 
generated in wind tunnel. (b) Mean percentage of mosquitoes flying 
upwind when stimulated with different concentrations of CO2 (left) or 
skin odor (right). Mosquitoes are more attracted to fluctuating, 
filamentous CO2 plumes and homogeneous skin odor plumes. 
(a) and (b) adapted from Ref. [45].   
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Figure 4  
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Insects detect temporal odor patterns that convey information about the distance between odor sources. (a) Horizontal section of plumes from two 
sources (dyes in water). Magenta and green traces show changes in dye concentration along the dashed line. The two plumes mix as they travel 
downstream, but the temporal pattern of both plumes differs. (b) As the distance between two odor sources increases, the correlation between their 
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